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Introduction

Einstein’s theory of gravity has been tested in many ways and passed all the tests with
flying colors:

Light deflection

Perihel advance of mercury & many other binary systems

Shapiro time delay

· · ·
Gravitational waves

All these observations test GR on solar system size scales. Furthermore, they
essentially test vacuum solutions of Einstein’s equations,

Rµν = 0 .

Can we also test these equations with matter,

Rµν − 1
2

gµνR = Gµν = 8πGTµν ?
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Introduction

The Friedmann-Lemaı̂tre solution of cosmology is a non-vacuum solution
of Einstein’s equation:

ds2 = −dt2 + a2(t)γijdx idx j z + 1 = a0/a(t)
(

ȧ
a

)2

+
K
a2 = H2 +

K
a2 =

8πG
3

(
ρ+

Λ

8πG

)

ä
a

= −4πG
3

(
ρ+ 3P − Λ

4πG

)

Have we ’tested’ these equations with cosmological observations?
What have we truly measured:

F (z) =
L

4πdL(z)2

dL(z) = (1 + z)χK

(∫ z

0

dz′

H(z′)

)
, χK (r) =

sin(
√

K r)√
K
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Introduction
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Compilation by Huterer & Shafer ’17.
Binned from 870 SNe Ia (black) and 3 BAO points (from BOSS DR12, red).

NO !
We have ’postulated’ the existence of dark matter and dark energy to fit this data.
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Pantheon+ (1550 Type Ia supernovae)

Complilation 1701 light curves from 18 different samples, Brout et al. 2022.
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Introduction

In this talk I shall show that with the help of clustering observations, i.e. using the fact
that the Universe is not perfectly homogeneous and isotropic, we can actually test
Einstein’s equations to some extent. . .

We shall do this using the statistics of the galaxy distribution. In this talk I shall only
consider the 2-point function and its power spectrum, but also higher statistics are very
relevant especially in the non-linear regime, and they are very sensitive to the theory of
gravity.
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Introduction

The CMB

CMB sky as seen by Planck

T (n) =
∑

a`mY`m(n)
〈a`ma∗`′m′〉 = δ``′δmm′C`
D` = `(`+ 1)C`/(2π)

The Planck Collaboration:
Planck results 2018
[1807.06209]
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Introduction

M. Blanton and the Sloan Digital Sky Survey Team.
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Galaxy power spectrum from the Sloan Digital Sky Survey (BOSS)
14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3 h Mpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p
Cii for the power spectrum and the rms error calculated

from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04 h Mpc�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥ Bm(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, kn, equally spaced in 0 < k < 2 h Mpc�1,
to the central wavenumbers of the observed bandpowers ki:

P (ki)fit =
X

n

W (ki, kn)P (kn)m � W (ki, 0). (33)

The final term W (ki, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

Bm = (BCAMB � 1)e�k2⌃2
nl/2 + 1, (34)

where the damping scale ⌃nl is a fitted parameter. We assume
a Gaussian prior on ⌃nl with width ±2 h�1 Mpc, centred on
8.24 h�1 Mpc for pre-reconstruction fits and 4.47 h�1 Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c� 2011 RAS, MNRAS 000, 2–33

from Anderson et al. ’12

SDSS-III (BOSS)
power spectrum.

Galaxy surveys '
matter density fluctuations,
biasing and redshift space
distortions.

Ruth Durrer (Université de Genève, DPT & CAP) Testing GR with LSS Mai 30, 2022 10 / 32



Introduction

But...
We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.
We see density fluctuations which are further away from us, further in the past.
We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.

The measured redshift is perturbed by peculiar velocities and by the gravitational
potential.

Not only the number of galaxies but also the volume is distorted.

The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

For small galaxy catalogs, these effects are not very important, but when we go
out to z ∼ 1 or more, they become relevant. Already for SDSS BOSS which goes
out to z ' 0.7 (BOSS) or DES which goes to z ' 0.8.

But of course much more for future surveys like DESI, Euclid, LSST, SKA and
WFIRST.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is

r(z) =

∫ z

0

dz′

H(z′)
=

1
H0

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩK (1 + z′)2 + ΩΛ

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.

Depending on the observational situation we measure directly r(z) or

dA(z) =
1

(1 + z)
χK (r(z)) the angular diameter distance

dL(z) = (1 + z)χK (r(z)) the luminosity distance.

At small redshift all distances are d(z) = z/H0 +O(z2), for z � 1, [d ] = h−1Mpc.
At larger redshifts, the distance depends strongly on ΩK , ΩΛ, · · · .

