The Tadpole Conjecture in the Asymptotic Limits of Moduli Space

Alvaro Herraez

IPhT CEA/Saclay

Based on [arXiv:2204.05331] with M. Graña, T. Grimm, D. van de Heisteeg, E. Plauschinn

Planck 2022, Paris

June 2, 2022

The Landscape of Supersymmetric String Theories

To go to four dimensions we need to compactify

To go to four dimensions we need to compactify

• Multiple scalar fields in the lower dimensional theory \longrightarrow Geometry of the internal space is not fixed \longrightarrow No potential

FLUXES

BRANE

To go to four dimensions we need to compactify

• Multiple scalar fields in the lower dimensional theory \longrightarrow Geometry of the internal space is not fixed \longrightarrow No potential

• Add something to generate a potential \longrightarrow Fluxes: $\int_{\Pi_p} G_p \neq 0$

FLUXES

BRANE

To go to four dimensions we need to compactify

• Multiple scalar fields in the lower dimensional theory \longrightarrow Geometry of the internal space is not fixed \longrightarrow No potential

Add something to generate a potential \longrightarrow Fluxes: \int_{\prod_p} $G_p \neq 0$

• Bianchi identity/EoM integrated over compact space \longrightarrow Tadpole cancellation condition

$$
dF_p = \text{sources} \longrightarrow 0 = \int_{Y_n} \text{sources}
$$

• Consider F-theroy on a Calabi-Yau fourfold with fluxes

Review: [Denef '08] Effective action: [Grimm '10] [Haack, Louis '21]

$$
V = \frac{1}{\gamma'^3} \int_{Y_4} \left(G_4 \wedge \star G_4 - G_4 \wedge G_4 \right)
$$

• Consider F-theroy on a Calabi-Yau fourfold with fluxes

Review: [Denef '08] Effective action: [Grimm '10] [Haack, Louis '21]

$$
V = \frac{1}{\gamma'^3} \int_{Y_4} \left(G_4 \wedge \star G_4 - G_4 \wedge G_4 \right)
$$

• Vacuum condition: $G_4 = \star G_4$

• Restrict to complex structure sector: $J \wedge G_4 = 0$

[Becker, Becker '96] [Dasgupta, Rajesh, Sethi '99]

• Consider F-theroy on a Calabi-Yau fourfold with fluxes

Review: [Denef '08] Effective action: [Grimm '10] [Haack, Louis '21]

$$
V = \frac{1}{\gamma'^3} \int_{Y_4} \left(G_4 \wedge \star G_4 - G_4 \wedge G_4 \right)
$$

• Vacuum condition: $G_4 = \star G_4$

• Restrict to complex structure sector: $J \wedge G_4 = 0$

[Becker, Becker '96] [Dasgupta, Rajesh, Sethi '99]

• Hodge decomposition and Hodge star: $H_{\text{prim}}^4 = H^{4,0} \oplus H^{3,1} \oplus H_{\text{prim}}^{2,2} \oplus H^{1,3} \oplus H^{0,4}$

$$
\star v^{p,q} = i^{p-q} v^{p,q}
$$

• D3-brane charge in the fluxes: $Q =$ 1 $\overline{2}$ \int_{Y_4} $G_4 \wedge G_4$

- D3-brane charge in the fluxes: $Q =$ 1 $\overline{2}$ \int_{Y_4} $G_4 \wedge G_4$
- Tadpole cancellation condition: $Q + N_{D3} =$ χ (Y_4) 24

$$
Q \le \frac{\chi(Y_4)}{24} = \frac{1}{4} \left(8 + h^{1,1} + h^{3,1} - h^{2,1} \right)
$$

• D3-brane charge in the fluxes: $Q =$ 1 $\overline{2}$ \int_{Y_4} $G_4 \wedge G_4$

• Tadpole cancellation condition: $Q + N_{D3} =$ χ (Y_4) 24

$$
Q \le \frac{\chi(Y_4)}{24} = \frac{1}{4} \left(8 + h^{1,1} + h^{3,1} - h^{2,1} \right)
$$

