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Introduction

Einstein’s theory of gravity has been tested in many ways and passed all the tests with
flying colors:

Light deflection
Perihel advance of mercury & many other binary systems

o
o
@ Shapiro time delay
o
]

Gravitational waves
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Gravitational waves

All these observations test GR on solar system size scales. Furthermore, they
essentially test vacuum solutions of Einstein’s equations,
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@ Perihel advance of mercury & many other binary systems
@ Shapiro time delay
o
o

Gravitational waves

All these observations test GR on solar system size scales. Furthermore, they
essentially test vacuum solutions of Einstein’s equations,

R., =0.

Can we also test these equations with matter,
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Introduction

The Friedmann-Lemaitre solution of cosmology is a non-vacuum solution
of Einstein’s equation:

ds? = —df? + &(t)yax'ax’  z+1=ap/a(t)

N 2
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<a> Tt Mtz (/’*sﬂe)
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Have we 'tested’ these equations with cosmological observations?
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Have we 'tested’ these equations with cosmological observations?
What have we truly measured:

L
F&) = Tz
a(z) = (1+z)xK(/oz%,)), wel(r) = SNVKD)

VK
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Introduction
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Compilation by Huterer & Shafer '17.
Binned from 870 SNe la (black) and 3 BAO points (from BOSS DR12, red).

NO'!
We have 'postulated’ the existence of dark matter and dark energy to fit this data.
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Pantheon+ (1550 Type la supernovae)
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Introduction

In this talk | shall show that with the help of clustering observations, i.e. using the fact
that the Universe is not perfectly homogeneous and isotropic, we can actually test
Einstein’s equations to some extent. ..

We shall do this using the statistics of the galaxy distribution. In this talk | shall only
consider the 2-point function and its power spectrum, but also higher statistics are very
relevant especially in the non-linear regime, and they are very sensitive to the theory of
gravity.
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Introduction

The CMB

CMB sky as seen by Planck
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Introduction

M. Blanton and the Sloan Digital Sky Survey Team.
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Galaxy power spectrum from the Sloan Digital Sky Survey (BOSS)
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Introduction

But...

@ We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.
We see density fluctuations which are further away from us, further in the past.
We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.
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@ Not only the number of galaxies but also the volume is distorted.

@ The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

@ For small galaxy catalogs, these effects are not very important, but when we go
outto z ~ 1 or more, they become relevant. Already for SDSS BOSS which goes
out to z ~ 0.7 (BOSS) or DES which goes to z ~ 0.8.
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@ We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.
We see density fluctuations which are further away from us, further in the past.
We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.

@ The measured redshift is perturbed by peculiar velocities and by the gravitational
potential.

@ Not only the number of galaxies but also the volume is distorted.

@ The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

@ For small galaxy catalogs, these effects are not very important, but when we go
outto z ~ 1 or more, they become relevant. Already for SDSS BOSS which goes
out to z ~ 0.7 (BOSS) or DES which goes to z ~ 0.8.

@ But of course much more for future surveys like DESI, Euclid, LSST, SKA and
WFIRST.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is
2d2 1 az'

(z) = e[
Jo H@)  HolJo /(1 + 22 +Qx(T + 2)2 + Qa

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is
z dz/ B l /z dz/
o H(Z)  Holo \/Qm(1+2)+Qk(1+2)2+

r(z) =

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
Depending on the observational situation we measure directly r(z) or

da(z) = ﬁm(r(z)) the angular diameter distance
a(z) = (14 2)xx(r(2)) the luminosity distance.

At small redshift all distances are d(z) = z/Hy + O(2?), for z < 1, [d] = h~"Mpc.
At larger redshifts, the distance depends strongly on Qx, Qa,---.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is
2d2 1 az'

(z) = e[
Jo H@)  HolJo /(1 + 22 +Qx(T + 2)2 + Qa

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
Depending on the observational situation we measure directly r(z) or

da(z) = ﬁm(r(z)) the angular diameter distance
a(z) = (14 2)xx(r(2)) the luminosity distance.

