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I. Some motivation



à la Feynman !

1 INTRODUCTION

b

1

2

3
a

µ

c

⌫ �

Figure 1: Gauge theories have three- and four-point vertices in a Feynman diagrammatic descrip-
tion.
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹
F a µ‹ , LEH = 2

Ÿ2
Ô

≠gR . (1.5)
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1 INTRODUCTION

Here F a

µ‹
is the usual YM field strength and R the Ricci scalar.

Following standard Feynman-diagrammatic methods, we gauge-fix and then extract the
propagator(s) and the three- and higher-point vertices. For gravity we also expand around
flat spacetime, taking the metric to be gµ‹ = ÷µ‹ + Ÿhµ‹ where ÷µ‹ is the Minkowski metric
and hµ‹ is the graviton field. As illustrated in Figs. 1 and 2, with standard gauge choices,
gauge theory has only three- and four-point vertices, while gravity has an infinite number
of vertices of arbitrary multiplicity. The complexity of each individual interaction term is
perhaps more striking than their infinite number. Consider, for example, the three-graviton
interaction. In the standard de Donder gauge, ˆ‹h‹

µ
= 1

2ˆµh‹

‹
, the corresponding vertex

is [96, 97],

G3 µfl,‹⁄,‡· (p1, p2, p3)

= iSym
5
≠1

2P3(p1 · p2÷µfl÷‹⁄÷‡· ) ≠ 1
2P6(p1‹p1⁄÷µfl÷‡· ) + 1

2P3(p1 · p2÷µ‹÷fl⁄÷‡· )

+ P6(p1 · p2÷µfl÷‹‡÷⁄· ) + 2P3(p1‹p1· ÷µfl÷⁄‡) ≠ P3(p1⁄p2µ÷fl‹÷‡· )
+ P3(p1‡p2· ÷µ‹÷fl⁄) + P6(p1‡p1· ÷µ‹÷fl⁄) + 2P6(p1‹p2· ÷⁄µ÷fl‡)

+ 2P3(p1‹p2µ÷⁄‡÷·fl) ≠ 2P3(p1 · p2÷fl‹÷⁄‡÷·µ)
6

, (1.6)

where we set Ÿ = 2, pi are the momenta of the three gravitons, ÷µ‹ is the flat metric, “Sym”
implies a symmetrization in each pair of graviton Lorentz indices µ ¡ fl, ‹ ¡ ⁄ and ‡ ¡ · ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or
six terms respectively. The symmetrization over the three external legs ensures the Bose
symmetry of the vertex. In total, the vertex has of the order of 100 terms. This generally
undercounts the number of terms, because within a diagram each vertex momentum is a
linear combination of the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

V abc

3 µ‹‡
(p1, p2, p3) = gfabc

5
(p1 ≠ p2)‡÷µ‹ + cyclic

6
. (1.7)

which does not appear to bear any obvious relation to the corresponding three-graviton
vertex (1.6). These considerations seemingly suggest that gravity is much more complicated
than gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with
the simple factorization of Lorentz indices into left and right sets visible in Eq. (1.4). The
first term in Eq. (1.6), for example, contains a factor ÷µfl which explicitly contracts a left
graviton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent.1
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on
the three-vertex with on-shell conditions imposed on external legs, by demanding that the

1While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-
dependent.
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corrections. For the Yang-MiOs Geld it takes the form

V( T""')p ~ —ic.p,P"= —ic.~p(P +P'") . (2.3)
The propagators for the normal and Gctitious quanta
are, respectively,

G~v'v"/p',
G~~aP/P2

(2.4)

(2 5)

with p' being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

6eld are much more complicated. In this case we shall
employ the momentum-index combinations pq4, p'OT'',
p"p'9", p"'4'"z"'. The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
turn-index triplets. At least 171 separate terms are
required in the complete expression for S3 in order to
exhibit this full symmetry, and for 54 the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms~
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S3 is
reduced to j.1 terms and S4 to 28 terms, as follows:

~ Pyv~'Po' r'~ Pp"X"

symL l~.(p—A""n"~ ") lI'4(p-p'~""~ ")+lI'4(p AP ~" ~ ")+lI'4(p A""~"~ ")+~4(P'P"~""~")
'I'4(p'P "-0" 0"")+'I'3(p'P "-0"'6"')+'~4(p'P"0"'0"')+~ (P'P "n'"0"')+f' (P'P'"0"n"")'

I' (p -p'~" ~"~"")j, (26)

ql p"y"~pc"'x"'

symL —l& (p p'~""0"~'"~'")—l~ (p'p'~""~'"~'")—:I' (p'p'"~"—'I'"~'")+lI' (p p'~"'~"'~'"~'")
y ~P4(p pg»g«g pic~*)+—'P»(prpr7J»g pcg~ 4)+ 'P, (prp'-pyJvrrj pcg& 4) 4p, (p—p'gl rqvr. g pc/&v)
+4~24(p P'n""n"n'"n")+'~24(p'P'n"'n""~")+ '&»(P'P'"n"-'n"'n'")+&24(p P"~'"n""~'")

kI'»(p p—'~"'I"~""~") k&»(p'p—'"~"~""~'")+i~»(pp'0'"9""n'")—2&24(p p'~""~"~"'~")
p2 (prp rgv pg x cg Kcc) P»(p pp Agv cgKP gru') I 24 (p p pg rcrjrpgv x) p~ (p pp cg Alvin

rpriv cc)

+I'4(p p'~"p~" ~"~"") I'»(p'p'~""~—"~"") 2I'»(p p'~"p—~""~"~'") I'»(p'p'—~'"~"'n"")
P (ppp c~hcc~pcr~vr) P (pap p~rp~vc~ccX) P (pcrpvp~rp~Xc~rv)+2+ (p.p ~vcr~rp~kc~ccp) j (2 7)

The "Sym" standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pp, a.r, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.
Expressions (2.6) and (2.7) can be obtained in a

straightforward manner by repeated functional diGer-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more eKcient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once 52' is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

G~ (~P.n-+~P.~- n»~-)/P'-
G~n""/P'.

(2.9)
(2.10)

' The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved} to be the
expressions containing the smallest number of terms.

him best we shall not shackle him by describing one
here. V(e also make no attempt to display S& or any
higher vertices.
The vertex V(;)p has the following form for the

gravitational Geld:
aIIr"

(p )v'

,'Symrt2P" pP"8„'—-P"pP'„g"
+(p.p" p'.p )4'+p'P'4—& 'j (2 g)

where the momentum-index combinations are pp, PY,
p"0"T", and the symmetrization is to be performed on
the index pair o.r. The propagators for the normal and
Gctitious quanta are given by

3pt graviton 
Feynman vertex

4pt graviton 
Feynman vertex

modern
methods
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6
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where we set Ÿ = 2, pi are the momenta of the three gravitons, ÷µ‹ is the flat metric, “Sym”
implies a symmetrization in each pair of graviton Lorentz indices µ ¡ fl, ‹ ¡ ⁄ and ‡ ¡ · ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or
six terms respectively. The symmetrization over the three external legs ensures the Bose
symmetry of the vertex. In total, the vertex has of the order of 100 terms. This generally
undercounts the number of terms, because within a diagram each vertex momentum is a
linear combination of the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

V abc

3 µ‹‡
(p1, p2, p3) = gfabc

5
(p1 ≠ p2)‡÷µ‹ + cyclic

6
. (1.7)

which does not appear to bear any obvious relation to the corresponding three-graviton
vertex (1.6). These considerations seemingly suggest that gravity is much more complicated
than gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with
the simple factorization of Lorentz indices into left and right sets visible in Eq. (1.4). The
first term in Eq. (1.6), for example, contains a factor ÷µfl which explicitly contracts a left
graviton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent.1
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on
the three-vertex with on-shell conditions imposed on external legs, by demanding that the

1While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-
dependent.
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
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where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹
F a µ‹ , LEH = 2

Ÿ2
Ô

≠gR . (1.5)
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corrections. For the Yang-MiOs Geld it takes the form

V( T""')p ~ —ic.p,P"= —ic.~p(P +P'") . (2.3)
The propagators for the normal and Gctitious quanta
are, respectively,

G~v'v"/p',
G~~aP/P2

(2.4)

(2 5)

with p' being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

6eld are much more complicated. In this case we shall
employ the momentum-index combinations pq4, p'OT'',
p"p'9", p"'4'"z"'. The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
turn-index triplets. At least 171 separate terms are
required in the complete expression for S3 in order to
exhibit this full symmetry, and for 54 the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms~
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S3 is
reduced to j.1 terms and S4 to 28 terms, as follows:

~ Pyv~'Po' r'~ Pp"X"

symL l~.(p—A""n"~ ") lI'4(p-p'~""~ ")+lI'4(p AP ~" ~ ")+lI'4(p A""~"~ ")+~4(P'P"~""~")
'I'4(p'P "-0" 0"")+'I'3(p'P "-0"'6"')+'~4(p'P"0"'0"')+~ (P'P "n'"0"')+f' (P'P'"0"n"")'

I' (p -p'~" ~"~"")j, (26)

ql p"y"~pc"'x"'

symL —l& (p p'~""0"~'"~'")—l~ (p'p'~""~'"~'")—:I' (p'p'"~"—'I'"~'")+lI' (p p'~"'~"'~'"~'")
y ~P4(p pg»g«g pic~*)+—'P»(prpr7J»g pcg~ 4)+ 'P, (prp'-pyJvrrj pcg& 4) 4p, (p—p'gl rqvr. g pc/&v)
+4~24(p P'n""n"n'"n")+'~24(p'P'n"'n""~")+ '&»(P'P'"n"-'n"'n'")+&24(p P"~'"n""~'")

kI'»(p p—'~"'I"~""~") k&»(p'p—'"~"~""~'")+i~»(pp'0'"9""n'")—2&24(p p'~""~"~"'~")
p2 (prp rgv pg x cg Kcc) P»(p pp Agv cgKP gru') I 24 (p p pg rcrjrpgv x) p~ (p pp cg Alvin

rpriv cc)

+I'4(p p'~"p~" ~"~"") I'»(p'p'~""~—"~"") 2I'»(p p'~"p—~""~"~'") I'»(p'p'—~'"~"'n"")
P (ppp c~hcc~pcr~vr) P (pap p~rp~vc~ccX) P (pcrpvp~rp~Xc~rv)+2+ (p.p ~vcr~rp~kc~ccp) j (2 7)

The "Sym" standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pp, a.r, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.
Expressions (2.6) and (2.7) can be obtained in a

straightforward manner by repeated functional diGer-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more eKcient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once 52' is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

G~ (~P.n-+~P.~- n»~-)/P'-
G~n""/P'.

(2.9)
(2.10)

' The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved} to be the
expressions containing the smallest number of terms.

him best we shall not shackle him by describing one
here. V(e also make no attempt to display S& or any
higher vertices.
The vertex V(;)p has the following form for the

gravitational Geld:
aIIr"

(p )v'

,'Symrt2P" pP"8„'—-P"pP'„g"
+(p.p" p'.p )4'+p'P'4—& 'j (2 g)

where the momentum-index combinations are pp, PY,
p"0"T", and the symmetrization is to be performed on
the index pair o.r. The propagators for the normal and
Gctitious quanta are given by
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Figure 1: Gauge theories have three- and four-point vertices in a Feynman diagrammatic descrip-
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹
F a µ‹ , LEH = 2

Ÿ2
Ô

≠gR . (1.5)
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians
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Here F a

µ‹
is the usual YM field strength and R the Ricci scalar.

