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Compactifications and moduli stabilization

To go to four dimensions we need to compactify

* Multiple scalar fields in the lower dimensional theory > Geometry of the

internal space is not fixed > No potential

Add something to generate a potential

> Fluxes: J Gp = 0

I,

* Bianchi identity /EoM integrated over compact space > Tadpole cancellation

condition

de = sources ——> (= J sources
Y

n



F-theory Compactifications
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* Consider F-theroy on a Calabi-Yau fourfold with fluxes Review: [Denef "08]

Effective action:
[Grimm "10]
[Haack, Louis "21]

1
V:%L (G4 A %Gy — G4 A G,y)

4

* Vacuum condition: G, = % G,

[Becker, Becker "96]
* Restrict to complex structure sector: JA G, =0 [Dasgupta, Rajesh, Sethi "99)]

» Hodge decomposition and Hodge star: H*. = H*@ H>' ® H>> & H'® @ H"*

prim prim

* yPd = jP=4 P4
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F-theory Compactifications

1
* D3-brane charge in the fluxes: Q = 5,[ G, NGy

Y,
: . X (Y 4)
* Tadpole cancellation condition: Q + Np; = 2_4
Y, 1
QS)(( 4) =—(8+h1’1+h3’1—h2’1)
24 4
/* [Bena, Blaback, Grafia, Liist "20]
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F-theory Compactifications

1
* D3-brane charge in the fluxes: Q = 5,[ G, NGy

Y,
: . X (Y4)
* Tadpole cancellation condition: Q + Np; = T
Y, 1
Q Sx( ) =— (8 + A" + 1> —h*t)
24 4
/* [Bena, Blaback, Grafia, Liist "20]

Tadpole Conjecture: The flux contribution to the tadpole needed to stabilize
a large number of modult grows as

X (Y 4) | .
e o Ta
GOAL: Prove this in the strict asymptotic region of moduli space
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Asymptotic Hodge Theory
-A SymptOtiC limits_ [Griffiths, Deligne, Schmid,

Cattani, Kaplan...]

e Parametrize boundaries
with coordinates
t'=¢'+is'

st — 00

« Shift symmetry ¢’ — ¢' + 1

[t + 1) = T, II(¢")

Boundary

* Asymptotic region ——3

Drop exponential corrections

shos? . .s">1

* Strict Asymptotic Region — Introduce an ordering (drop polynomial corrections)

Sl SZ Sn—l

— >y, — >V .., >y, s'>vy y > 1
52 53 s
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Asymptotic Hodge Theory
-B Ound ary Stru Cture S_ [Grifﬁths, Deligne, Schmid,

Cattani, Kaplan...]
= ¢' +is'

st — 00

. Boundary

There is a way to extract the infinites and define boundary structures

* Boundary Hodge Decomposition: prlm(Y4, C) = H4 " H3 ' H2 2 H1 3 HO 4
ST :  oree S N— N+ A0

* sl(2) splitting: n commuting sl(2) triplets: {Ni ; Nl , IV, }

» Decompose fluxes into sl(2) reps: | H*. Y4, @ V, L = (fl, oo fn)

prim
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Asymptotic Hodge Theory
-Key results-

_ 0 4
(N7 NN HEST
Boundary G, = * Gy

(Y 45 [R{) arrange into irreps of the n commuting sl(2) —>

: 4
o Elements in Hprim

Orthogonal among themselves

* All but one sl(2) reps are “simple” and their weights go from -2 to 2

*x V= V_,

* Bdry and sl(2) Hodge star: N\ / 2\ 0 1\ Gt
s s ) £,
*x —> *51(2) [ |§1(2) = <_) <_> ( ) (Sn) [1vel |io

§2
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Moduli stabilization: General results

s Analyze all pOSSible 81(2) reps: x POll POZZ P01i2j
/’

* ONE sl(2) rep fixes ONE saxionic and one axionic direction

* Each sl(2) rep gives a positive contribution to the tadpole

* The single sl(2) rep from the (4,0)-form can fix at most 4 moduli (and introduce SUSY
breaking)

* Combining many sl(2) reps only imposes compatibility constraints between the fluxes,
but never lowers the tadpole for a fixed modulus.