[Bena, Blaback, Graña, Lüst '20]

Tadpole Conjecture: The flux contribution to the tadpole needed to stabilize a large number of moduli grows as

$$
Q > \alpha n_{\text{stab}} \qquad \alpha > 1/3 \qquad \frac{\chi(Y_4)}{24} \sim \frac{1}{4}h^{3,1}
$$

• D3-brane charge in the fluxes: $Q =$ 1 $\overline{2}$ \int_{Y_4} $G_4 \wedge G_4$

• Tadpole cancellation condition: $Q + N_{D3} =$ χ (Y_4) 24

$$
Q \le \frac{\chi(Y_4)}{24} = \frac{1}{4} \left(8 + h^{1,1} + h^{3,1} - h^{2,1} \right)
$$

[Bena, Blaback, Graña, Lüst '20]

 $h^{3,1}$

Tadpole Conjecture: The flux contribution to the tadpole needed to stabilize a large number of moduli grows as

$$
Q > \alpha n_{\text{stab}} \qquad \alpha > 1/3 \qquad \frac{\chi(Y_4)}{24}
$$

$$
\frac{\chi(Y_4)}{24} \sim \frac{1}{4}
$$

GOAL: Prove this in the strict asymptotic region of moduli space

Asymptotic Hodge Theory -Asymptotic limits-[Griffiths, Deligne, Schmid, Cattani, Kaplan…]

[Grimm, Palti, Valenzuela, Li, Bastian, Castellano, Calderón-Infante, Corvilain, Font, Gendler, Van de Heisteeg, Ibáñez, Monnee, Plauschinn, Uranga…]

[Griffiths, Deligne, Schmid, Cattani, Kaplan…]

[Griffiths, Deligne, Schmid, Cattani, Kaplan…]

[Griffiths, Deligne, Schmid, Cattani, Kaplan…]

Boundary

 $s^i \rightarrow \infty$ • Parametrize boundaries with coordinates $t^i = \phi^i + is^i$ • Shift symmetry $\phi^i \rightarrow \phi^i + 1$ $\Pi(t^{i} + 1) = T_{i} \Pi(t^{i})$ $T_i = e^{N_i}$

[Griffiths, Deligne, Schmid, Cattani, Kaplan…]

s
slicense of the slicense of the slicense $s^i \rightarrow \infty$ • Parametrize boundaries with coordinates $t^i = \phi^i + is^i$ • Shift symmetry $\phi^i \rightarrow \phi^i + 1$ $\Pi(t^{i} + 1) = T_{i} \Pi(t^{i})$ • Asymptotic region \longrightarrow Drop exponential corrections $s^1, s^2...s^n > 1$ Boundary $T_i = e^{N_i}$

Asymptotic Hodge Theory -Asymptotic limits- [Griffiths, Deligne, Schmid, Cattani, Kaplan…]

Boundary *sl*(2) $s^i \rightarrow \infty$ • Parametrize boundaries with coordinates $t^i = \phi^i + is^i$ • Shift symmetry $\phi^i \rightarrow \phi^i + 1$ $\Pi(t^{i} + 1) = T_{i} \Pi(t^{i})$ • Asymptotic region \longrightarrow Drop exponential corrections $s^1, s^2...s^n > 1$ $T_i = e^{N_i}$

Strict Asymptotic Region \rightarrow Introduce an **ordering** (drop polynomial corrections)

*s*1 $\frac{\ }{s^2} > \gamma,$ *s*2 $s^3 > \gamma$, …, *sn*−¹ *sn* $> \gamma$, $s^n > \gamma$ $\gamma \gg 1$

• Boundary Hodge Decomposition: $H^4_{\text{prim}}(Y_4, \mathbb{C}) = H^{4,0}_{\infty} \oplus H^{3,1}_{\infty} \oplus H^{2,2}_{\infty} \oplus H^{1,3}_{\infty} \oplus H^{0,4}_{\infty}$