Following standard Feynman-diagrammatic methods, we gauge-fix and then extract the
propagator(s) and the three- and higher-point vertices. For gravity we also expand around
flat spacetime, taking the metric to be gµ‹ = ÷µ‹ + Ÿhµ‹ where ÷µ‹ is the Minkowski metric
and hµ‹ is the graviton field. As illustrated in Figs. 1 and 2, with standard gauge choices,
gauge theory has only three- and four-point vertices, while gravity has an infinite number
of vertices of arbitrary multiplicity. The complexity of each individual interaction term is
perhaps more striking than their infinite number. Consider, for example, the three-graviton
interaction. In the standard de Donder gauge, ˆ‹h‹

µ
= 1

2ˆµh‹

‹
, the corresponding vertex

is [96, 97],

G3 µfl,‹⁄,‡· (p1, p2, p3)

= iSym
5
≠1

2P3(p1 · p2÷µfl÷‹⁄÷‡· ) ≠ 1
2P6(p1‹p1⁄÷µfl÷‡· ) + 1

2P3(p1 · p2÷µ‹÷fl⁄÷‡· )

+ P6(p1 · p2÷µfl÷‹‡÷⁄· ) + 2P3(p1‹p1· ÷µfl÷⁄‡) ≠ P3(p1⁄p2µ÷fl‹÷‡· )
+ P3(p1‡p2· ÷µ‹÷fl⁄) + P6(p1‡p1· ÷µ‹÷fl⁄) + 2P6(p1‹p2· ÷⁄µ÷fl‡)

+ 2P3(p1‹p2µ÷⁄‡÷·fl) ≠ 2P3(p1 · p2÷fl‹÷⁄‡÷·µ)
6

, (1.6)

where we set Ÿ = 2, pi are the momenta of the three gravitons, ÷µ‹ is the flat metric, “Sym”
implies a symmetrization in each pair of graviton Lorentz indices µ ¡ fl, ‹ ¡ ⁄ and ‡ ¡ · ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or
six terms respectively. The symmetrization over the three external legs ensures the Bose
symmetry of the vertex. In total, the vertex has of the order of 100 terms. This generally
undercounts the number of terms, because within a diagram each vertex momentum is a
linear combination of the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

V abc

3 µ‹‡
(p1, p2, p3) = gfabc

5
(p1 ≠ p2)‡÷µ‹ + cyclic

6
. (1.7)

which does not appear to bear any obvious relation to the corresponding three-graviton
vertex (1.6). These considerations seemingly suggest that gravity is much more complicated
than gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with
the simple factorization of Lorentz indices into left and right sets visible in Eq. (1.4). The
first term in Eq. (1.6), for example, contains a factor ÷µfl which explicitly contracts a left
graviton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent.1
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on
the three-vertex with on-shell conditions imposed on external legs, by demanding that the

1While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-
dependent.
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where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians
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µ‹
F a µ‹ , LEH = 2
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corrections. For the Yang-MiOs Geld it takes the form

V( T""')p ~ —ic.p,P"= —ic.~p(P +P'") . (2.3)
The propagators for the normal and Gctitious quanta
are, respectively,

G~v'v"/p',
G~~aP/P2

(2.4)

(2 5)

with p' being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

6eld are much more complicated. In this case we shall
employ the momentum-index combinations pq4, p'OT'',
p"p'9", p"'4'"z"'. The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
turn-index triplets. At least 171 separate terms are
required in the complete expression for S3 in order to
exhibit this full symmetry, and for 54 the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms~
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S3 is
reduced to j.1 terms and S4 to 28 terms, as follows:

~ Pyv~'Po' r'~ Pp"X"

symL l~.(p—A""n"~ ") lI'4(p-p'~""~ ")+lI'4(p AP ~" ~ ")+lI'4(p A""~"~ ")+~4(P'P"~""~")
'I'4(p'P "-0" 0"")+'I'3(p'P "-0"'6"')+'~4(p'P"0"'0"')+~ (P'P "n'"0"')+f' (P'P'"0"n"")'

I' (p -p'~" ~"~"")j, (26)

ql p"y"~pc"'x"'

symL —l& (p p'~""0"~'"~'")—l~ (p'p'~""~'"~'")—:I' (p'p'"~"—'I'"~'")+lI' (p p'~"'~"'~'"~'")
y ~P4(p pg»g«g pic~*)+—'P»(prpr7J»g pcg~ 4)+ 'P, (prp'-pyJvrrj pcg& 4) 4p, (p—p'gl rqvr. g pc/&v)
+4~24(p P'n""n"n'"n")+'~24(p'P'n"'n""~")+ '&»(P'P'"n"-'n"'n'")+&24(p P"~'"n""~'")

kI'»(p p—'~"'I"~""~") k&»(p'p—'"~"~""~'")+i~»(pp'0'"9""n'")—2&24(p p'~""~"~"'~")
p2 (prp rgv pg x cg Kcc) P»(p pp Agv cgKP gru') I 24 (p p pg rcrjrpgv x) p~ (p pp cg Alvin

rpriv cc)

+I'4(p p'~"p~" ~"~"") I'»(p'p'~""~—"~"") 2I'»(p p'~"p—~""~"~'") I'»(p'p'—~'"~"'n"")
P (ppp c~hcc~pcr~vr) P (pap p~rp~vc~ccX) P (pcrpvp~rp~Xc~rv)+2+ (p.p ~vcr~rp~kc~ccp) j (2 7)

The "Sym" standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pp, a.r, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.
Expressions (2.6) and (2.7) can be obtained in a

straightforward manner by repeated functional diGer-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more eKcient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once 52' is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

G~ (~P.n-+~P.~- n»~-)/P'-
G~n""/P'.

(2.9)
(2.10)

' The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved} to be the
expressions containing the smallest number of terms.

him best we shall not shackle him by describing one
here. V(e also make no attempt to display S& or any
higher vertices.
The vertex V(;)p has the following form for the

gravitational Geld:
aIIr"

(p )v'

,'Symrt2P" pP"8„'—-P"pP'„g"
+(p.p" p'.p )4'+p'P'4—& 'j (2 g)

where the momentum-index combinations are pp, PY,
p"0"T", and the symmetrization is to be performed on
the index pair o.r. The propagators for the normal and
Gctitious quanta are given by
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where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians
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µ‹
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
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Here F a

µ‹
is the usual YM field strength and R the Ricci scalar.

Following standard Feynman-diagrammatic methods, we gauge-fix and then extract the
propagator(s) and the three- and higher-point vertices. For gravity we also expand around
flat spacetime, taking the metric to be gµ‹ = ÷µ‹ + Ÿhµ‹ where ÷µ‹ is the Minkowski metric
and hµ‹ is the graviton field. As illustrated in Figs. 1 and 2, with standard gauge choices,
gauge theory has only three- and four-point vertices, while gravity has an infinite number
of vertices of arbitrary multiplicity. The complexity of each individual interaction term is
perhaps more striking than their infinite number. Consider, for example, the three-graviton
interaction. In the standard de Donder gauge, ˆ‹h‹

µ
= 1

2ˆµh‹

‹
, the corresponding vertex

is [96, 97],

G3 µfl,‹⁄,‡· (p1, p2, p3)

= iSym
5
≠1

2P3(p1 · p2÷µfl÷‹⁄÷‡· ) ≠ 1
2P6(p1‹p1⁄÷µfl÷‡· ) + 1

2P3(p1 · p2÷µ‹÷fl⁄÷‡· )

+ P6(p1 · p2÷µfl÷‹‡÷⁄· ) + 2P3(p1‹p1· ÷µfl÷⁄‡) ≠ P3(p1⁄p2µ÷fl‹÷‡· )
+ P3(p1‡p2· ÷µ‹÷fl⁄) + P6(p1‡p1· ÷µ‹÷fl⁄) + 2P6(p1‹p2· ÷⁄µ÷fl‡)

+ 2P3(p1‹p2µ÷⁄‡÷·fl) ≠ 2P3(p1 · p2÷fl‹÷⁄‡÷·µ)
6

, (1.6)

where we set Ÿ = 2, pi are the momenta of the three gravitons, ÷µ‹ is the flat metric, “Sym”
implies a symmetrization in each pair of graviton Lorentz indices µ ¡ fl, ‹ ¡ ⁄ and ‡ ¡ · ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or
six terms respectively. The symmetrization over the three external legs ensures the Bose
symmetry of the vertex. In total, the vertex has of the order of 100 terms. This generally
undercounts the number of terms, because within a diagram each vertex momentum is a
linear combination of the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

V abc

3 µ‹‡
(p1, p2, p3) = gfabc

5
(p1 ≠ p2)‡÷µ‹ + cyclic

6
. (1.7)

which does not appear to bear any obvious relation to the corresponding three-graviton
vertex (1.6). These considerations seemingly suggest that gravity is much more complicated
than gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with
the simple factorization of Lorentz indices into left and right sets visible in Eq. (1.4). The
first term in Eq. (1.6), for example, contains a factor ÷µfl which explicitly contracts a left
graviton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent.1
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on
the three-vertex with on-shell conditions imposed on external legs, by demanding that the

1While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-
dependent.
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where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹
F a µ‹ , LEH = 2

Ÿ2
Ô

≠gR . (1.5)
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corrections. For the Yang-MiOs Geld it takes the form

V( T""')p ~ —ic.p,P"= —ic.~p(P +P'") . (2.3)
The propagators for the normal and Gctitious quanta
are, respectively,

G~v'v"/p',
G~~aP/P2

(2.4)

(2 5)

with p' being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

6eld are much more complicated. In this case we shall
employ the momentum-index combinations pq4, p'OT'',
p"p'9", p"'4'"z"'. The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
turn-index triplets. At least 171 separate terms are
required in the complete expression for S3 in order to
exhibit this full symmetry, and for 54 the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms~
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S3 is
reduced to j.1 terms and S4 to 28 terms, as follows:

~ Pyv~'Po' r'~ Pp"X"

symL l~.(p—A""n"~ ") lI'4(p-p'~""~ ")+lI'4(p AP ~" ~ ")+lI'4(p A""~"~ ")+~4(P'P"~""~")
'I'4(p'P "-0" 0"")+'I'3(p'P "-0"'6"')+'~4(p'P"0"'0"')+~ (P'P "n'"0"')+f' (P'P'"0"n"")'

I' (p -p'~" ~"~"")j, (26)

ql p"y"~pc"'x"'

symL —l& (p p'~""0"~'"~'")—l~ (p'p'~""~'"~'")—:I' (p'p'"~"—'I'"~'")+lI' (p p'~"'~"'~'"~'")
y ~P4(p pg»g«g pic~*)+—'P»(prpr7J»g pcg~ 4)+ 'P, (prp'-pyJvrrj pcg& 4) 4p, (p—p'gl rqvr. g pc/&v)
+4~24(p P'n""n"n'"n")+'~24(p'P'n"'n""~")+ '&»(P'P'"n"-'n"'n'")+&24(p P"~'"n""~'")

kI'»(p p—'~"'I"~""~") k&»(p'p—'"~"~""~'")+i~»(pp'0'"9""n'")—2&24(p p'~""~"~"'~")
p2 (prp rgv pg x cg Kcc) P»(p pp Agv cgKP gru') I 24 (p p pg rcrjrpgv x) p~ (p pp cg Alvin

rpriv cc)

+I'4(p p'~"p~" ~"~"") I'»(p'p'~""~—"~"") 2I'»(p p'~"p—~""~"~'") I'»(p'p'—~'"~"'n"")
P (ppp c~hcc~pcr~vr) P (pap p~rp~vc~ccX) P (pcrpvp~rp~Xc~rv)+2+ (p.p ~vcr~rp~kc~ccp) j (2 7)

The "Sym" standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pp, a.r, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.
Expressions (2.6) and (2.7) can be obtained in a

straightforward manner by repeated functional diGer-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more eKcient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once 52' is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

G~ (~P.n-+~P.~- n»~-)/P'-
G~n""/P'.