At small redshift all distances are d(z) = z/Hy + O(2?), for z < 1, [d] = h~"Mpc.
At larger redshifts, the distance depends strongly on Qx, Qa,---.

@ Whenever we convert a measured redshift and angle into a length scale, we make
assumptions about the underlying cosmology.
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Very large scale galaxy surveys

If we convert the measured correla-
tion function £(0, z1, z2) to a power
spectrum, we have to introduce a
cosmology, to convert angles and
redshifts into length scales.

r(z1, 22, 0) (K=0)

\/rf +r2 —2nrr; cos .

n=ria) = 7

(Figure by F. Montanari)
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Very large scale galaxy surveys

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See J. Yoo et al. 2009, J. Yoo 2010; C. Bonvin & RD 2011; Challinor & Lewis, 2011)
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linear order. (See J. Yoo et al. 2009, J. Yoo 2010; C. Bonvin & RD 2011; Challinor & Lewis, 2011)

For each galaxy in a catalog we measure
0,¢,2) =(n,z) (+ info about mass, spectral type...)

We can count the galaxies inside a redshift bin and small solid angle, N(n, z) and
measure the fluctuation of this count:
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Very large scale galaxy surveys

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See J. Yoo et al. 2009, J. Yoo 2010; C. Bonvin & RD 2011; Challinor & Lewis, 2011)

For each galaxy in a catalog we measure
0,¢,2) =(n,z) (+ info about mass, spectral type...)

We can count the galaxies inside a redshift bin and small solid angle, N(n, z) and
measure the fluctuation of this count:

An, z) = N0.2) = N(2).
N(z)
£0,2,7') = (A(n,2)A(n, 2')), n-n' =cosf.

This quantity is directly measurable.
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number

density fluctuations from scalar perturbations to 1st order as function of the observed
redshift z and direction n

A(n,z) = bD—37—tV—(2—5$)<I>+\II+% [¢+8,(V~n)}

H 2—5s @ .
+(H2+r(z)7{+55) <w+v-n+ ! dr(d>+\ll)>

_2;58[)“3 {f(z)—rAQ(q)_‘_\u)_Z(d)—&—W)}

r(z)r

( Bonvin & RD ’11, Challinor & Lewis ’11)
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number

density fluctuations from scalar perturbations to 1st order as function of the observed
redshift z and direction n

A(n,z) = —3HV—(2—53)¢+W+%[¢+M]
H 2-5 @
+(ﬁ+ ()s+5s) (\u+m /drd>+\ll>

_2_253/ dr{ 1E Ao (@ + W) —2(d>+\ll)}.
0

( C.Bonvin & RD ’11, Challinor & Lewis ’'11)
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Redshift space distortions in the BOSS survey

(from Lange et al. [2101.12261])
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The angular power spectrum of galaxy density fluctuations

For fixed z, we can expand A(n, z) in spherical harmonics,

=S an(@Yinl),  C(2.2) = (@n(2)ain()

£0,z,2") = (A(n, 2)A(n, 2')) = 417 Z(2é+ 1)Ce(z, Z2")Ps(cos 0)
4

cosf=n-n’
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 0.1, Az = 0.01
(from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 3, Az = 0.3
(from Bonvin & RD ’11)
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Measuring the lensing potential with Euclid

Well separated redshift bins measure mainly the lensing-density correlation:

(A(n, 2)A(N',Z')) ~ (AX(n, 2)6(n, 2')) z> 7
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Testing GR with the lensing potential

Fisher matrix analyis of an Euclid-like
photometric survey.

AL — BAL

- - - - 5 bins auto only
—— 5 bins auto & cross

- ---10 bins auto only
—— 10 bins auto & cross

In(10'°A,)

O | N
ST 105 G0 006 oves C8s2 6721 eazr

|7 AN} (Montanari & RD 2015)

0.9645|

0.9495/
095 1. 105 ~ 0035 006 0085 6527 6727 6927 3064 3084 3124

95

0 o 0
01198 \@\\ 0198 &’ 01198 \
N~ [& R
§ 1 . o113l .
o1 705 "o o0 ooss OB O e o s O emomemoeres |/ J
01756 01708 0126