- Boundary Hodge Decomposition: $H^4_{\text{prim}}(Y_4, \mathbb{C}) = H^{4,0}_{\infty} \oplus H^{3,1}_{\infty} \oplus H^{2,2}_{\infty} \oplus H^{1,3}_{\infty} \oplus H^{0,4}_{\infty}$
- sl(2) splitting: *n* **commuting** sl(2) triplets: $\{N_i^-, N_i^+, N_i^0\}$

- Boundary Hodge Decomposition: $H^4_{\text{prim}}(Y_4, \mathbb{C}) = H^{4,0}_{\infty} \oplus H^{3,1}_{\infty} \oplus H^{2,2}_{\infty} \oplus H^{1,3}_{\infty} \oplus H^{0,4}_{\infty}$
- sl(2) splitting: *n* commuting sl(2) triplets: $\{N_i^-, N_i^+, N_i^0\}$
- Decompose fluxes into sl(2) reps:

$$
H_{\text{prim}}^4(Y_4,\mathbb{R}) = \bigoplus V_e
$$

$$
\ell = (\ell_1, ..., \ell_n)
$$

• Elements in $H^4_{\text{prim}}(Y_4, \mathbb{R})$ arrange into irreps of the n commuting sl(2) **Orthogonal** among themselves

- Elements in $H^4_{\text{prim}}(Y_4, \mathbb{R})$ arrange into irreps of the n commuting sl(2) **Orthogonal** among themselves
- All but one sl(2) reps are "simple" and their weights go from -2 to 2

- Elements in $H^4_{\text{prim}}(Y_4, \mathbb{R})$ arrange into irreps of the n commuting sl(2) **Orthogonal** among themselves
- All but one sl(2) reps are "simple" and their weights go from -2 to 2

• Bdry and sl(2) Hodge star:
\n
$$
\star \longrightarrow \star_{sl(2)} \star \longrightarrow \star_{sl(2)} \left\{ |v_{\ell}| |_{sl(2)}^2 = \left(\frac{s^1}{s^2}\right)^{\ell_1} \left(\frac{s^2}{s^3}\right)^{\ell_2} \cdots \left(\frac{s^{n-1}}{s^n}\right)^{\ell_{n-1}} (s^n)^{\ell_n} |v_{\ell}| |_{\infty}^2 \right\}
$$

$$
G_4 = \star G_4 \longrightarrow G_4 = \star_{sl(2)} G_4
$$

[Grimm, Li, Valenzuela '20]

$$
G_4 = \star G_4 \longrightarrow G_4 = \star_{sl(2)} G_4
$$

• Introduce the axion-dependent fluxes: $\hat{G}_4 = e^{-\phi^i N_i^-}$ *i* G_4 $\langle G_4, G_4 \rangle = \langle G_4, G_4 \rangle$ ̂ ̂

$$
G_4 = \star G_4 \longrightarrow G_4 = \star_{sl(2)} G_4
$$

- Introduce the axion-dependent fluxes: $\hat{G}_4 = e^{-\phi^i N_i^-}$ *i* G_4 $\langle G_4, G_4 \rangle = \langle G_4, G_4 \rangle$ ̂ ̂
- Expand in the V_e subspaces: $G_4 = \sum$ *ℓ* G_e *G*₄ = \sum ̂ *ℓ* G_{ℓ} ̂

$$
G_4 = \star G_4 \longrightarrow G_4 = \star_{sl(2)} G_4
$$

- Introduce the axion-dependent fluxes: $\hat{G}_4 = e^{-\phi^i N_i^-}$ *i* G_4 $\langle G_4, G_4 \rangle = \langle G_4, G_4 \rangle$ ̂ ̂
- Expand in the V_e subspaces: $G_4 = \sum$ *ℓ* G_e *G*₄ = \sum ̂ *ℓ* G_{ℓ} ̂