(2.9)
(2.10)

' The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved} to be the
expressions containing the smallest number of terms.

him best we shall not shackle him by describing one
here. V(e also make no attempt to display S& or any
higher vertices.
The vertex V(;)p has the following form for the

gravitational Geld:
aIIr"

(p )v'

,'Symrt2P" pP"8„'—-P"pP'„g"
+(p.p" p'.p )4'+p'P'4—& 'j (2 g)

where the momentum-index combinations are pp, PY,
p"0"T", and the symmetrization is to be performed on
the index pair o.r. The propagators for the normal and
Gctitious quanta are given by
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹
F a µ‹ , LEH = 2

Ÿ2
Ô

≠gR . (1.5)
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians
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where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians
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Spinor-helicity formalism

Then, by making use of Eq. (67) we get (notice that only `+23 contributes to Eq. (70))

C4 = �
g22yeCW 3

2⇤2
(T a)ijh31ih32i

s212s23
s13

= �
g22yeCW 3

2

s212s23
s13

AWHle , (71)

where we also multiplied by �i due to the internal fermion line in Fig. 12, as explained in B.
We now want to use the above result to obtain Eq. (49), which corresponds to taking a 2-cut
in the (12)-channel (see Fig. 8, (a)). Using Eq. (63) with I = 1, J = 2 and K = 3, we get

Cut(12)[Aloop] = �
C(12)

2

8⇡2
�

C4

4⇡2s12s23
ln

✓
�s12
s23

◆
✓ �WHleAWHle . (72)

After dividing by AWHle and using Eq. (71), we find that Eq. (72) agrees with Eq. (49).

B SM on-shell amplitudes

B.1 Conventions

We start with the conventions taken in this article. We choose the metric ⌘µ⌫ = diag(+,�,�,�),
and the 2-component spinors with h = ⌥1/2 to be denoted respectively by |pi↵ and |p]↵̇. The
momentum is given by p↵↵̇ = |pi↵[p|↵̇, and the contractions are

hpqi ⌘ hp|↵|qi↵ and [pq] ⌘ [p|↵̇|q]
↵̇ , (73)

where we follow the conventions of Ref. [27] for raising and lowering indices. We also define
hi|�µ|j] ⌘ hi|↵(�µ)↵↵̇|j]↵̇, that fulfill the property hi|�µ|j] = [j|�µ|ii. We also have

pµ
i
=

1

2
hi|�µ

|i] , 2 pi · pj = hiji[ji] , (74)

the Fierz relation
hi|�µ

|j]hk|�µ
|l] = �2hiki[jl] , (75)

and the Schouten identity
hijihkli = hikihjli � hilihjki . (76)

Amplitudes are defined with all states incoming. Therefore outgoing states are considered
incoming states with opposite momentum, helicity and particle $ antiparticle. The ordering
of the fermions in the amplitudes is important. After a 2-cut of a loop amplitude, we have

h0|A1A2| 1... i  i+1... ji = h ̄i+1... ̄j|A1A2| 1... ii

! h ̄i+1... ̄j|A1| `2  `1ih `1  `2 |A2| 1... ii = h0|A1| `2  `1  i+1... jih0|A2| 1... i  ̄�`1  ̄�`2i

⌘ A2( 1, ..., i,  ̄�`1 ,  ̄�`2)A1( `2 , `1 , i+1, ..., j) , (77)

where in the second line we have reversed the order of the internal fermions to take into account
the minus sign in fermion loops [2]. Since in the amplitudes we encounter spinors with negative

24

pµ
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•Lorentz invariance:

Then, by making use of Eq. (67) we get (notice that only `+23 contributes to Eq. (70))
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where we also multiplied by �i due to the internal fermion line in Fig. 12, as explained in B.
We now want to use the above result to obtain Eq. (49), which corresponds to taking a 2-cut
in the (12)-channel (see Fig. 8, (a)). Using Eq. (63) with I = 1, J = 2 and K = 3, we get
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After dividing by AWHle and using Eq. (71), we find that Eq. (72) agrees with Eq. (49).

B SM on-shell amplitudes

B.1 Conventions

We start with the conventions taken in this article. We choose the metric ⌘µ⌫ = diag(+,�,�,�),
and the 2-component spinors with h = ⌥1/2 to be denoted respectively by |pi↵ and |p]↵̇. The
momentum is given by p↵↵̇ = |pi↵[p|↵̇, and the contractions are

hpqi ⌘ hp|↵|qi↵ and [pq] ⌘ [p|↵̇|q]
↵̇ , (73)

where we follow the conventions of Ref. [27] for raising and lowering indices. We also define
hi|�µ|j] ⌘ hi|↵(�µ)↵↵̇|j]↵̇, that fulfill the property hi|�µ|j] = [j|�µ|ii. We also have
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the Fierz relation
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|j]hk|�µ
|l] = �2hiki[jl] , (75)

and the Schouten identity
hijihkli = hikihjli � hilihjki . (76)

Amplitudes are defined with all states incoming. Therefore outgoing states are considered
incoming states with opposite momentum, helicity and particle $ antiparticle. The ordering
of the fermions in the amplitudes is important. After a 2-cut of a loop amplitude, we have

h0|A1A2| 1... i  i+1... ji = h ̄i+1... ̄j|A1A2| 1... ii
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⌘ A2( 1, ..., i,  ̄�`1 ,  ̄�`2)A1( `2 , `1 , i+1, ..., j) , (77)

where in the second line we have reversed the order of the internal fermions to take into account
the minus sign in fermion loops [2]. Since in the amplitudes we encounter spinors with negative
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We conclude that it is impossible to a single self-interacting massless spin 1 particle! But

suppose we have many of these particles labelled by the index a; thus the self-interaction of

a1, a2, a3 is further proportional to a coupling constant fa1a2a3 . Considering the four particle

amplitude with the same helicities and labels a1, a2, a3, a4, the residues in the s, t, u channels

have additional factors of fa1a2ef ea3a4 and similarly in the t, u channels. Now the ansatz for

the four-particle amplitude has the form

h13i2[24]2
✓
Aa1a2a3a4

st
+

Ba1a2a3a4

tu
+

Ca1a2a3a4

us

◆
(3.9)

and matching the residues in s, t, u tells us that

Ca1a2a3a4 �Aa1a2a3a4 = fa1a2ef ea3a4

Aa1a2a3a4 �Ba1a2a3a4 = fa2a3ef ea4a1

Ba1a2a3a4 � Ca1a2a3a4 = fa3a1ef ea2a4 (3.10)

and now, we can solve for Aa1a2a3a4 , Ba1a2a3a4 , Ca1a2a3a4 if and only if the fa1a2a3 satisfies the

Jacobi identity

fa1a2ef ea3a4 + fa2a3ef ea4a1 + fa3a1ef ea2a4 = 0 (3.11)

Let’s now move on to a single particle with s = 2. Naively, since the residue in the

s�channel is proportional to 1/u2, we might think that it is impossible for the four-particle

amplitude to have crucial properties of having only single poles! However, this 1/u2 is the

residue just as s ! 0, and so it could also be represented as �
1
tu
. Thus there is a unique

possibility for the four-particle amplitude for a single massless spin two particle:

�
h13i4[24]4

stu
(3.12)

which evidently has all the correct residues in all three channels! We can further investigate

the possibility on several massless spin two particles, with a coupling constant ga1a2a3 ; the

same analysis as for spin one then gives us quadratic constraints on the ga1a2a3 that are solved

only by g’s that, up to change of basis, are only non-vanishing for a1 = a2 = a3, i.e. which

are mutually non-interacting.

We have thus seen that the only consistently interacting massless spin one particles must

have a Yang-Mills structure, and the only consistent massless spin 2 particles does not non-

trivially allow more than one such particle, and gives us the standard gravity amplitude. Of

course we have done more than simply show the amplitudes are consistent, we have computed

them!

For spin s > 2, the residue in the s-channel is at least 1/u3, and so there is no way to

have a consistent four particle amplitude with only simple poles in s, t, u. We thus conclude

that there are no consistent theories of self-interacting massless particles of spin higher than

two.

Let’s move on to determine what sorts of self-consistent interactions other particles can

have with massless spin 1, 2 particles. Let’s start with the coupling of a spin s particles to
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Figure 1: Gauge theories have three- and four-point vertices in a Feynman diagrammatic descrip-
tion.

3

�

↵
µ

�

⌫
�

1

2

Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹
F a µ‹ , LEH = 2

Ÿ2
Ô

≠gR . (1.5)
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1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L

✓
Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆
' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1

SM

Ordinary EFT approach
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µ
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2Bµ⌫Bµ⌫

OGG = g2
s
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µ⌫
GAµ⌫

OHW = ig(DµH)†�a(D⌫H)W a

µ⌫

OHB = ig0(DµH)†(D⌫H)Bµ⌫

O3W = 1
3!g✏abcW

a ⌫

µ
W b
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W c ⇢µ

O3G = 1
3!gsfABCGA ⌫

µ
GB

⌫⇢
GC ⇢µ

Table 1: 14 CP-even operators made of SM bosons. The operators are grouped in 3 di↵erent

boxes corresponding to the 3 classes of operators defined in Eq. (2). Dashed lines separate

operators of di↵erent structure within a given class. There are, in addition, the 6 CP-odd

operators given in Eqs. (9)-(11).

where Y f

L,R
are the fermion hypercharges and YH the Higgs hypercharge. In particular, we

could trade OB and OW with other operators:

cBOB $ cB
g0 2

g2⇤
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�
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2
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2

X
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Y f

L
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L
+ Y f
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,
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OH + 2O6 +
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2
(Oyu

+ Oyd
+ Oye

) +
1

4

X

f

O
(3) f
L

#
, (21)

where, in the last expression, we have eliminated Or using Eq. (19).

For one family of fermions the set of operators that we use is collected in Tables 1 and 2.

