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The Landscape of Supersymmetric 
String Theories
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• To go to four dimensions we need to compactify

• Multiple scalar fields in the lower dimensional theory   Geometry of the 
internal space is not fixed  No potential

•
Add something to generate a potential  Fluxes: 

• Bianchi identity/EoM integrated over compact space  Tadpole cancellation 
condition

∫Πp

Gp ≠ 0

Compactifications and moduli stabilization

dFp = sources 0 = ∫Yn

sources
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• Consider F-theroy on a  Calabi-Yau fourfold with fluxes

• Vacuum condition:

• Restrict to complex structure sector:

• Hodge decomposition and Hodge star:

F-theory Compactifications

G4 = ⋆ G4

J ∧ G4 = 0

H4
prim = H4,0 ⊕ H3,1 ⊕ H2,2

prim ⊕ H1,3 ⊕ H0,4

⋆ vp,q = ip−q vp,q

Review: [Denef ’08]
Effective action:
[Grimm ’10]
[Haack, Louis ’21] 

[Becker, Becker ’96]
[Dasgupta, Rajesh, Sethi ’99] 
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Q ≤
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1
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Tadpole Conjecture: The flux contribution to the tadpole needed to stabilize 
a large number of moduli grows as 

      
Q > α nstab α > 1/3 χ (Y4)

24
∼

1
4
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• D3-brane charge in the fluxes:

• Tadpole cancellation condition:

F-theory Compactifications

Q + ND3 =
χ (Y4)

24

Q ≤
χ (Y4)

24
=

1
4 (8 + h1,1 + h3,1 − h2,1)

Tadpole Conjecture: The flux contribution to the tadpole needed to stabilize 
a large number of moduli grows as 

      
Q > α nstab α > 1/3 χ (Y4)

24
∼

1
4

h3,1

GOAL: Prove this in the strict asymptotic region of moduli space

[Bena, Blaback, Graña, Lüst  ’20] 

Q =
1
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Boundary
  sl(2)

Nilpotent

si → ∞

• Parametrize boundaries 
with coordinates  
ti = ϕi + isi

• Shift symmetry ϕi → ϕi + 1

Π(ti + 1) = Ti Π(ti)

• Asymptotic region    
Drop exponential corrections        
s1, s2…sn ≫ 1

• Strict Asymptotic Region  Introduce an ordering  (drop polynomial corrections)

s1

s2
> γ,

s2

s3
> γ, …,

sn−1

sn
> γ, sn > γ γ ≫ 1

Asymptotic Hodge Theory
-Asymptotic limits- [Griffiths, Deligne, Schmid, 

Cattani, Kaplan…] 

Ti = eNi
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There is a way to extract the infinites and define boundary structures                        

[Griffiths, Deligne, Schmid, 
Cattani, Kaplan…] 
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ti = ϕi + isi

{N−
i , N+

i , N0
i }

si → ∞

H4
prim(Y4, ℂ) = H4,0

∞ ⊕ H3,1
∞ ⊕ H2,2

∞ ⊕ H1,3
∞ ⊕ H0,4

∞• Boundary Hodge Decomposition: 

• sl(2) splitting:  commuting sl(2) triplets:

• Decompose fluxes into sl(2) reps:

n

Boundary
  sl(2)

Nilpotent

Bulk

Asymptotic Hodge Theory
-Boundary structures-

H4
prim (Y4, ℝ) = ⨁Vℓ

There is a way to extract the infinites and define boundary structures                        

ℓ = (ℓ1, …, ℓn)

[Griffiths, Deligne, Schmid, 
Cattani, Kaplan…] 
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Boundary
  sl(2)

Nilpotent

Asymptotic Hodge Theory
-Key results-

• Elements in   arrange into irreps of the n commuting sl(2)  
Orthogonal among themselves

• All but one sl(2) reps are “simple” and their weights go from -2 to 2

• Bdry and sl(2) Hodge star:

H4
prim (Y4, ℝ)

s1

s2
> γ,

s2

s3
> γ, …,

sn−1

sn
> γ, sn > γ

⋆∞ : Vℓ → V−ℓ

| |vℓ | |2
sl(2) = ( s1

s2 )
ℓ1

( s2

s3 )
ℓ2

…( sn−1

sn )
ℓn−1

(sn)ℓn | |vℓ | |2
∞

{N−
i , N+

i , N0
i } Hp,4−p

∞

⋆ ⟶ ⋆sl(2)

G4 = ⋆ G4
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G4 = ⋆ G4 G4 = ⋆sl(2) G4

• Introduce the axion-dependent fluxes:   Ĝ4 = e−ϕiN−
i G4 ⟨G4, G4⟩ = ⟨Ĝ4, Ĝ4⟩

• Expand in the  subspaces:        Vℓ G4 = ∑
ℓ

Gℓ Ĝ4 = ∑
ℓ

Ĝℓ

[Grimm, Li, Valenzuela ’20]

Ĝ4 = [e−ϕiN−
i ⋆sl(2) e+ϕiN−

i ] Ĝ4f (s, ℓ) ⋆∞

Ĝ−ℓ = ( s1

s2 )
ℓ1

⋯( sn−1

sn )
ℓn−1

(sn)ℓn ⋆∞ Ĝ+ℓ

• The equations along different  subspaces decouple:        Vℓ

• Self-duality:        
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• Analyze all possible sl(2) reps:                         

• The single sl(2) rep from the (4,0)-form can fix at most 4 moduli (and introduce SUSY 
breaking)

• Combining many sl(2) reps only imposes compatibility constraints between the fluxes, 
but never lowers the tadpole for a fixed modulus.

• Tadpole-wise, the most economic thing is to turn on only one sl(2) for each modulus.

•

P0 P01i
P02i

P01i2j

       

• ONE sl(2) rep fixes ONE saxionic and one axionic direction 

• Each sl(2) rep gives a positive contribution to the tadpole

Moduli stabilization: General results
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Tadpole Contribution

2Q = ⟨G4, G4⟩ = ⟨Ĝ4, Ĝ4⟩ = ∑
q

⟨Ĝq, Ĝq⟩ ≥ 2 ∑
q, ℓ>0

⟨Ĝq,−ℓ, Ĝq,ℓ⟩

= 2 ∑
q, ℓ>0 ( s1

s2 )
ℓ1

⋯(sn)ℓn | | Ĝq,ℓ | |2
∞

    labels sl(2)-representationsq

≥ 2∑
q ( s1

s2 )
ℓ′ 1

⋯(sn)ℓ′ n | |Gq,ℓ′ | |2
∞

   labels the highest weight 
      within each sl(2) rep
ℓ′ 

At least linear scaling with (a large number of) stabilized moduli

    labels positive weightsℓ > 0

  positive-definite terms (at least) n
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Moduli stabilization and Tadpole
-Key results-

• For large number of stabilized moduli, most of them (i.e. at least  of them) 

have to be fixed with fluxes from these representations

• Each sl(2) rep fixes one modulus and gives one positive contribution to the tadpole

 Linear scaling of the tadpole bound with the number of fixed moduli

• Key qualitative difference between small and large number of moduli

(n − 4)

                  P0 P01i
P02i

P01i2j

Q ≥ ∑
q

γ ∑ ℓ′ i | |Gq,ℓ′ | |2
∞
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 The Mysterious (asymptotic) Tadpole Liverpool Strings and BSM Phenomenology Seminars

Charge quantization and extensions

• Charge quantization in the sl(2)-basis (over  instead of over )      

Exclude scaling of     Found numerical evidence

• Extend to the interior of moduli space 

1) Include polynomial corrections (strict asymptotic limit)  “Linear scenario”

3) Interior of moduli space  Hodge loci of  fluxes is algebraic 

ℚ ℤ

| |Gℓ | |2
∞ ∼

1
n γ ∑i ℓi

G2,2
4

[Grimm ’20] [Marchesano, Prieto, Wiesner ’21]
[Palti, Tasinato, Ward ’08] 

See also: [Plauschinn ’22] [Lüst ’22]