• Self-duality:
$$
\hat{G}_4 = \left[e^{-\phi^i N_i^-} \star_{sl(2)} e^{+\phi^i N_i^-} \right] \hat{G}_4
$$

$$
G_4 = \star G_4 \longrightarrow G_4 = \star_{sl(2)} G_4
$$

- Introduce the axion-dependent fluxes: $\hat{G}_4 = e^{-\phi^i N_i^-}$ *i* G_4 $\langle G_4, G_4 \rangle = \langle G_4, G_4 \rangle$ ̂ ̂
- Expand in the V_e subspaces: $G_4 = \sum$ *ℓ* G_e *G*₄ = \sum ̂ *ℓ* G_{ℓ} ̂

• Self-duality:
$$
\hat{G}_4 = \begin{bmatrix} f(s, \ell) \star_{\infty} \\ \end{bmatrix} \hat{G}_4
$$

[Grimm, Li, Valenzuela '20]

$$
G_4 = \star G_4 \longrightarrow G_4 = \star_{sl(2)} G_4
$$

- Introduce the axion-dependent fluxes: $\hat{G}_4 = e^{-\phi^i N_i^-}$ *i* G_4 $\langle G_4, G_4 \rangle = \langle G_4, G_4 \rangle$ ̂ ̂
- Expand in the V_e subspaces: $G_4 = \sum$ *ℓ* G_e *G*₄ = \sum ̂ *ℓ* G_{ℓ} ̂

• Self-duality:
$$
\hat{G}_4 = \begin{bmatrix} f(s, \ell) \star_{\infty} \\ \end{bmatrix} \hat{G}_4
$$

• The equations **along different** V_e subspaces **decouple**:

[Grimm, Li, Valenzuela '20]

$$
G_4 = \star G_4 \longrightarrow G_4 = \star_{sl(2)} G_4
$$

- Introduce the axion-dependent fluxes: $\hat{G}_4 = e^{-\phi^i N_i^-}$ *i* G_4 $\langle G_4, G_4 \rangle = \langle G_4, G_4 \rangle$ ̂ ̂
- Expand in the V_e subspaces: $G_4 = \sum$ *ℓ* G_e *G*₄ = \sum ̂ *ℓ* G_{ℓ} ̂

• Self-duality:
$$
\hat{G}_4 = \begin{bmatrix} f(s, \ell) \star_{\infty} \\ 0 \end{bmatrix} \hat{G}_4
$$

• The equations **along different** V_e subspaces **decouple**:

$$
\hat{G}_{-\ell} = \left(\frac{s^1}{s^2}\right)^{\ell_1} \cdots \left(\frac{s^{n-1}}{s^n}\right)^{\ell_{n-1}} \left(s^n\right)^{\ell_n} \star_{\infty} \hat{G}_{+\ell}
$$

• Analyze all possible sl(2) reps: P_0 P_{01_i} P_{02_i} $P_{01_i2_j}$

- Analyze all possible sl(2) reps: P_0 P_{01_i} P_{02_i} $P_{01_i2_j}$
	- **ONE sl(2) rep** fixes **ONE saxionic** and one **axionic direction**
	- **Each sl(2) rep** gives a **positive** contribution to the **tadpole**

• The single sl(2) rep from the (4,0)-form can fix at most 4 moduli (and introduce SUSY breaking)

- Analyze all possible sl(2) reps: P_0 P_{01_i} P_{02_i} $P_{01_i2_j}$ • **Each sl(2) rep** gives a **positive** contribution to the **tadpole** • **ONE sl(2) rep** fixes **ONE saxionic** and one **axionic direction**
- The single sl(2) rep from the (4,0)-form can fix at most 4 moduli (and introduce SUSY breaking)
- Combining many sl(2) reps only imposes compatibility constraints between the fluxes, but never lowers the tadpole for a fixed modulus.