We keep all operators of Eqs. (4)-(11), since they are the relevant ones for a well-motivated

class of BSM scenarios such as universal theories, with the exception of Or, that we eliminate

of our basis using Eq. (19). In Tables 1 and 2 there are 58 operators; adding the 6 bosonic CP-

odd ones in Eqs. (9)-(11) leads to a total of 64 operators. We still have 5 redundant operators

that once eliminated leave a total of 59 independent operators, in agreement with [9]. We

leave free the choice of which 5 operators to eliminate: e.g., the operators of Eq. (5) could be

eliminated by using Eq. (20) or, alternatively, we could trade 5 operators that contain fermions

by the operators in Eq. (5). We will use later this freedom in di↵erent ways depending on the

physics process studied. Other redundant operators are discussed in Appendix A.
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(8) d
LR

= (Q̄L�µTAQL)(d̄R�µTAdR)

O
u

RR
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O
q

LL
= (Q̄L�µQL)(Q̄L�µQL) O

l

LL
= (L̄L�µLL)(L̄L�µLL)

O
(8) q
LL

= (Q̄L�µTAQL)(Q̄L�µTAQL)

O
ql

LL
= (Q̄L�µQL)(L̄L�µLL)

O
(3) ql
LL

= (Q̄L�µ�aQL)(L̄L�µ�aLL)

O
qe

LR
= (Q̄L�µQL)(ēR�µeR)
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One must 
eliminate redundancies

Many missed 
in original papers 

(Buchmuller,Wyler,…)!
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the power of being on-shell !

only physical states (p2=0)Ghosts, Golstones,…
(p2≠0)  definite helicity

(h = ∓)

An important gain in simplicity:



The SM as an EFT

SM “Building-blocks”:

= EFfective Theory

●1Ψ

2Ψ
3V-_

momenta, it is convenient to write them back with positive momenta. Following the appendix
of Ref. [28], we define

|� pi↵ = i|pi↵ , |� p]↵̇ = i|p]↵̇ , (78)

that consistently leads to |� pi[�p| = �p.
The polarizations for incoming vectors with momentum p are given by

✏+
µ
=

hq|�µ|p]
p
2hqpi

, ✏�
µ
= �

hp|�µ|q]
p
2[qp]

, (79)

where q is a reference momentum [1]. We notice that when considering an internal vector in
Eq. (77), the polarizations come with opposite sign for the momentum in each amplitude A1

and A2. Therefore we have

✏+
µ
(p)✏�

⌫
(�p) + ✏�

µ
(p)✏+

⌫
(�p) =

X

h

✏h
µ
(p)(✏h

⌫
(p))⇤ , (80)

where we have used Eq. (78) and Eq. (79). Eq. (80) gives the proper sum over vector polar-
izations that we expect in a propagator. For fermions, however, the situation is di↵erent. We
have

u⌥(p) = P⌥

 
|pi↵

|p]↵̇

!
, v̄⌥(p) =

�
hp|↵ [p|↵̇

�
P⌥ , (81)

respectively for incoming h = ⌥1/2 fermions and antifermions, where P⌥ = (1± �5)/2. There-
fore, for internal fermions, where the polarizations come with opposite sign for the momentum
in each amplitude A1 and A2, we obtain

u+(p)ū+(�p) + u�(p)ū�(�p) = i/p , (82)

that leads to an extra i from the expected /p, that we have then to subtract. For this reason,
for each internal fermion line we must multiply by �i.

B.2 SM Amplitudes

The on-shell amplitude approach is based on building higher-point amplitudes from already
existing ones of lower n. The basic “blocks” are the n = 3 amplitudes, which are totally fixed
by their helicities. For the SM gauge boson interactions, using the indices a, b, ... for the adjoint
representation of the non-abelian groups, and i, j indices for the fundamental representation,
we have

ASM(1 j , 2 ̄i
, 3V a

�
) = ga

h13i2

h12i
(T a)ij , ASM(1 j , 2 ̄i

, 3V a
+
) = ga

[23]2

[12]
(T a)ij , (83)

ASM(1Hj , 2H†
i
, 3V a

�
) = ga

h13ih23i

h21i
(T a)ij , ASM(1Hj , 2H†

i
, 3V a

+
) = ga

[13][23]

[12]
(T a)ij . (84)

For the abelian U(1)Y hypercharge we have similar expressions, with (T a)ij ! Yi�ij. We fix
our normalization as Tr[T aT b] = �ab/2, with YH = 1/2 and real ga. Let us comment that, in
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Expansion:   ⟨ij⟩/Λ2 ,  [ij]/Λ2  



When the theory is also invariant under some internal symmetry group, amplitudes behave
as invariant tensors under its action on particle multiplets. In this section we will not bother
to specify the form of group-tensors, reducing to the so-called “color-stripped” amplitudes [1].
In Section 4 we will however consider explicit examples for SM amplitudes, and the invariant
tensors will be provided. Several SM examples can also be found in Refs. [4–6].

Similarly as it is done for operators, we can consider the building-block amplitudes that
define the theory as organized according to an expansion in E/⇤, which means an expansion
in powers of hiji/⇤ and [ij]/⇤. When we go beyond the ordinary interactions that arise
from dimensionless couplings (the equivalent of dimension-4 operators), we find now extra
interactions at any order in E/⇤. Since we will pay special attention to applications in the SM,
we will concentrate here in E2/⇤2 terms, which are the leading corrections to the SM when
lepton number is conserved. We leave for Appendix D the discussion on terms of order E/⇤.

For a generic theory of (i) vector bosons V± with helicity h = ±1, (ii) Weyl fermions  
with h = �1/2, and (iii) scalars �, we have the following building-block amplitudes at order
E2/⇤2 (up to complex conjugation):

• n=3:

AF 3(1V� , 2V� , 3V�) =
CF 3

⇤2
h12ih23ih31i , (2)

that has h = �3. It is quite straightforward to see that this is the only amplitude at
n = 3. Since n = 3 amplitudes have mass dimension one, they must contain 3 powers
of either brackets hiji or squares [ij] in the numerator. Moreover, we have the condition
hiji[ji] = 2pi ·pj = 0 (i, j = 1, 2, 3), that forces the vanishing of either all [ij], in which case
we can only have Eq. (2), or all hiji, that leaves its complex-conjugated version as the only
possibility. It is important to notice that Eq. (2) is antisymmetric under i $ j, and can
only arise for non-abelian gauge bosons, in which case the full amplitude is proportional
to the structure constants.

• n=4: These amplitudes are dimensionless, so they must contain 2 powers of brackets or
squares. We have the following possibilities, with total helicity h = �2:

AF 2�2(1V� , 2V� , 3�, 4�) =
CF 2�2

⇤2
h12i2 , (3)

AF 2�(1V� , 2 , 3 , 4�) =
CF 2�

⇤2
h12ih13i , (4)

A 4(1 , 2 , 3 , 4 ) =
�
C 4h12ih34i+ C 0

 4h13ih24i
� 1

⇤2
. (5)

With h = 0, we have:

A⇤�4(1�, 2�, 3�, 4�) =
�
C⇤�4h12i[12] + C 0

⇤�4h13i[13]
� 1

⇤2
, (6)

A  ̄�2(1 , 2 ̄, 3�, 4�) =
C  ̄�2

⇤2
h13i[23] , (7)

A 2 ̄2(1 , 2 , 3 ̄, 4 ̄) =
C 2 ̄2

⇤2
h12i[34] . (8)
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n=3
h=-3

n=4
h=-2

n=4
h=0

n = number of external states
h = helicity of the amplitude

}

}

}

At O(E2/Λ2):



At O(E2/Λ2):
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h = helicity of the amplitude



n=5
h=-1

n=6
h=0

• n=5: On dimensional grounds, these amplitudes must have one power of brackets (or
squares). We have only one possibility, with h = �1:

A 2�3(1 , 2 , 3�, 4�, 5�) =
C 2�3

⇤2
h12i . (9)

• n=6: This has dimension mass�2, so it cannot carry any power of momentum. The only
possibility is a 6-scalar amplitude, with h = 0:

A�6(1�, 2�, 3�, 4�, 5�, 6�) =
C�6

⇤2
. (10)

The corresponding complex-conjugated amplitudes are obtained by the exchange hiji $ [ji],
and have opposite helicities, h ! �h. We notice that these amplitudes can be unambiguously
specified by assigning (n, h, nF ), where nF = 0, 2, 4 labels the fermion content.

As we said, the approach followed here is equivalent to that with operators. In fact, if we
choose a basis of higher-dimensional operators written in Weyl spinor notation (see for instance
[7] for the case of the SM), the correspondence between dimension-6 operators and the above
amplitudes is one-to-one. For example, the amplitudes of Eq. (2) and Eq. (4) correspond to
the tree-level amplitudes with the lowest number of legs that can be made, respectively, from
the dimension-6 operators F ↵�F��F �

↵
⌘ F 3 and F ↵� ↵ �� ⌘ F 2�, and similarly for all the

others. In Appendix C we give the explicit relation of some dimension-6 operators, written
in the more usual Dirac notation [8], with the on-shell amplitudes. An advantage of on-shell
amplitudes versus operators is that we do not need to bother in specifying the operator basis,
nor to eliminate redundancies by field redefinitions.

We will generically refer to the amplitudes (2)–(10) as AOi , and their corresponding coe�-
cients as COi . These last play a similar role as the Wilson coe�cients. At the loop level, they
can mix and lead to an anomalous-dimension matrix equivalent to that in Eq. (1). Below, we
discuss how to calculate �i using unitarity methods.

3 Anomalous dimensions from on-shell methods

At the one-loop level, any amplitude can have a Passarino-Veltman decomposition, given by

Aloop =
X

a

C(a)
2 I(a)2 +

X

b

C(b)
3 I(b)3 +

X

c

C(c)
4 I(c)4 +R , (11)

where Im are master scalar integrals with m propagators1 (m = 2, 3, 4) and Cm are kinematic-
dependent coe�cients, rational functions of hiji and [ij]. The master integrals are given by

Im = (�1)mµ4�D

Z
dD`

i(2⇡)D
1

`2(`� P1)2(`� P1 � P2)2 · · ·
, (12)

1
Tadpole contributions cancel for massless theories, when using dimensional regularization.
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III. EFT renormalization
            via amplitude methods
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One-loop mixing
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A1�loop
i

Of great importance:
In particular, the RG-running of the (Wilson) 

coefficients of the amplitudes (the anomalous dimensions) 
needed for making contact with low-energy experiments

e.g. for muon g-2, they must “run” down to E~mμ
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divergent  ☞  c2 = anomalous dimensions
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After one-loop reduction to Passarino-Veltman integrals
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After one-loop reduction to Passarino-Veltman integrals

(internal particles on-shell)
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P. Baratella, C. Fernandez, AP    2005.07129

Zero contribution
(after extracting IR-div)
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W

↵ = �✓2
OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�
�†eV��

� �
Q†eVQQ

�
= ✓̄2✓2

O�q + · · · ,
�
Q†eVQQ

� �
Q†eVQQ

�
= �

1

2
✓̄2✓2

O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .
Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�
�†eV��

�
�QU = ✓2

Oyu + · · · .
(18)
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Figure 3: Tree-level contribution to the W a

�
H†le amplitude.

(up to self-renormalization). This is equivalent to calculate the anomalous dimension of the
coe�cient CF 2�, defined in Eq. (4), for the particular case of the SM.

The amplitude to consider is W a

�
H†le, where W a

�
is an SU(2)L gauge boson with h = �1,

H is the Higgs of hypercharge YH = 1/2, and l, e are respectively the SM SU(2)L-doublet and
singlet leptons, with h = �1/2 and hypercharges Yl = �1/2 and Ye = 1. At tree-level, following
the notation of Fig. 3, the only contribution to this amplitude is given by

A(1e, 2lj , 3Wa
�
, 4

H
†
i
) =

CWHle

⇤2
h31ih32i(T a)ij ⌘ AWHle , (27)

with T a = �a/2 here. We recall that, for amplitudes involving fermions, respecting the order
of labels is crucial for getting the signs correct (see Appendix B and references therein). At
the loop level, the coe�cient CWHle receives an anomalous dimension, that we will denote by
�WHle. Using Eq. (26) we can easily see that only a few COi can contribute to this anomalous
dimension. Indeed, since Eq. (27) has n = 4 and h = �2, only AOj with n = 3 or n = 4,
h = �2 can contribute. This leaves only the coe�cients of Eq. (2) and Eqs. (3)–(5) as potential
candidates to contribute to the anomalous dimension of CWHle. We already see the usefulness
of the amplitude method approach, allowing here to easily understand that there are many
vanishing contributions to the dipole operators. In working within the usual Feynman diagram
approach, these zeros appear as mysterious cancellations between di↵erent one-loop diagrams.