Whenever we convert a measured redshift and angle into a length scale, we make
assumptions about the underlying cosmology.
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Very large scale galaxy surveys

If we convert the measured correla-
tion function ξ(θ, z1, z2) to a power
spectrum, we have to introduce a
cosmology, to convert angles and
redshifts into length scales.

r(z1, z2, θ)
(K =0)

=
√

r 2
1 + r 2

2 − 2r1r2 cos θ.

ri = r(zi ) =
∫ zi

0
dz

H(z)

(Figure by F. Montanari)

Observed
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Very large scale galaxy surveys

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See J. Yoo et al. 2009, J. Yoo 2010; C. Bonvin & RD 2011; Challinor & Lewis, 2011)

For each galaxy in a catalog we measure

(θ, φ, z) = (n, z) (+ info about mass, spectral type...)

We can count the galaxies inside a redshift bin and small solid angle, N(n, z) and
measure the fluctuation of this count:

∆(n, z) =
N(n, z)− N̄(z)

N̄(z)
.

ξ(θ, z, z′) = 〈∆(n, z)∆(n′, z′)〉 , n · n′ = cos θ .

This quantity is directly measurable.
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations from scalar perturbations to 1st order as function of the observed
redshift z and direction n

∆(n, z) = bD − 3HV − (2− 5s)Φ + Ψ +
1
H
[
Φ̇ + ∂r (V · n)

]

+

( Ḣ
H2 +

2− 5s
r(z)H + 5s

)(
Ψ + V · n +

∫ r(z)

0
dr(Φ̇ + Ψ̇)

)

−2− 5s
2

∫ r(z)

0
dr
[

r(z)− r
r(z)r

∆Ω(Φ + Ψ)− 2(Φ + Ψ)

]
.

( Bonvin & RD ’11, Challinor & Lewis ’11)
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Redshift space distortions in the BOSS survey

(from Lange et al. [2101.12261])

0.18 < z < 0.3 0.3 < z < 0.42
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The angular power spectrum of galaxy density fluctuations

For fixed z, we can expand ∆(n, z) in spherical harmonics,

∆(n, z) =
∑

`m

a`m(z)Y`m(n), C`(z, z′) = 〈a`m(z)a∗`m(z′)〉.

ξ(θ, z, z′) = 〈∆(n, z)∆(n′, z′)〉 =
1

4π

∑

`

(2`+ 1)C`(z, z′)P`(cos θ)

cos θ = n · n′
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 0.1, ∆z = 0.01
(from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 3,∆z = 0.3
(from Bonvin & RD ’11)
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Measuring the lensing potential with Euclid

Well separated redshift bins measure mainly the lensing-density correlation:

〈∆(n, z)∆(n′, z′)〉 ' 〈∆L(n, z)δ(n′, z′)〉 z > z′

∆L(n, z) = (2− 5s(z))κ(n, z)
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[1506.01369]
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Testing GR with the lensing potential

0.95 1. 1.05

β

0.95 1. 1.05
0.035

0.06

0.085

0.035 0.06 0.085

mν

0.95 1. 1.05
65.27

67.27

69.27

0.035 0.06 0.085
65.27

67.27

69.27

65.27 67.27 69.27

H0

0.95 1. 1.05
3.064

3.094

3.124

0.035 0.06 0.085
3.064

3.094

3.124

65.27 67.27 69.27
3.064

3.094

3.124

3.064 3.094 3.124

ln(1010As)

0.95 1. 1.05
0.9495

0.9645

0.9795

0.035 0.06 0.085
0.9495

0.9645

0.9795

65.27 67.27 69.27
0.9495

0.9645

0.9795

3.064 3.094 3.124
0.9495

0.9645

0.9795

0.9495 0.9645 0.9795

ns

0.95 1. 1.05
0.1136

0.1198

0.126

0.035 0.06 0.085
0.1136

0.1198

0.126

65.27 67.27 69.27
0.1136

0.1198

0.126

3.064 3.094 3.124
0.1136

0.1198

0.126

0.94950.96450.9795
0.1136

0.1198

0.126

0.1136 0.1198 0.126

ωcdm

0.95 1. 1.05
2.175

2.225

2.275

0.035 0.06 0.085
2.175

2.225

2.275

65.27 67.27 69.27
2.175

2.225

2.275

3.064 3.094 3.124
2.175

2.225

2.275

0.9495 0.9645 0.9795
2.175

2.225

2.275

0.1136 0.1198 0.126
2.175

2.225

2.275

2.175 2.225 2.275

102ωb

Fisher matrix analyis of an Euclid-like
photometric survey.