- Analyze all possible sl(2) reps: P_0 P_{01_i} P_{02_i} $P_{01_i2_j}$ • **Each sl(2) rep** gives a **positive** contribution to the **tadpole** • **ONE sl(2) rep** fixes **ONE saxionic** and one **axionic direction**
- The single sl(2) rep from the (4,0)-form can fix at most 4 moduli (and introduce SUSY breaking)
- Combining many sl(2) reps only imposes compatibility constraints between the fluxes, but never lowers the tadpole for a fixed modulus.
- Tadpole-wise, the most economic thing is to turn on only one sl(2) for each modulus.

$$
2Q = \langle G_4, G_4 \rangle = \langle \hat{G}_4, \hat{G}_4 \rangle
$$

$$
2Q = \langle G_4, G_4 \rangle = \langle \hat{G}_4, \hat{G}_4 \rangle = \sum_q \langle \hat{G}_q, \hat{G}_q \rangle
$$

q labels sl(2)-representations

$$
2Q = \langle G_4, G_4 \rangle = \langle \hat{G}_4, \hat{G}_4 \rangle = \sum_q \langle \hat{G}_q, \hat{G}_q \rangle \ge 2 \sum_{q, \ell > 0} \langle \hat{G}_{q, -\ell}, \hat{G}_{q, \ell} \rangle
$$

q labels sl(2)-representations

 $\ell > 0$ labels positive weights

$$
2Q = \langle G_4, G_4 \rangle = \langle \hat{G}_4, \hat{G}_4 \rangle = \sum_q \langle \hat{G}_q, \hat{G}_q \rangle \ge 2 \sum_{q, \ell > 0} \langle \hat{G}_{q, -\ell}, \hat{G}_{q, \ell} \rangle
$$

 $= 2$ \sum $\left\{q, \ell > 0\right\}$ *s*1 *s*²) $\cdots (s^n)^{\ell_n}$ $||\hat{G}_{q,\ell}||_0^2$ ̂ ∞ *q* labels sl(2)-representations $\ell > 0$ labels positive weights

$$
2Q = \langle G_4, G_4 \rangle = \langle \hat{G}_4, \hat{G}_4 \rangle = \sum_q \langle \hat{G}_q, \hat{G}_q \rangle \ge 2 \sum_{q, \ell > 0} \langle \hat{G}_{q, -\ell}, \hat{G}_{q, \ell} \rangle
$$

- $= 2$ \sum $\left\{q, \ell > 0\right\}$ *s*1 *s*²) ℓ_1 $\cdots (s^n)^{\ell_n}$ $||\hat{G}_{q,\ell}||_0^2$ ̂ ∞ ≥ 2 \sum *^q* (*s*1 *s*²) ℓ_1' $\cdots (s^n)$ ℓ_n' $\int^{\mathit{n}}_{\mathit{q}(\mathit{f})} \big| \big| \big|_0^2$ ∞
- *q* labels sl(2)-representations $\ell > 0$ labels positive weights
- labels the highest weight within each sl(2) rep *ℓ*′

$$
2Q = \langle G_4, G_4 \rangle = \langle \hat{G}_4, \hat{G}_4 \rangle = \sum_q \langle \hat{G}_q, \hat{G}_q \rangle \ge 2 \sum_{q, \ell > 0} \langle \hat{G}_{q, -\ell}, \hat{G}_{q, \ell} \rangle
$$

= 2 $\sum \left(\frac{s^1}{s^2} \right)^{\ell_1} \cdots (s^n)^{\ell_n} ||\hat{G}_{q, \ell}||_{\infty}^2$ q labels sl(2)-representations

 $\int^{\mathit{n}}_{\mathit{q}(\mathit{f})} \big| \big| \big|_0^2$

∞

- $\ell > 0$ labels positive weights
- labels the highest weight within each sl(2) rep *ℓ*′

n positive-definite terms (at least)

 $\cdots (s^n)$

 ℓ_n'

 $\left\{q, \ell > 0\right\}$

^q (

 ≥ 2 \sum

*s*²)

 ℓ_1'