We also notice that Eq. (27) is symmetric under the interchange of spinors 1 and 2. As
we will see, this property also provides useful selection rules for non-renormalizations, that are
often not apparent when using higher-dimensional operators in Dirac notation [8].

4.1 One-loop contribution from C 4, CF 2�2 and CF 2�

Let us start with the contributions from n = 4 AOj amplitudes. We first consider A 4 . We
require at least two SM leptons in order to contribute to W a

�
H†le. This leaves, as the only

possible set of negative-helicity fermions forming a SM singlet, the set e, l, q, u, where q and u
are respectively the SM SU(2)L-doublet and singlet quark, with h = �1/2 and hypercharges
Yq = �1/6 and Yu = 2/3. We have then two possible amplitudes6

Aluqe(1e, 2li , 3u, 4qj) =
Cluqe

⇤2
h23ih41i✏ij , (28)

6
A third possibility / h13ih42i can be reduced to the given ones by the Schouten identity, Eq. (76).
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like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
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dipole one in Eq. (15).
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coe�cient CF 2�, defined in Eq. (4), for the particular case of the SM.
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H is the Higgs of hypercharge YH = 1/2, and l, e are respectively the SM SU(2)L-doublet and
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with T a = �a/2 here. We recall that, for amplitudes involving fermions, respecting the order
of labels is crucial for getting the signs correct (see Appendix B and references therein). At
the loop level, the coe�cient CWHle receives an anomalous dimension, that we will denote by
�WHle. Using Eq. (26) we can easily see that only a few COi can contribute to this anomalous
dimension. Indeed, since Eq. (27) has n = 4 and h = �2, only AOj with n = 3 or n = 4,
h = �2 can contribute. This leaves only the coe�cients of Eq. (2) and Eqs. (3)–(5) as potential
candidates to contribute to the anomalous dimension of CWHle. We already see the usefulness
of the amplitude method approach, allowing here to easily understand that there are many
vanishing contributions to the dipole operators. In working within the usual Feynman diagram
approach, these zeros appear as mysterious cancellations between di↵erent one-loop diagrams.

We also notice that Eq. (27) is symmetric under the interchange of spinors 1 and 2. As
we will see, this property also provides useful selection rules for non-renormalizations, that are
often not apparent when using higher-dimensional operators in Dirac notation [8].
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
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like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
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(up to self-renormalization). This is equivalent to calculate the anomalous dimension of the
coe�cient CF 2�, defined in Eq. (4), for the particular case of the SM.

The amplitude to consider is W a
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is an SU(2)L gauge boson with h = �1,

H is the Higgs of hypercharge YH = 1/2, and l, e are respectively the SM SU(2)L-doublet and
singlet leptons, with h = �1/2 and hypercharges Yl = �1/2 and Ye = 1. At tree-level, following
the notation of Fig. 3, the only contribution to this amplitude is given by
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with T a = �a/2 here. We recall that, for amplitudes involving fermions, respecting the order
of labels is crucial for getting the signs correct (see Appendix B and references therein). At
the loop level, the coe�cient CWHle receives an anomalous dimension, that we will denote by
�WHle. Using Eq. (26) we can easily see that only a few COi can contribute to this anomalous
dimension. Indeed, since Eq. (27) has n = 4 and h = �2, only AOj with n = 3 or n = 4,
h = �2 can contribute. This leaves only the coe�cients of Eq. (2) and Eqs. (3)–(5) as potential
candidates to contribute to the anomalous dimension of CWHle. We already see the usefulness
of the amplitude method approach, allowing here to easily understand that there are many
vanishing contributions to the dipole operators. In working within the usual Feynman diagram
approach, these zeros appear as mysterious cancellations between di↵erent one-loop diagrams.

We also notice that Eq. (27) is symmetric under the interchange of spinors 1 and 2. As
we will see, this property also provides useful selection rules for non-renormalizations, that are
often not apparent when using higher-dimensional operators in Dirac notation [8].

4.1 One-loop contribution from C 4, CF 2�2 and CF 2�

Let us start with the contributions from n = 4 AOj amplitudes. We first consider A 4 . We
require at least two SM leptons in order to contribute to W a

�
H†le. This leaves, as the only

possible set of negative-helicity fermions forming a SM singlet, the set e, l, q, u, where q and u
are respectively the SM SU(2)L-doublet and singlet quark, with h = �1/2 and hypercharges
Yq = �1/6 and Yu = 2/3. We have then two possible amplitudes6

Aluqe(1e, 2li , 3u, 4qj) =
Cluqe

⇤2
h23ih41i✏ij , (28)

6
A third possibility / h13ih42i can be reduced to the given ones by the Schouten identity, Eq. (76).
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W

↵ = �✓2
OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�
�†eV��

� �
Q†eVQQ

�
= ✓̄2✓2

O�q + · · · ,
�
Q†eVQQ

� �
Q†eVQQ

�
= �

1

2
✓̄2✓2

O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .
Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�
�†eV��

�
�QU = ✓2

Oyu + · · · .
(18)
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thattheJJ-operatorsO4fandO�fdonotrenormalizetheloop-operators.Forthispurpose,

itisimportanttorecallthatwecanwritefour-fermionoperators,suchas(q†̄�µq)(u
†̄�µu),in

theequivalentformq†u†qu.Fromthis,itisobviousthatclosingaloopoffermionscanonly

giveoperatorscontainingtheLorentzstructuref†forquthatcannotbecompletedtogive

adipoleoperator(noritsequivalentforms,q�µ⌫�⇢D
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liketheoneinFig.1,canbeprovedjustbyrealizingthatwecanalwayskeeptheLorentz

structure�̄µDµ(�f)externaltotheloop;thisLorentzstructurecannotbecompletedtoform

adipoleoperator.ThecontributionofO�ftoOFFisalsoabsent,ascanbededucedfrom

Eq.(14):thefirstterm,afterclosingthefermionloop,givesthewrongLorentzstructure

togenerateOFF,whilethesecondtermgivesaninteractionwithtoomanyfieldsifweuse

thefermionEOM.Finally,Oyu
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WecanbemoresystematicandcompleteusingourESFTapproach.Letusseefirsthow
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chiralsupermultipletsQandU,wefindthatthedipoleloop-operatormustarisefromthe
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:
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(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
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O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .
Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:
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Oyu + · · · .
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
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D↵U) W

↵ = �✓2
OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
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Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�
�†eV��

�
�QU = ✓2

Oyu + · · · .
(18)

7

-1/2 -1/2

-1 ●

�⇤

q†

�

q

u

Aµ

Figure 1: A potential contribution from O�q to OD.

that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W

↵ = �✓2
OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�
�†eV��

� �
Q†eVQQ

�
= ✓̄2✓2

O�q + · · · ,
�
Q†eVQQ

� �
Q†eVQQ

�
= �

1

2
✓̄2✓2

O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .
Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�
�†eV��

�
�QU = ✓2

Oyu + · · · .
(18)

7

-1/2 -1/2

-1

�
⇤ q†

�

q

u

A
µ

F
ig

u
re

1:
A

po
te
n
ti
al

co
n
tr
ib
ut
io
n
fr
om

O
�
q
to

O
D
.

th
at

th
e

J
J
-o

p
er

at
or

s
O

4f
an

d
O

�
f

d
o

n
ot

re
n
or

m
al

iz
e

th
e

lo
op

-o
p
er

at
or

s.
F
or

th
is

p
u
rp

os
e,

it
is

im
p
or

ta
nt

to
re

ca
ll

th
at

w
e

ca
n

w
ri
te

fo
u
r-

fe
rm

io
n

op
er

at
or

s,
su

ch
as

(q
† �̄

µ
q)

(u
† �̄

µ
u
),

in

th
e

eq
u
iv

al
en

t
fo

rm
q† u

† q
u
.

F
ro

m
th

is
,
it

is
ob

vi
ou

s
th

at
cl

os
in

g
a

lo
op

of
fe

rm
io

n
s

ca
n

on
ly

gi
ve

op
er

at
or

s
co

nt
ai

n
in

g
th

e
L
or

en
tz

st
ru

ct
u
re

f
† f

or
qu

th
at

ca
n
n
ot

b
e

co
m

p
le

te
d

to
gi

ve

a
d
ip

ol
e

op
er

at
or

(n
or

it
s

eq
u
iv

al
en

t
fo

rm
s,

q�
µ
⌫
�

⇢
D

⇢
q† F

µ
⌫

or
D

µ
�
qD

µ
u
H

).
F
or

th
e

ca
se

of

O
�
f
,

th
e

ab
se

n
ce

of
re

n
or

m
al

iz
at

io
n

of
th

e
d
ip

ol
e

op
er

at
or

,
as

fo
r

ex
am

p
le

fr
om

d
ia

gr
am

s

li
ke

th
e

on
e

in
F
ig

.
1,

ca
n

b
e

p
ro

ve
d

ju
st

by
re

al
iz

in
g

th
at

w
e

ca
n

al
w

ay
s

ke
ep

th
e

L
or

en
tz

st
ru

ct
u
re

�̄
µ
D

µ
(�

f
)

ex
te

rn
al

to
th

e
lo

op
;
th

is
L
or

en
tz

st
ru

ct
u
re

ca
n
n
ot

b
e

co
m

p
le

te
d

to
fo

rm

a
d
ip

ol
e

op
er

at
or

.
T

h
e

co
nt

ri
b
u
ti
on

of
O

�
f

to
O

F
F

is
al

so
ab

se
nt

,
as

ca
n

b
e

d
ed

u
ce

d
fr

om

E
q.

(1
4)

:
th

e
fi
rs

t
te

rm
,

af
te

r
cl

os
in

g
th

e
fe

rm
io

n
lo

op
,

gi
ve

s
th

e
w

ro
n
g

L
or

en
tz

st
ru

ct
u
re

to
ge

n
er

at
e

O
F

F
,
w

h
il
e

th
e

se
co

n
d

te
rm

gi
ve

s
an

in
te

ra
ct

io
n

w
it
h

to
o

m
an

y
fi
el

d
s

if
w

e
u
se

th
e

fe
rm

io
n

E
O

M
.
F
in

al
ly

,
O

y
u

ca
n

on
ly

co
nt

ri
b
u
te

to
th

e
L
or

en
tz

st
ru

ct
u
re

�
qu

,
n
ot

to
th

e

d
ip

ol
e

on
e

in
E

q.
(1

5)
.

W
e

ca
n

b
e

m
or

e
sy

st
em

at
ic

an
d

co
m

p
le

te
u
si

n
g

ou
r

E
S
F
T

ap
p
ro

ac
h
.

L
et

u
s

se
e

fi
rs

t
h
ow

th
e

op
er

at
or

s
of

E
q.