10w,

2 2

2225 © 2.225)

1 - 2 1 2
G657 705 003 006 0085 ~ 6527 6727 69.27

063136 0.1198 0.128

2175 2325 2275

Ruth Durrer (Université de Genéve, DPT & CAP) Testing GR with LSS Mai 30, 2022

22/32



Testing GR with the lensing potential
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Fisher matrix analyis of an Euclid-like
photometric survey.
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Neglecting the lensing potential biases cosmological parameters
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An estimator for the lensing potential

AL, z) = A(e,z) + g(¢, z)qﬁ(e,z)—i—/ d;f/ K, £,2)A,2)p(£ — £, 2) + O(¢%)
(AL)s = 9(L 2)¢(L),
(AOAL-0), = S fEL-OoL) (orL+#0)
dL,z) = AL 2)N(L,z) /d—ZZA(z,z)A(L—z,z)F(e,L—e,z)
A(L, 2)
+(1 - A(L 2)) aL7)
with
_ f(€1,£2,2)
F(e,62,2z) = m
N(L z) = { @ ) (6L —£,2)F(6,L—£,2)
AlLz) = Cu(2)

g(L,z)2N(L,z) + Ci(2)
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An estimator for the lensing potential
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An estimator for the lensing potential
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Measuring the growth rate of perturbations

@ The growth rate of perturbations is very sensitive to the theory of gravity.

@ A cosmological constant is the only form of dark energy which exhibits absolutely
no clustering.

@ Redshift space distortions are most sensitive to the growth rate. hence to measure
it we need good redshift resolution — a spectroscopic survey.

@ Even though ’lensing convergence’ is not very relevant for standard cosmological
parameter estimation with spectroscopic surveys, it does significantly affect the
growth rate.
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Standard parameter estimation from Vera Rubin Observatory (LSST)
and SKA2 galaxy number counts
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(Lepori, Jelic-Cizmek, Bonvin, RD 2020)
Errobars on std parameters from LSST will be similar to those from SKA2
ho, ns and Q.4m Will even be better determined with LSST than with SKA2 !
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Growth rate estimation from SKA2 galaxy number counts

The growth rate is best estimated with RSD. However, in the k-power spectrum lensing

is not easily included.
Including lensing, SKA2 will be able to determine it at the few % level (2 - 3% in a
Fisher analysis).

f(z) = f(z)os(z) (neglecting lensing / in the analysis)
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(Lepori, Jelic-Cizmek, Bonvin, RD 2020)
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Conclusions

@ So far cosmological LSS data mainly determined £(r), or equivalently P(k) or

B(ki, k2, k3) ---. These are easier to measure (less noisy) but:
e they require an fiducial input cosmology converting redshift and angles to length
scales,

r=+/r(2)?2+r(z')2 — 2r(z)r(z’) cos 6 .
This complicates especially the determination of error bars in parameter estimation
e it is not simple to correctly include lensing
(see Castorina & Di Dio, '22 for a suggestion).
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will be able to determine directly the measured 3d correlation functions and
spectra, £(0, z,2') and C,(z,2’) and by, ¢,,¢,(21, 22, 23) --- from the data.

@ These 3d quantities will of course be more noisy, but they also contain more
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@ These spectra are not only sensitive to the matter distribution (density) but also to
the velocity via ( ) and to the perturbations of spacetime
geometry (lensing) .
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Conclusions

@ We can therefore in principle determine both, the components of the energy
momentum tensor and the geometry which allows us to test Einstein’s equations.
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@ We can define an estimator for the lensing potential and in principle generate
tomographic maps of the lensing potential from galaxy number counts.

@ To test GR e.g. with the growth rate of perturbations it is important to include
lensing even in the analysis of spectroscopic surveys.

@ The spectra C,(z,2") and by, ¢, ¢,(21, 22, z3) depend sensitively and in several
different ways on the theory of gravity (growth factor, relation between ¥ and ¢),
on the matter and baryon densities, and on the velocity. Their measurements
provide a new route to estimate cosmological parameters and, especially, to test
General Relativity on cosmological scales.
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