*s*1

*s*²)

$$
2Q = \langle G_4, G_4 \rangle = \langle \hat{G}_4, \hat{G}_4 \rangle = \sum_q \langle \hat{G}_q, \hat{G}_q \rangle \ge 2 \sum_{q, \ell > 0} \langle \hat{G}_{q, -\ell}, \hat{G}_{q, \ell} \rangle
$$

=
$$
2 \sum_{q, \ell > 0} \left(\frac{s^1}{s^2} \right)^{\ell_1} \cdots (s^n)^{\ell_n} ||\hat{G}_{q, \ell}||_{\infty}^2
$$
 q labels sl(2)-representations

 $\int^{\mathit{n}}_{\mathit{q}(\mathit{f})} \big| \big| \big|_0^2$

∞

- $\ell > 0$ labels positive weights
- labels the highest weight within each sl(2) rep *ℓ*′

n positive-definite terms (at least)

 $\cdots (s^n)$

 ℓ_n'

 ≥ 2 \sum

^q (

*s*1

*s*²)

 ℓ_1'

At least linear scaling with (a large number of) stabilized moduli

• For large number of stabilized moduli, most of them (i.e. at least $(n - 4)$ of them) have to be **fixed with fluxes from these representations**

$$
P_0 \t P_{01_i} \t P_{02_i} \t P_{01_i2_j}
$$

• For large number of stabilized moduli, most of them (i.e. at least $(n - 4)$ of them)

have to be **fixed with fluxes from these representations**

• For large number of stabilized moduli, most of them (i.e. at least $(n - 4)$ of them)

have to be **fixed with fluxes from these representations**

$$
P_0 \t P_{01_i} \t P_{02_i} \t P_{01_i2_j}
$$

• **Each sl(2)** rep fixes **one modulus** and gives **one positive** contribution to the **tadpole**

• For large number of stabilized moduli, most of them (i.e. at least $(n - 4)$ of them)

have to be **fixed with fluxes from these representations**

$$
P_0 \t P_{01_i} \t P_{02_i} \t P_{01_i2_j}
$$

• **Each sl(2)** rep fixes **one modulus** and gives **one positive** contribution to the **tadpole**

 Linear scaling of the tadpole bound with the **number of fixed moduli**

$$
Q \geq \sum_{q} \gamma^{\sum \ell'_i} ||G_{q,\ell'}||_{\infty}^2
$$

• For large number of stabilized moduli, most of them (i.e. at least $(n - 4)$ of them)

have to be **fixed with fluxes from these representations**

$$
P_0 \t P_{01_i} \t P_{02_i} \t P_{01_i2_j}
$$

• **Each sl(2)** rep fixes **one modulus** and gives **one positive** contribution to the **tadpole**

 Linear scaling of the tadpole bound with the **number of fixed moduli**

$$
Q \geq \sum_{q} \gamma^{\sum \ell'_i} ||G_{q,\ell'}||_{\infty}^2
$$

• Key **qualitative difference** between **small and large number of moduli**

Backup slides

Charge quantization and extensions

• **Charge quantization** in the sl(2)-basis (over $\mathbb Q$ instead of over $\mathbb Z$)

- Include polynomial corrections (strict asymptotic limit) \longrightarrow "Linear scenario" [Grimm '20] [Marchesano, Prieto, Wiesner '21] [Palti, Tasinato, Ward '08]
- 3) Interior of moduli space \longrightarrow Hodge loci of $G_4^{2,2}$ fluxes is algebraic 4 [Bakker, Grimm, Schnell, Tsimerman '21] [Cattani, Deligne, Kaplan '95]

See also: [Plauschinn '22] [Lüst '22]

Asymptotic Hodge Theory -Hodge star close to the boundary-

• The boundary Hodge decomposition naturally includes a boundary Hodge star operator:

$$
\star_{\infty} : V_{\ell} \to V_{-\ell}
$$

$$
\langle v_{\ell}, v_{\ell'} \rangle = 0 \quad \text{for } \ell \neq -\ell'
$$

$$
\langle v_{\ell}, \star_{\infty} v_{\ell'} \rangle = 0 \quad \text{for } \ell \neq \ell'
$$