(1
2)

ca
n

b
e

em
b
ed

d
ed

in
su

p
er

-o
p
er

at
or

s.
B

y
em

b
ed

d
in

g
q

an
d

u
in

th
e

ch
ir
al

su
p
er

m
u
lt
ip

le
ts

Q
an

d
U

,
w

e
fi
n
d

th
at

th
e

d
ip

ol
e

lo
op

-o
p
er

at
or

m
u
st

ar
is

e
fr

om
th

e

✓2
-t

er
m

of
a

n
on

-c
h
ir
al

su
p
er

fi
el

d
:

�
(Q

$ D
↵
U

)
W

↵
=

�
✓2

O
D

+
·
·
·
.

(1
6)

A
m

on
g

th
e

J
J
-o

p
er

at
or

s
of

E
q.

(1
3)

,
tw

o
of

th
em

ca
n

ar
is

e
fr

om
su

p
er

sy
m

m
et

ri
c

D
-t

er
m

s

an
d

ar
e

th
en

su
p
er

sy
m

m
et

ry
-p

re
se

rv
in

g:

� �
† e

V
�
�
��

Q
† e

V
Q
Q

�
=

✓̄2
✓2

O
�
q
+

·
·
·

,
� Q

† e
V
Q
Q

��
Q

† e
V
Q
Q

�
=

�
1 2✓̄2

✓2
O

4q
+

·
·
·
,

(1
7)

an
d

si
m

il
ar

op
er

at
or

s
fo

r
Q

!
U

,
w

h
er

e
w

e
ag

ai
n

u
se

th
e

sh
or

t-
h
an

d
n
ot

at
io

n
V

Q
=

2Q
q
V

.

N
ev

er
th

el
es

s,
on

e
of

th
e

J
J
-o

p
er

at
or

s
m

u
st

co
m

e
fr

om
th

e
✓2

-c
om

p
on

en
t

of
a

n
on

-c
h
ir
al

su
p
er

fi
el

d
th

at
is

n
ot

in
va

ri
an

t
u
n
d
er

su
p
er

sy
m

m
et

ry
:

� �
† e

V
�
�
�

�
Q

U
=

✓2
O

y
u
+

·
·
·
.

(1
8)

7

very different contributions

Contributions to dipoles from Feynman approach:
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But the on-shell methods also tell us
 about the non-zero result
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W

↵ = �✓2
OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�
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�
= ✓̄2✓2

O�q + · · · ,
�
Q†eVQQ
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O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .
Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�
�†eV��

�
�QU = ✓2

Oyu + · · · .
(18)
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But the on-shell methods also tell us
 about the non-zero result
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W

↵ = �✓2
OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�
�†eV��

� �
Q†eVQQ

�
= ✓̄2✓2

O�q + · · · ,
�
Q†eVQQ

� �
Q†eVQQ

�
= �

1

2
✓̄2✓2

O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .
Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�
�†eV��

�
�QU = ✓2

Oyu + · · · .
(18)
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But the on-shell methods also tell us
 about the non-zero result
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W

↵ = �✓2
OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�
�†eV��

� �
Q†eVQQ

�
= ✓̄2✓2

O�q + · · · ,
�
Q†eVQQ

� �
Q†eVQQ

�
= �

1

2
✓̄2✓2

O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .
Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�
�†eV��

�
�QU = ✓2

Oyu + · · · .
(18)
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from the same SM amplitude!

From on-shell approach:

ASM(1
 ̄
, 2
 ̄
, 3V� , 4H†)

<latexit sha1_base64="O6VA2U4YADIP0amPgnlZsyM9fdM="></latexit>

�Ai ⇠
XZ

AjASM
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No calculation wasted 
in the on-shell method



But there is more to say by 
angular-momentum decomposition (partial-waves)

Figure 3: Tree-level contribution to the W a

�
H†le amplitude.

(up to self-renormalization). This is equivalent to calculate the anomalous dimension of the
coe�cient CF 2�, defined in Eq. (4), for the particular case of the SM.

The amplitude to consider is W a

�
H†le, where W a

�
is an SU(2)L gauge boson with h = �1,

H is the Higgs of hypercharge YH = 1/2, and l, e are respectively the SM SU(2)L-doublet and
singlet leptons, with h = �1/2 and hypercharges Yl = �1/2 and Ye = 1. At tree-level, following
the notation of Fig. 3, the only contribution to this amplitude is given by

A(1e, 2lj , 3Wa
�
, 4

H
†
i
) =

CWHle

⇤2
h31ih32i(T a)ij ⌘ AWHle , (27)

with T a = �a/2 here. We recall that, for amplitudes involving fermions, respecting the order
of labels is crucial for getting the signs correct (see Appendix B and references therein). At
the loop level, the coe�cient CWHle receives an anomalous dimension, that we will denote by
�WHle. Using Eq. (26) we can easily see that only a few COi can contribute to this anomalous
dimension. Indeed, since Eq. (27) has n = 4 and h = �2, only AOj with n = 3 or n = 4,
h = �2 can contribute. This leaves only the coe�cients of Eq. (2) and Eqs. (3)–(5) as potential
candidates to contribute to the anomalous dimension of CWHle. We already see the usefulness
of the amplitude method approach, allowing here to easily understand that there are many
vanishing contributions to the dipole operators. In working within the usual Feynman diagram
approach, these zeros appear as mysterious cancellations between di↵erent one-loop diagrams.

We also notice that Eq. (27) is symmetric under the interchange of spinors 1 and 2. As
we will see, this property also provides useful selection rules for non-renormalizations, that are
often not apparent when using higher-dimensional operators in Dirac notation [8].

4.1 One-loop contribution from C 4, CF 2�2 and CF 2�

Let us start with the contributions from n = 4 AOj amplitudes. We first consider A 4 . We
require at least two SM leptons in order to contribute to W a

�
H†le. This leaves, as the only

possible set of negative-helicity fermions forming a SM singlet, the set e, l, q, u, where q and u
are respectively the SM SU(2)L-doublet and singlet quark, with h = �1/2 and hypercharges
Yq = �1/6 and Yu = 2/3. We have then two possible amplitudes6

Aluqe(1e, 2li , 3u, 4qj) =
Cluqe

⇤2
h23ih41i✏ij , (28)

6
A third possibility / h13ih42i can be reduced to the given ones by the Schouten identity, Eq. (76).
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Example of dipoles:

J=1 J=1{ }
A(1e, 2l, 3W� , 4H†) = 3e�i�dJ=1

01 (✓) aJ=1
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only one partial-wave!



But there is more to say by 
angular-momentum decomposition (partial-waves)

Example of dipoles:

●

�⇤

q†

�

q

u

Aµ

Figure 1: A potential contribution from O�q to OD.

that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W

↵ = �✓2
OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�
�†eV��

� �
Q†eVQQ

�
= ✓̄2✓2

O�q + · · · ,
�
Q†eVQQ

� �
Q†eVQQ

�
= �

1

2
✓̄2✓2

O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .
Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�
�†eV��

�
�QU = ✓2

Oyu + · · · .
(18)
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☞ angular-momentum selection rules:

aJ=1
SM
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J=1

J=1

Not needed the full 
SM amplitude, only:

Amplitudes with J≠1cannot contribute to dipoles
see also arXiv:2001.04481 

B. vonHarling, P. Baratella, C. Fernandez, AP   2010.13809
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Anomalous Dimensions as a product of partial-waves

1/Λ2 amplitude

B. vonHarling, P. Baratella, C. Fernandez, AP   2010.13809



Beyond one-loop

Two-loop:

2005.06983
2005.12917 
2112.12131 

review next such computation. For the case at hand, Eq. (4.4) is given by

yt

g
0

2

4

1�L

3�

y

xa

L
e
L

H

e
µ
R

B

(4.6)

where the gauge boson must be attached anywhere in the left of the cut. This gives a two-to-two
amplitude given by

M(24k; xay) =
p
2yt

✓
YtR

[xy]2

[x2][y2]
+ YH

[xy][4x]

[42][x2]

◆
T

a

k
, (4.7)

where T a

k
= g0�a

k
is the SU(2)L tensor arising from the contraction of left-handed doublets. On the

right hand side we have the form factor given by

F
O

eµtt

LuQe

(xay31l) = �h1yihx3i✏la . (4.8)

It is now a straightforward matter to plug (4.7) and (4.8) into (4.4), perform the spinor rotations
(4.5) and few elementary integrals, leading to

2
p
2yµg

0
h12ih23i✏lk

| {z }
dipole

yt
yµ

Nc/2

(16⇡2)
(YH � 2YtR

) , (4.9)

where Nc = 3 is the number of colors and yt the top Yukawa coupling. We recognize the minimal
form-factor of the dipole (4.2) and therefore the anomalous dimension is �DB = (ytNc/16⇡2)(�1/2)(YQL

+
YtR

)Ceµtt

LuQe
.

In the case of mixing into ODW , we set hypercharges YtR
= 0 and YH = 1 and change the

SU(2)L tensor to be T
a

k
= g(⌧↵/2)a

k
on the amplitude side. Then we get the following result:

2
p
2gyµh12ih23i✏lk0(⌧

↵)k
0

k| {z }
dipole

Ncyt/4

(16⇡2)
. (4.10)

From the last expression we recognize the dipole (4.3) and the corresponding anomalous dimension.

4.2 Two-loop mixing into dipoles

We want to calculate here the two-loop mixing  ̄� H†DH �! Fµ⌫ ̄H which is the only one
relevant for µ ! e� not yet calculated. The two-loop leading-log contributions to the r.h.s. can in
principle involve three-particle cuts or two-particle cuts:

OiM +
1-loop

OiM +
1-loop

OiM . (4.11)
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Two-loops for μ→eγ

J. Elias-Miro, C. Fernandez, M. Gümüs,  AP 2112.12131 

affects μ→eγ at the two-loop level:

1. Renormalization of OeW by OHe

Let us consider the renormalization of the dim-6 dipole operator

O
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= (ēR�
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By the dim-6 H
2
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D µH)(ēR�

µ
µR) (2)

Figure 1: 3-cuts of the 2-loop amplitude for the renormalization we are considering

At two-loops, one only has to consider the 3-particle cut shown in Fig. 1. The anomalous

dimension will be given by
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The needed subamplitudes are
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 Z→μe

The first diagram involves a tree-level amplitude and a tree-level form-factor, so that the three-
particle cut accounts for the two-loop factor. The second/third diagram involves tree-level/one-loop
amplitude and one-loop/tree-level form-factor which, together with the two-particle cut, make it
to two-loop order. Bellow we will show that the second and third diagrams do not contribute to
the  ̄� H†DH �! Fµ⌫ ̄H mixings because of simple helicity selection rules. Thus, all our non-
trivial calculations will only involve three-particle cuts. For the transition  ̄� H†DH ! Fµ⌫ ̄H ,
in (4.11) we only need to consider two external particles to the scattering amplitude and form-
factor.

The phase-space integral involving the three-particle cuts can be nicely simplified into the
following angular integration [3]

OiM =
h12i[12]

(16⇡2)2

Z
d⌦3 M(12; xyz)FOi

(xyz34) , (4.12)

where the amplitude describes the x+ y + z ! 1 + 2 scattering process at tree-level. The spinors
in the integrand can be rotated in terms a basis spanned by the two external spinors:
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and the measure is d⌦3 = 4 cos ✓1 sin
3 ✓1d✓12 cos ✓2 sin ✓2d✓22 cos ✓3 sin ✓3d✓3

d�

2⇡
d�

2⇡ . When identical
particles cross the cut, one needs to include the corresponding combinatorial symmetry factor in
the phase space integral, more details below. Note also that (4.12) includes the �1/⇡ factor in the
r.h.s. of (4.1).