∆L → β∆L

- - - - 5 bins auto only
—– 5 bins auto & cross
- - - - 10 bins auto only
—– 10 bins auto & cross

(Montanari & RD 2015)
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Testing GR with the lensing potential
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see also Alonso & Ferreira, 2015, V. Iršič, E. Di Dio & M. Viel, 2016
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Neglecting the lensing potential biases cosmological parameters
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An estimator for the lensing potential

∆(`, z) = ∆̃(`, z) + g(`, z)φ(`, z) +

∫
d2`′

2π
K (`′, `, z)∆̃(`′, z)φ(`− `′, z) +O(φ2)

〈∆(L)〉φ = g(L, z)φ(L) ,

〈∆(`)∆(L− `)〉φ =
1

2π
f (`,L− `)φ(L) (for L 6= 0).

φ̂(L, z) = A(L, z)N(L, z)

∫
d2`

2π
∆(`, z)∆(L− `, z)F (`,L− `, z)

+(1− A(L, z))
∆(L, z)

g(L, z)

with

F (`1, `2, z) =
f (`1, `2, z)

2C`1 (z)C`2 (z)
,

N(L, z) =

[∫
d2`

(2π)2 f (`,L− `, z)F (`,L− `, z)

]−1

A(L, z) =
CL(z)

g(L, z)2N(L, z) + CL(z)
.
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An estimator for the lensing potential
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(from Nistane, Jalilvand, Carron, RD & Kunz, arXiv:2201.04129)

Ruth Durrer (Université de Genève, DPT & CAP) Testing GR with LSS Mai 30, 2022 26 / 32



An estimator for the lensing potential
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Measuring the growth rate of perturbations

The growth rate of perturbations is very sensitive to the theory of gravity.

A cosmological constant is the only form of dark energy which exhibits absolutely
no clustering.

Redshift space distortions are most sensitive to the growth rate. hence to measure
it we need good redshift resolution→ a spectroscopic survey.

Even though ’lensing convergence’ is not very relevant for standard cosmological
parameter estimation with spectroscopic surveys, it does significantly affect the
growth rate.
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Standard parameter estimation from Vera Rubin Observatory (LSST)
and SKA2 galaxy number counts

(Lepori, Jelic-Cizmek, Bonvin, RD 2020)
Errobars on std parameters from LSST will be similar to those from SKA2
h0, ns and Ωcdm will even be better determined with LSST than with SKA2 !
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Growth rate estimation from SKA2 galaxy number counts

The growth rate is best estimated with RSD. However, in the k-power spectrum lensing
is not easily included.
Including lensing, SKA2 will be able to determine it at the few % level (2 - 3% in a
Fisher analysis).

f̃ (z) = f (z)σ8(z) (neglecting lensing / including lensing in the analysis)

(Lepori, Jelic-Cizmek, Bonvin, RD 2020)

Ruth Durrer (Université de Genève, DPT & CAP) Testing GR with LSS Mai 30, 2022 30 / 32



Conclusions

So far cosmological LSS data mainly determined ξ(r), or equivalently P(k) or
B(k1, k2, k3) · · · . These are easier to measure (less noisy) but:
• they require an fiducial input cosmology converting redshift and angles to length
scales,

r =
√

r(z)2 + r(z′)2 − 2r(z)r(z′) cos θ .
This complicates especially the determination of error bars in parameter estimation
• it is not simple to correctly include lensing
(see Castorina & Di Dio, ’22 for a suggestion).

Upcoming large & precise 3d galaxy catalogs like Euclid, DESI, SKA, LSST etc.
will be able to determine directly the measured 3d correlation functions and
spectra, ξ(θ, z, z′) and C`(z, z′) and b`1,`2,`2 (z1, z2, z3) · · · from the data.

These 3d quantities will of course be more noisy, but they also contain more
information.

These spectra are not only sensitive to the matter distribution (density) but also to
the velocity via (redshift space distortions) and to the perturbations of spacetime
geometry (lensing) .
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Conclusions

We can therefore in principle determine both, the components of the energy
momentum tensor and the geometry which allows us to test Einstein’s equations.

We can define an estimator for the lensing potential and in principle generate
tomographic maps of the lensing potential from galaxy number counts.

To test GR e.g. with the growth rate of perturbations it is important to include
lensing even in the analysis of spectroscopic surveys.

The spectra C`(z, z′) and b`1,`2,`2 (z1, z2, z3) depend sensitively and in several
different ways on the theory of gravity (growth factor, relation between Ψ and Φ),
on the matter and baryon densities, and on the velocity. Their measurements
provide a new route to estimate cosmological parameters and, especially, to test
General Relativity on cosmological scales.

————————
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