 Tadpole-wise, the most economic thing is to turn on only one sl(2) for each modulus.
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g labels sl(2)-representations

£ > 0 labels positive weights
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Tadpole Contribution

4
1 1
_5 Z (S ) (S”)f” ] (A;q,ﬂ |io g labels sl(2)-representations

Z > 0 labels positive weights

4
I 1 ! / . .
> 2 Z L T (Sn)fn G, ] 2 £’ labels the highest weight
BT within each sl(2) rep

n positive-definite terms (at least)

At least linear scaling with (a large number of) stabilized moduli
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Moduli stabilization and Tadpole
-Key results-

« For large number of stabilized moduli, most of them (i.e. at least (n — 4) of them)

have to be fixed with fluxes from these representations

x Poi,  Po, P01,.2j

» Each sl(2) rep fixes one modulus and gives one positive contribution to the tadpole

—> Linear scaling of the tadpole bound with the number of fixed moduli
£ 2
0> v G, I
q

* Key qualitative difference between small and large number of moduli
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Backup slides

The Mgsterious (asgmptotic) TaclPole Liverl:)ool Strings and BSM Phenomenologg Seminars



Charge quantization and extensions

 Charge quantization in the sl(2)-basis (over Q instead of over Z) —>

Exclude scaling of | |G, | |io ~ y > Found numerical evidence

[\(l LPoTENT

/ 2
0> ), rX4 G, I o)
q

PRouon DARY

* Extend to the interior of moduli space

1) Include polynomial corrections (striet asymptotic limit) —> “Linear scenario”

[Grimm "20] [Marchesano, Prieto, Wiesner "21]

[Palti, Tasinato, Ward "08]
See also: [Plauschinn "22] [Liist "22]

3) Interior of moduli space —> Hodge loci of Gj’z fluxes is algebraic

[Bakker, Grimm, Schnell, Tsimerman ‘21] [Cattani, Deligne, Kaplan "95]

The Mgsterious (asgmptotic} Taclpolc Li\/erpool Strings and BSM Phenomenologg Seminars
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Asymptotic Hodge Theory
-Hodge star close to the boundary-

* The boundary Hodge decomposition naturally includes a boundary Hodge star
operator:

*x .V, > V_,

<Vf, Vf/> = () for £+ =

<Vbﬂ, *oo Vf/) = () for ¢ *= '

» Allows to express the Hodge star in the strict asymptotic limit: * —> ;)

gl 4 2 £ g1 & y
1 : . 1| > P n\“n
Vanishing axions: k@) Ve = iz 3 -\ T (S ) * oo Vi

BN,

Non-vanishing axions —2 Mixing with lower subspaces via €

[



Asymptotic Hodge Theory
-Highest weight spaces-

. Elements in H* (Y 45 R) arrange into irreps of the n commuting sl(2) —>

prim

Generated by applying N;” to highest weight states

* What are the possible highest weight states?

Only ONE, corresponding to the
(4,0)-form, can move along the
exterior line of the diagram




Asymptotic Hodge Theory
-Highest weight spaces-

» Elements in Hgnm (Y 45 [R) arrange into irreps of the n commuting sl(2) —>

Generated by applying N;” to highest weight states

* What are the possible highest weight states?

Poy P01 2,
Py, \L Ny Po1 2,
Py \L Ni Py,
N; Py, \L N_P(n 2
(N7)*Po,
Ni Nj_P(n,.zi

~ h>! copies of K3 surfaces



Moduli stabilization at work

» Example: Flux from the sl(2) rep generated by P,
1 1
Gy = Gop Voot Gy Vot GopVp—, — O = 5<G4» Gy) = GppGo — EG(%

R 1
Gy = Gpy Voot (Go —¢ Goz) Vot <G0—2 — ) Gy + ) (¢)2 Goz,) Vo—2

* Self-duality conditions:




sl(2) Hodge star

- Extend boundary Hodge star to the interior: % — %,

i N T— 1 i 0 1 ] 0 INT—
*12) = o TP'N [e—ilog(s )N; *x__et? log(s )Ni] e~ P'Ni

H4

prim

— 4.0 3,1 2,2 1,3 0,4
(Y4’ (]:) o Hsl(2) D Hsl(2) D Hsl(2) D Hsl(2) D Hsl(2)

P — L¢'Ni ,—5log(s' )N Lp.q
Hsl(2) e’ ie HE;