4.2.1 Top Yukawa y2t contributions

We expect these type of contributions to be the dominant ones because they are proportional to
Ncy2t . We first explain in detail the mixing of Oeµ

L
into O

eµ

DB
through a top loop. The three particle

cuts are given by
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(4.14)

where on the l.h.s. the gauge boson must be attached in all possible ways to the Higgs (dashed
line) or fermion lines (solid). Summing over all such possible attachments of the gauge boson leads
the following tree-level scattering amplitude
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p
2ytyµ

✓
YµR

hyzi

[x2][32]
� YtR
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Aba , (4.15)
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Finite terms?

Difficult in general, but simplifies a lot 
for BSM calculations, where new physics scale M >> Eexp

New insights from the amplitude method!



Finite terms to g-2

No contribution O(1/M2) to dipoles
from a heavy singlet + doublet fermion:
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FIG. 1. Leading diagrams for (g � 2)µ. While these diagrams naively generate dimension-six operators,

the bottom diagram, and the sum of the top two diagrams, actually give vanishing leading contribution to

(g � 2)µ.

GeV for perturbative couplings and so are excluded by direct LHC searches. We hence focus on the

direct left-right mixing operators. We naively expect that the dominant contribution comes from

the correction around the energy scale mS ,mL � mW , so we use the Higgs picture and consider

the diagrams in Fig. 1 that would generate a dimension-six operator H`D2ec. The contribution of

the diagrams to (g � 2)µ, however, vanishes as we show below.

It is easy to see that the contribution to (g � 2)µ from ✏µq⌫�µ⌫ is absent; putting pµ ! 0 the

only linear dependence on qµ comes through the photon vertex and vanishes since ✏ · q = 0. We

may thus put q = 0 and see the dependence on p in order to compute the correction to (g � 2)µ.

The correction from the bottom diagram is proportional to
Z
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⌘
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where we have performed the Wick rotation. The correction from the top two diagrams is propor-

tional to
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To compute (g � 2)µ, it is enough to see the terms linear in p, so one may put p2 = 0 in the L

propagator in the second term. Because of the partial cancellation between the two terms, the

~ O(1/M4)

N. Arkani-Hamed, K. Harigaya 2106.01373



Finite terms to g-2

No contribution O(1/M2) to dipoles
from a heavy singlet + doublet fermion:
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Figure 1: One-loop contribution to the g�2 of the SM leptons from the model Eq. (3.3) with YV = 0
and Y 0

V
6= 0, with the relevant 2-cuts.

The first thing to realize in this example, and the others that will follow, is that all the
coe�cients C4 and C3 vanish, as all possible 4-cuts and 3-cuts of Fig. 1 give zero. The reason
is the following. Since we are taking pH0 = 0, we have pS = pL and then the condition to have
S and L simultaneously on-shell cannot be fulfilled as both have di↵erent masses. This implies
that the 4-cut is zero (no boxes) and the only potential nonzero 3-cut must arise from cutting two
massless states and one massive state. This corresponding triangle is however also zero. Indeed,
one can follow the arguments of Ref. [11] to prove that in the absence of IR divergencies (as it is
our case), IR-divergent triangles cannot be present when there are no boxes. We are then left only
with bubbles.

We can obtain the bubble coe�cients C2 from 2-cuts. Before performing calculations it is
important to remark that since pH0 = 0, we have p1 + p2 + p3 = 0. Therefore we can work
either in the limit in which s13 = (p1 + p3)2 is small but nonzero, but then we will have to take
also p22 = s13 6= 0 (i.e. the fermion e slightly o↵-shell), or alternatively, we can take the limit
s23 = (p2 + p3)2 ! 0 and then p21 = s23 6= 0 (i.e. the fermion ` slightly o↵-shell). Let us choose
the first option and consider the 2-cuts where S becomes on-shell. There are in principle two
possible 2-cuts of this type. However, the one leaving ` alone as an external leg is proportional to
I2(p21 = 0,M2

S
, 0) and cannot give any contribution of O(s13/M2).2 The only relevant 2-cut is then

the one depicted by cutS in Fig. 1. We have
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where the integral is over the Lorentz-Invariant Phase Space (LIPS) associated with the momenta
of the two cut states, p10 and p30 , normalized as

R
dLIPS = 1. With a bar over a state we denote

that the signs of the momentum, helicity and all other quantum numbers of the state have been
reversed, and F is the number of internal fermions (F = 1 in this case) [11].

The tree-level amplitudes in Eq. (3.4) can be easily calculated from the model Eq. (3.3). We use
the spinor-helicity formalism for massive particles from Ref. [17], using properties and conventions
which are summarized in Appendix B. This gives (recall that pH0 = 0)
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2All these types of bubbles, added to the s13-independent terms of the bubble Eq. (3.8), must sum to zero since
the one-loop amplitude cannot have divergent terms.
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Figure 1: One-loop contribution to the g�2 of the SM leptons from the model Eq. (3.3) with YV = 0
and Y 0

V
6= 0, with the relevant 2-cuts.

The first thing to realize in this example, and the others that will follow, is that all the
coe�cients C4 and C3 vanish, as all possible 4-cuts and 3-cuts of Fig. 1 give zero. The reason
is the following. Since we are taking pH0 = 0, we have pS = pL and then the condition to have
S and L simultaneously on-shell cannot be fulfilled as both have di↵erent masses. This implies
that the 4-cut is zero (no boxes) and the only potential nonzero 3-cut must arise from cutting two
massless states and one massive state. This corresponding triangle is however also zero. Indeed,
one can follow the arguments of Ref. [11] to prove that in the absence of IR divergencies (as it is
our case), IR-divergent triangles cannot be present when there are no boxes. We are then left only
with bubbles.

We can obtain the bubble coe�cients C2 from 2-cuts. Before performing calculations it is
important to remark that since pH0 = 0, we have p1 + p2 + p3 = 0. Therefore we can work
either in the limit in which s13 = (p1 + p3)2 is small but nonzero, but then we will have to take
also p22 = s13 6= 0 (i.e. the fermion e slightly o↵-shell), or alternatively, we can take the limit
s23 = (p2 + p3)2 ! 0 and then p21 = s23 6= 0 (i.e. the fermion ` slightly o↵-shell). Let us choose
the first option and consider the 2-cuts where S becomes on-shell. There are in principle two
possible 2-cuts of this type. However, the one leaving ` alone as an external leg is proportional to
I2(p21 = 0,M2
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the one depicted by cutS in Fig. 1. We have

C(13)
2 =

Z
dLIPS (�1)FA(1`, 3�� , 1

0

S
, 30

H+)⇥A(30
H̄+ , 10S̄, 2e, 4H0) , (3.4)

where the integral is over the Lorentz-Invariant Phase Space (LIPS) associated with the momenta
of the two cut states, p10 and p30 , normalized as

R
dLIPS = 1. With a bar over a state we denote

that the signs of the momentum, helicity and all other quantum numbers of the state have been
reversed, and F is the number of internal fermions (F = 1 in this case) [11].

The tree-level amplitudes in Eq. (3.4) can be easily calculated from the model Eq. (3.3). We use
the spinor-helicity formalism for massive particles from Ref. [17], using properties and conventions
which are summarized in Appendix B. This gives (recall that pH0 = 0)
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2All these types of bubbles, added to the s13-independent terms of the bubble Eq. (3.8), must sum to zero since
the one-loop amplitude cannot have divergent terms.
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Figure 1: One-loop contribution to the g�2 of the SM leptons from the model Eq. (3.3) with YV = 0
and Y 0
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6= 0, with the relevant 2-cuts.

The first thing to realize in this example, and the others that will follow, is that all the
coe�cients C4 and C3 vanish, as all possible 4-cuts and 3-cuts of Fig. 1 give zero. The reason
is the following. Since we are taking pH0 = 0, we have pS = pL and then the condition to have
S and L simultaneously on-shell cannot be fulfilled as both have di↵erent masses. This implies
that the 4-cut is zero (no boxes) and the only potential nonzero 3-cut must arise from cutting two
massless states and one massive state. This corresponding triangle is however also zero. Indeed,
one can follow the arguments of Ref. [11] to prove that in the absence of IR divergencies (as it is
our case), IR-divergent triangles cannot be present when there are no boxes. We are then left only
with bubbles.

We can obtain the bubble coe�cients C2 from 2-cuts. Before performing calculations it is
important to remark that since pH0 = 0, we have p1 + p2 + p3 = 0. Therefore we can work
either in the limit in which s13 = (p1 + p3)2 is small but nonzero, but then we will have to take
also p22 = s13 6= 0 (i.e. the fermion e slightly o↵-shell), or alternatively, we can take the limit
s23 = (p2 + p3)2 ! 0 and then p21 = s23 6= 0 (i.e. the fermion ` slightly o↵-shell). Let us choose
the first option and consider the 2-cuts where S becomes on-shell. There are in principle two
possible 2-cuts of this type. However, the one leaving ` alone as an external leg is proportional to
I2(p21 = 0,M2
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where the integral is over the Lorentz-Invariant Phase Space (LIPS) associated with the momenta
of the two cut states, p10 and p30 , normalized as

R
dLIPS = 1. With a bar over a state we denote

that the signs of the momentum, helicity and all other quantum numbers of the state have been
reversed, and F is the number of internal fermions (F = 1 in this case) [11].

The tree-level amplitudes in Eq. (3.4) can be easily calculated from the model Eq. (3.3). We use
the spinor-helicity formalism for massive particles from Ref. [17], using properties and conventions
which are summarized in Appendix B. This gives (recall that pH0 = 0)
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Figure 1: One-loop contribution to the g�2 of the SM leptons from the model Eq. (3.3) with YV = 0
and Y 0

V
6= 0, with the relevant 2-cuts.

The first thing to realize in this example, and the others that will follow, is that all the
coe�cients C4 and C3 vanish, as all possible 4-cuts and 3-cuts of Fig. 1 give zero. The reason
is the following. Since we are taking pH0 = 0, we have pS = pL and then the condition to have
S and L simultaneously on-shell cannot be fulfilled as both have di↵erent masses. This implies
that the 4-cut is zero (no boxes) and the only potential nonzero 3-cut must arise from cutting two
massless states and one massive state. This corresponding triangle is however also zero. Indeed,
one can follow the arguments of Ref. [11] to prove that in the absence of IR divergencies (as it is
our case), IR-divergent triangles cannot be present when there are no boxes. We are then left only
with bubbles.

We can obtain the bubble coe�cients C2 from 2-cuts. Before performing calculations it is
important to remark that since pH0 = 0, we have p1 + p2 + p3 = 0. Therefore we can work
either in the limit in which s13 = (p1 + p3)2 is small but nonzero, but then we will have to take
also p22 = s13 6= 0 (i.e. the fermion e slightly o↵-shell), or alternatively, we can take the limit
s23 = (p2 + p3)2 ! 0 and then p21 = s23 6= 0 (i.e. the fermion ` slightly o↵-shell). Let us choose
the first option and consider the 2-cuts where S becomes on-shell. There are in principle two
possible 2-cuts of this type. However, the one leaving ` alone as an external leg is proportional to
I2(p21 = 0,M2
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, 0) and cannot give any contribution of O(s13/M2).2 The only relevant 2-cut is then
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where the integral is over the Lorentz-Invariant Phase Space (LIPS) associated with the momenta
of the two cut states, p10 and p30 , normalized as
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dLIPS = 1. With a bar over a state we denote

that the signs of the momentum, helicity and all other quantum numbers of the state have been
reversed, and F is the number of internal fermions (F = 1 in this case) [11].