• Allows to express the Hodge star in the strict asymptotic limit: $\star \longrightarrow \star_{sl(2)}$

Vanishing axions:
$$
\star_{sl(2)} v_{\ell} = \left(\frac{s^1}{s^2}\right)^{\ell_1} \left(\frac{s^2}{s^3}\right)^{\ell_2} \cdots \left(\frac{s^{n-1}}{s^n}\right)^{\ell_{n-1}} (s^n)^{\ell_n} \star_{\infty} v_l
$$

Non-vanishing axions ——> Mixing with lower subspaces via $e^{\phi^i N_i^-}$ *ⁱ vl*

Asymptotic Hodge Theory -Highest weight spaces-

- Elements in $H^4_{\text{prim}}(Y_4, \mathbb{R})$ arrange into irreps of the n commuting sl(2) Generated by applying N_i^- to **highest weight states**
- What are the possible highest weight states?

Only **ONE**, corresponding to the **(4,0)-form**, can move along the exterior line of the diagram

Asymptotic Hodge Theory -Highest weight spaces-

- Elements in $H^4_{\text{prim}}(Y_4, \mathbb{R})$ arrange into irreps of the n commuting sl(2) Generated by applying N_i^- to **highest weight states**
- What are the possible highest weight states?

Moduli stabilization at work

$$
\hat{G}_{-\ell} = \left(\frac{s^1}{s^2}\right)^{\ell_1} \cdots \left(\frac{s^{n-1}}{s^n}\right)^{\ell_{n-1}} \left(s^n\right)^{\ell_n} \star_{\infty} \hat{G}_{+\ell} \qquad \hat{G}_4 = e^{\phi^i N_i^-}
$$

Example: Flux from the sl(2) rep generated by P_{02_i}

$$
G_4 = G_{02} v_{02} + G_0 v_0 + G_{0-2} v_{0-2} \implies Q = \frac{1}{2} \langle G_4, G_4 \rangle = G_{02} G_{0-2} - \frac{1}{2} G_0^2
$$

$$
\hat{G}_4 = G_{02} v_{02} + (G_0 - \phi G_{02}) v_0 + \left(G_{0-2} - \phi G_0 + \frac{1}{2} (\phi)^2 G_{02} \right) v_{0-2}
$$

*ⁱ G*⁴

 G_{02} $\frac{\partial^2 0}{\partial 2}(s)^2 = G_{0-2} - \phi G_0 +$ 1 $\frac{1}{2}$ (ϕ) 2 G_{02} • Self-duality conditions: $\phi =$ G_0 G_{02} $s =$ 2*G*0−2*G*⁰² − *G*² 0 G_{02} $(G_0 - \phi G_{02}) = - (G_0 - \phi G_{02})$

sl(2) Hodge star

• Extend boundary Hodge star to the interior: $\star_{\infty} \longrightarrow \star_{\text{sl}(2)}$

$$
\star_{\mathrm{sl}(2)} = e^{+\phi^i N_i^-} \left[e^{-\frac{1}{2} \log(s^i) N_i^0} \star_{\infty} e^{+\frac{1}{2} \log(s^i) N_i^0} \right] e^{-\phi^i N_i^-}
$$

$$
H^4_{\text{prim}}\left(Y_4, \mathbb{C}\right) = H^{4,0}_{\text{sl}(2)} \oplus H^{3,1}_{\text{sl}(2)} \oplus H^{2,2}_{\text{sl}(2)} \oplus H^{1,3}_{\text{sl}(2)} \oplus H^{0,4}_{\text{sl}(2)}
$$

$$
H_{\rm sl(2)}^{p,q} = e^{\phi^i N_i^-} e^{-\frac{1}{2} \log(s^i) N_i^0} H_{\infty}^{p,q}
$$