[Cattani, Deligne, Kaplan ’95][Bakker, Grimm, Schnell, Tsimerman ‘21]

Q ≥ ∑
q

γ ∑ ℓ′ i | |Gq,ℓ′ | |2
∞



t1 → i∞ t2 → i∞

H4,0 H3,1 H2,2
prim H1,3 H0,4 t → i∞

tn → i∞

ℓ = 0

ℓ = − 1

ℓ = − 2

ℓ = − 3

ℓ = − 4

ℓ = + 1

ℓ = + 2

ℓ = + 3

ℓ = + 4

H4
prim (Y4, ℝ) = ⨁Vℓ

Asymptotic Hodge Theory
-Boundary structures-



Asymptotic Hodge Theory
-Hodge star close to the boundary-

• The boundary Hodge decomposition naturally includes a boundary Hodge star 
operator:

⋆∞ : Vℓ → V−ℓ

• Allows to express the Hodge star in the strict asymptotic limit: ⋆ ⟶ ⋆sl(2)

⋆sl(2) vℓ = ( s1

s2 )
ℓ1

( s2

s3 )
ℓ2

…( sn−1

sn )
ℓn−1

(sn)ℓn ⋆∞ vlVanishing axions:

Non-vanishing axions  Mixing with lower subspaces via  eϕiN−
i vl

        for  ⟨vℓ, ⋆∞ vℓ′ ⟩ = 0 ℓ ≠ ℓ′ 

        for  ⟨vℓ, vℓ′ ⟩ = 0 ℓ ≠ − ℓ′ 



Asymptotic Hodge Theory
-Highest weight spaces-

• Elements in   arrange into irreps of the n commuting sl(2)  
Generated by applying  to highest weight states

• What are the possible highest weight states?

H4
prim (Y4, ℝ)

N−
i

h3,1 h2,2
prim h3,11 1

Only ONE, corresponding to the 
(4,0)-form, can move along the 
exterior line of the diagram



Asymptotic Hodge Theory
-Highest weight spaces-

• Elements in   arrange into irreps of the n commuting sl(2)  
Generated by applying  to highest weight states

• What are the possible highest weight states?

H4
prim (Y4, ℝ)

N−
i

P0

P01i

P02i

P01i2j

N−
i P01i

N−
i P02i

(N−
i )2P02i

N−
i P01i2j

N−
i N−

j P01i2i

N−
j P01i2j

~  copies of K3 surfacesh3,1

h3,1 h2,2
prim h3,1



Ĝ4 = G02 v02+(G0 − ϕ G02) v0+(G0−2 − ϕ G0 +
1
2 (ϕ)2 G02i) v0−2

Ĝ−ℓ = ( s1

s2 )
ℓ1

⋯( sn−1

sn )
ℓn−1

(sn)ℓn ⋆∞ Ĝ+ℓ

• Example: Flux from the sl(2) rep generated by   P02i

G4 = G02 v02+G0 v0+G0−2v0−2

Ĝ4 = eϕiN−
i G4

G02

2
(s)2 = G0−2 − ϕG0 +

1
2 (ϕ)2 G02

• Self-duality conditions: 

ϕ =
G0

G02

Q =
1
2

⟨G4, G4⟩ = G02G0−2 −
1
2

G2
0

s =
2G0−2G02 − G2

0

G02

Moduli stabilization at work

(G0 − ϕG02) = − (G0 − ϕG02)



sl(2) Hodge star

• Extend boundary Hodge star to the interior: ⋆∞ ⟶ ⋆sl(2)

⋆sl(2) = e+ϕiN−
i [e− 1

2 log(si)N0
i ⋆∞ e+ 1

2 log(si)N0
i ] e−ϕiN−

i

H4
prim (Y4, ℂ) = H4,0

sl(2) ⊕ H3,1
sl(2) ⊕ H2,2

sl(2) ⊕ H1,3
sl(2) ⊕ H0,4

sl(2)

Hp,q
sl(2) = eϕiN−

i e− 1
2 log(si)N0

i Hp,q
∞