The tree-level amplitudes in Eq. (3.4) can be easily calculated from the model Eq. (3.3). We use
the spinor-helicity formalism for massive particles from Ref. [17], using properties and conventions
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Figure 1: One-loop contribution to the g�2 of the SM leptons from the model Eq. (3.3) with YV = 0
and Y 0

V
6= 0, with the relevant 2-cuts.

The first thing to realize in this example, and the others that will follow, is that all the
coe�cients C4 and C3 vanish, as all possible 4-cuts and 3-cuts of Fig. 1 give zero. The reason
is the following. Since we are taking pH0 = 0, we have pS = pL and then the condition to have
S and L simultaneously on-shell cannot be fulfilled as both have di↵erent masses. This implies
that the 4-cut is zero (no boxes) and the only potential nonzero 3-cut must arise from cutting two
massless states and one massive state. This corresponding triangle is however also zero. Indeed,
one can follow the arguments of Ref. [11] to prove that in the absence of IR divergencies (as it is
our case), IR-divergent triangles cannot be present when there are no boxes. We are then left only
with bubbles.

We can obtain the bubble coe�cients C2 from 2-cuts. Before performing calculations it is
important to remark that since pH0 = 0, we have p1 + p2 + p3 = 0. Therefore we can work
either in the limit in which s13 = (p1 + p3)2 is small but nonzero, but then we will have to take
also p22 = s13 6= 0 (i.e. the fermion e slightly o↵-shell), or alternatively, we can take the limit
s23 = (p2 + p3)2 ! 0 and then p21 = s23 6= 0 (i.e. the fermion ` slightly o↵-shell). Let us choose
the first option and consider the 2-cuts where S becomes on-shell. There are in principle two
possible 2-cuts of this type. However, the one leaving ` alone as an external leg is proportional to
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where the integral is over the Lorentz-Invariant Phase Space (LIPS) associated with the momenta
of the two cut states, p10 and p30 , normalized as

R
dLIPS = 1. With a bar over a state we denote

that the signs of the momentum, helicity and all other quantum numbers of the state have been
reversed, and F is the number of internal fermions (F = 1 in this case) [11].

The tree-level amplitudes in Eq. (3.4) can be easily calculated from the model Eq. (3.3). We use
the spinor-helicity formalism for massive particles from Ref. [17], using properties and conventions
which are summarized in Appendix B. This gives (recall that pH0 = 0)
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Figure 1: One-loop contribution to the g�2 of the SM leptons from the model Eq. (3.3) with YV = 0
and Y 0

V
6= 0, with the relevant 2-cuts.

The first thing to realize in this example, and the others that will follow, is that all the
coe�cients C4 and C3 vanish, as all possible 4-cuts and 3-cuts of Fig. 1 give zero. The reason
is the following. Since we are taking pH0 = 0, we have pS = pL and then the condition to have
S and L simultaneously on-shell cannot be fulfilled as both have di↵erent masses. This implies
that the 4-cut is zero (no boxes) and the only potential nonzero 3-cut must arise from cutting two
massless states and one massive state. This corresponding triangle is however also zero. Indeed,
one can follow the arguments of Ref. [11] to prove that in the absence of IR divergencies (as it is
our case), IR-divergent triangles cannot be present when there are no boxes. We are then left only
with bubbles.

We can obtain the bubble coe�cients C2 from 2-cuts. Before performing calculations it is
important to remark that since pH0 = 0, we have p1 + p2 + p3 = 0. Therefore we can work
either in the limit in which s13 = (p1 + p3)2 is small but nonzero, but then we will have to take
also p22 = s13 6= 0 (i.e. the fermion e slightly o↵-shell), or alternatively, we can take the limit
s23 = (p2 + p3)2 ! 0 and then p21 = s23 6= 0 (i.e. the fermion ` slightly o↵-shell). Let us choose
the first option and consider the 2-cuts where S becomes on-shell. There are in principle two
possible 2-cuts of this type. However, the one leaving ` alone as an external leg is proportional to
I2(p21 = 0,M2

S
, 0) and cannot give any contribution of O(s13/M2).2 The only relevant 2-cut is then

the one depicted by cutS in Fig. 1. We have

C(13)
2 =

Z
dLIPS (�1)FA(1`, 3�� , 1

0

S
, 30

H+)⇥A(30
H̄+ , 10S̄, 2e, 4H0) , (3.4)

where the integral is over the Lorentz-Invariant Phase Space (LIPS) associated with the momenta
of the two cut states, p10 and p30 , normalized as

R
dLIPS = 1. With a bar over a state we denote

that the signs of the momentum, helicity and all other quantum numbers of the state have been
reversed, and F is the number of internal fermions (F = 1 in this case) [11].

The tree-level amplitudes in Eq. (3.4) can be easily calculated from the model Eq. (3.3). We use
the spinor-helicity formalism for massive particles from Ref. [17], using properties and conventions
which are summarized in Appendix B. This gives (recall that pH0 = 0)

A(1`, 3�� , 1
0

S
, 30

H+) = qeYLMS

[3010]

[303][13]
, A(30

H̄+ , 10S̄, 2e, 4H0) = YRY
0

V

[�10
|p10 |2i

M2
S
�M2

L

. (3.5)

2All these types of bubbles, added to the s13-independent terms of the bubble Eq. (3.8), must sum to zero since
the one-loop amplitude cannot have divergent terms.

4

even under S↔︎L

from on-shell methods:

odd under S↔︎L
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Finite terms to g-2

Following the same argument, more zeros can be found:

L. Delle Rosse, B. von Harling, AP in 2201.10572 

• Scalar + heavy doublet + charged fermion:

` e

H0�

�0

Lc Ec

cutL H0

�0

Lc Ec` e

�
cutE

Figure 4: One-loop contributions to the g� 2 of the SM leptons from the model Eq. (3.20), with the

relevant 2-cuts.

3.2.1 A natural zero for models with an extra (massless) scalar singlet

We have seen that in the model Eq. (3.15) we do not find a vanishing contribution from the
diagrams (b)+(c) since each contribution is even under E $ L, ` $ e. To have a contribution
which is odd under this interchange, we need to have the same type of diagram as the one in
Fig. 1 with no mass insertions in the heavy fermion lines. Unfortunately, diagrams of this type
are identically zero in the model Eq. (3.15) as the Higgs line cannot be closed if we do not insert
fermion masses. Nevertheless, diagrams of this type can be generated if we add an extra massless
scalar singlet �0 to the model with the following couplings:

�L = Y �

L
�0`Lc + Y �

R
�0Ece+ h.c. (3.20)

The Feynman diagrams involving this scalar are given in Fig. 4. Now, we can follow the same
reasoning as in Sec. 3.1 to show that this contribution to the dipole moment is zero. Indeed, we
can get the dependence on ML of cutE (where E is put on-shell) by noticing that it only enters
in the L propagator, so it must appear as 1/(M2

E
�M2

L
). Dimensional analysis tells us then that

�C� / 1/(M2
E
�M2

L
). The dependence on the masses for cutL is determined by a permutation

similar to Eq. (3.10) with S replaced by E which gives �C� / 1/(M2
L
� M2

E
). Adding both

contributions we get zero. It is clear that the cancellations have nothing to do with where the
photon is attached, either to the Higgs line as in Fig. 1 or to the fermion line as in Fig. 4.

4 |H|
2F 2 Wilson coe�cient

Let us now move to the calculation of the Wilson coe�cient of the operator contributing to the
decay of a Higgs to two photons. The operator reads

C��

M2

q2
e

2
|H|

2F 2
µ⌫

, (4.1)

and the resulting amplitude is

C��

M2
AH2F 2(1�� , 2�� , 3H0 , 4H0) = �

C��

M2
q2
e
h12i2 . (4.2)

We consider the same model as Eq. (3.15), containing two vector-like fermions, L and E, with
the same quantum numbers as the SM leptons. Here we assume vanishing Yukawa couplings
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• Beyond g-2:  Zeros in h𝛄𝛄

☞ zero

☞ zero

+  (L↔︎E)

+  (L↔︎E)

cutE cutE

cutEL cutEL cutEL

E

E

E

L

E

E

L

L

E

E

cutE

E

L

Figure 5: One-loop contributions to H�� from the model Eq. (3.15), with the relevant 2-cuts. There

is a similar 2-cut isolating the other photon that we do not show. Fermion lines can be clockwise and

counterclockwise.

between the new fermions and the SM leptons though, YL,R = 0. In the following, we will focus
on the case YV = 0, Y 0

V
6= 0. The discussion for the opposite case YV 6= 0, Y 0

V
= 0 is identical.

Since the amplitude Eq. (4.2) does not depend on the Higgs momenta, we can take them to be
zero, p3 = p4 = 0. In this case we can take the limit pi/M ! 0 by giving to the photons a small
nonzero mass p2 ⌘ p21 = p22 = �p1p2. An alternative is to set only one Higgs momentum to zero,
say p3 = 0, but in this case we have nonzero 3-cuts as we elaborate in Appendix C.

There are three di↵erent diagrams which can contribute to the Wilson coe�cient, shown in
Fig. 5. Additional contributions arise from the same diagrams with E $ L. So the total
contribution must be symmetric under E $ L. As we will see, this will clash with the fact that
the contributions from Fig. 5 are odd under E $ L. Although to show that the total contribution
is zero is quite easy, we will proceed here with the details of the calculation which can be useful
for cases where they do not add up to zero.

As in the g�2 case, there are no possible 3-cuts or 4-cuts since the on-shell conditions cannot be
simultaneously fulfilled for vanishing Higgs momenta. This leaves the 2-cuts shown in Fig. 5. The
2-cut denoted as cutEL isolates two amplitudes involving a photon coupled to two di↵erent fermions
which are zero by gauge invariance. This can explicitly seen by calculating these amplitudes,

A(1�, 2E, 3L, 4H0) =
1

s�M2
E

�
h1|p2|1]

h23i

p
+h12ih13i

�
+

1

u�M2
L

�
h1|p3|1]

h32i

p
+h12ih13i

�
, (4.3)

where s = (p3 + p4)2, u = (p2 + p4)2 and p =
p
p2. In the limit p4 ! 0, we have s ! M2

L
and

u ! M2
E
, and the amplitude vanishes after symmetrizing over the SU(2) indices of the photon.

The only remaining 2-cut is cutE of Fig. 5. This involves a coupling of a massive photon to
massive fermions given by [19]

A(1�, `E, `
0

E
) =

qe
p

�
h1`i [1`0] + [1`]h1`0i

�
. (4.4)

On the other side of the cut, we have the same type of amplitude A(1�, `E, `0E) but with the external
fermion line corrected by the insertion of two Higgs. This can be considered as a correction to the
E propagator which can be absorbed into a renormalization of the wavefunction �ZE and of the
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Conclusions

Get on-shell!

☞  many “emergent” selection rules

A lot to do! Stay Tuned!

☞  many relations between anomalous dimensions
where Feynman approach is quite obscure

Simpler with easy recycling

• Allows to construct BSM without Lagrangians 

• Calculation of loop effects:


