Leptonic and rare decays

Steven Robertson (with Y. Kwon and T. lijima)

2nd **PBF Workshop**

KEK, Tsukuba, Japan May 18, 2010

Section overview

 Discussion at SLAC workshop regarding which modes belonged where...

C The results and their interpretation

- 11. B physics
 - a. Vub and Vcb
 - b. Vtd and Vts
 - c. Hadronic B to charm decays
 - d. Charmless B decays
 - e. Mixing/EPR correlations
 - f. beta (a.k.a. phi_1)
 - g. alpha (a.k.a. phi_2)
 - h. gamma (a.k.a. phi_3)
 - i. CPT violation
 - j. Radiative and EW penguin decays
 - k. Leptonic Decays and B to D(*) tau nu
 - 1. rare, exotic and forbidden decays
 - m. Baryonic B decays
- 12. Quarkonium physics

- ...some subsequent rearranging of content, with section was explicitly split into two separate subsections
 - "rare" leptonic and semileptonic modes
 - other rare non-hadronic decays
- B→Iv and B→D^(*)τv use similar experimental methodology and similar new physics sensitivity
- B→Kvv belongs with B→K/⁺/⁻,
 b→sγ etc.
- B⁰→*l*⁺*l*⁻, B⁰→γγ, B⁰→ invisible, LFV modes, etc. treated separately

Section Outline

1.1 B physics	Initial page guestimates	
K. Leptonic Decays and $B^+ \rightarrow D^{(*)} \tau^+ v$		
 General theory overview and motivation 	(short)	
II. $B^+ \rightarrow l^+ \nu \ (l = e, \mu, \tau)$		
II.i Theory	(2)	
II.ii B ⁺ →τ ⁺ ν measurements	(3)	
II.iii $B^+ \rightarrow l^+ \vee (l = e, \mu)$ measurements	(2)	
II.iv $B^+ \rightarrow I^+ v \gamma$ measurements	(1)	
II.v Interpretation of results	(2)	
III. $B \rightarrow D^{(*)} \tau^+ \nu$		
III.i Theory	(3)	
III.ii Methodology and experimental results	(7)	
IV. Discussion, interpretation and future prospects	(2)	
Radiative/EW section here		
L. Rare, Exotic and Forbidden Decays		
 Motivation and theory overview 	(short)	
II. Methodology	(short)	
III. B ⁰ →/ ⁺ / (also τ⁺τ⁻ and /⁺/γ)	(3)	
IV. $B^0 \rightarrow \gamma \gamma$ (maybe in radiative/EW section?)	(1)	
V. $B^0 \rightarrow invisible$	(1)	
VI. Lepton number/flavor violating modes	(2)	

Detailed section content

1.1 B physics

- K. Leptonic Decays and $B^+ \rightarrow D^{(*)} \tau^+ v$
 - I. General theory overview and motivation
- Tree level processes in SM with sensitivity to V_{ub} and V_{cb} .
 - In B⁺→/⁺ν hadronic effects encapsulated in decay constant, while B⁺→D^(*)τ⁺ν has form factor uncertainties.
 - In both cases, new physics sensitivity (e.g. tree-level H⁺ contribution) can arise due to suppressed SM rate and 3rd generation coupling
- B⁺→*I*⁺ν is theoretically clean but experimentally difficult. B⁺→D^(*)τ⁺ν has advantage of more observables, but also larger theory uncertainties

Leptonic decays

II. $B^+ \rightarrow l^+ \nu \ (l = e, \mu, \tau)$ II.i Theory

- SM theory formalism: $\mathcal{B}r(B^+ \to \ell^+ \nu_\ell) = \frac{G_f^2}{8\pi} V_{ub} |^2 f_B^2 n_B m_\ell^2 \tau_B \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2$
 - importance of f_B and V_{ub} ; helicity suppression yields larger $B^+ \rightarrow \tau^+ \nu$ BF, but more experimentally difficult than e, μ modes
- Effect of non-SM contributions, including H⁺ and also possibility of LFV (Paradisi/Isidori).

$$B(B^{+} \rightarrow l^{+}\nu)^{2HDM} = B(B^{+} \rightarrow l^{+}\nu)^{SM} \times [1 - \tan^{2}\beta (m^{2}_{B}/m^{2}_{H^{+}})]^{2}$$

W.S.Hou Phys. Rev. D48, 2342 (1993)

Probably need to also present here some discussion of soft radiation and the relation between $B^+ \rightarrow l^+ v$ and $B^+ \rightarrow l^+ v \gamma$ (E. Kou et al.)

٠

II.ii $B^+ \rightarrow \tau^+ \nu$ measurements

- There is a subsection under "Tools" which will present a description of the tag reconstruction method
 - focus of this section will be on issues specific to these analyses
- BABAR and Belle both perform separate "hadronic" and "semileptonic" tag analyses, so four independent measurements

BABAR refs:

PRD-RC 77, 011107 (2008)	Hadronic tag (to be updated to full data set)
PRD-RC 81, 051101 (2010)	SL tag (final)
Belle refs:	
PRL 97, 251802 (2006)	Hadronic tag (to be updated to full data set)
arXiv:0809.3834 (2008)	SL tag (to be submitted)

$B^+ \rightarrow I^+ v$

- "Usual" method is an inclusive search based on the high-p lepton, however BABAR has published (and Belle is working on) "tagged" analyses using methodology similar to B⁺→τ⁺ν
 - $\Rightarrow\,$ need a short explanation of what the conceptual difference is between the "inclusive" and "tagged" methods

BABAR refs:

PRD-RC 79, 091101 (2009)	(full dataset, inclusive)
PRD-RC 77, 091104 (2008)	(hadronic tag)
PRD-RC 81, 051101 (2010)	(SL tag)

Belle refs:

PLB 647, 67 (2007) (inclusive; update in progress)

Tagged analyses in progress, results expected in ~six months

Β⁺→/⁺νγ

II.iv $B^+ \rightarrow l^+ v \gamma$ measurements

 Radiation of hard photon removes helicity suppression of B⁺→*I*⁺∨ modes with consequence that e, µ modes are experimentally accessible

$$\Gamma(B^+ \to l^+ \nu \gamma) = \alpha \frac{G_F^2 |V_{ub}|^2 m_B^5}{288\pi^2} f_B^2 \left(\frac{Q_u}{Q_B} - \frac{Q_b}{m_b} \right)^2$$

In practice, can extract $\lambda_{_{\!B}}$ which is related to B light cone wave function

G. Korchemsky, D. Pirjol, T.-M. Yan Phys. Rev. D61:114510, 2000. (hep-ph/9911427) Β⁺→/⁺νγ

II.iv $B^+ \rightarrow l^+ v \gamma$ measurements

• B factories seem to have had difficulties with this mode...

BABAR refs:

PRD-RC 80, 111105 (2009) hadronic tag, full dataset

0704.1478 [hep-ex] inclusive search, likely will never be published

Belle ref:

arXiv:hep-ex/0408132 (2004) only a very old (2004) prelim

- Experimental issue has been understanding of continuum (untagged) and exclusive semileptonic B background (tagged
- discussion should include some comparison of consistency with respect to $B^+ \rightarrow l^+ v$, comments on extraction of QCD parameters and (maybe) discussion of effect of $B^+ \rightarrow \pi^0 l^+ v$ form factors on background determination

New Physics Constraints

New Physics Constraints

II.v Interpretation of results

- Would be interesting to compare with B⁺→τ⁺ν; current limits on B⁺→μ⁺ν are approaching SM sensitivity, hence might be some tension with "high" value of B⁺→τ⁺ν
- Ratio of leptonic branching fractions very interesting both as a consistency test and as a new physics test for LFV

$$r_{H} = 1.77 \pm 0.65$$

$$R_B^{\ell/\tau}\Big)_{\rm LFV}^{\rm MSSM} = \left(R_B^{\ell/\tau}\right)^{\rm SM} \left[1 + \frac{1}{R_{B\tau\nu}} \left(\frac{m_B^4}{M_{H^{\pm}}^4}\right) \left(\frac{m_\tau^2}{m_\ell^2}\right) \left[\Delta_R^{\tau\ell}\right]^2 \frac{\tan^6\beta}{(1+\epsilon_0\tan\beta)^2}\right]$$

G. Isidori and P. Paradisi hep-ph/0605012 A. Masiero, P. Paradisi and R. Petronzio hep-ph/0511289

Discussion/prospects

Porter Ever

II.v Interpretation of results

- Discussion of tension with respect to SM and the role of V_{ub} and f_B
- Comparison of sensitivity with LHC/Tevatron;

 Not clear at this point how much of this will go here, or directly in individual subsections

III. B→D^(*)τ⁺ν
 III.i Theory
 III.ii Methodology and experimental results

 $B \rightarrow D^{(*)} \tau^+ \nu$

- Useful to have a fairly extensive theory description; theorist input here?
- Hadronic tag analyses

BABAR refs:

PRD 79, 092002 (2009)

PRL 100, 021801 (2008) first BABAR result

Belle refs:

PRL 99, 191807 (2007)

arXiv:0910.4301 preliminary

B→D^(*)τ⁺ν results have only become available in the past few years and are still an active topic of study; "final" results expected to be available on time scale of book

Discussion

IV. Discussion, interpretation and future prospects

- Overall summary of Leptonic Decays and $B^+ \rightarrow D^{(*)} \tau^+ \nu$ section
 - Interpretation in context of SM and possible new physics constraints
 - Avoid redundancy with material previously presented in subsections e.g. m_H vs tan β ; not clear at this point where discussion will fit best
 - Many analyses are statistics limited; useful to comment on possible limitations/issues for high luminosity B factories

Rare B decays

- L. Rare, Exotic and Forbidden Decays
 - I. Motivation and theory overview
 - II. Methodology
- General motivation for rare decay searches
 - typical "benchmark" scenarios (e.g. MSSM large tanβ), but not necessarily relevant to all modes; cite review articles and theory references, maybe also elsewhere in Book
- Methodology is also not common to these searches; mainly need to distinguish between "tagged" and "inclusive" searches

 \Rightarrow Both subsections anticipated to be short, with details relevant to specific modes discussed elsewhere

$B^0 \rightarrow I^+ I^-$ and related modes

III. $B^0 \rightarrow l^+ l^-$ (also $\tau^+ \tau^-$ and $l^+ l^- \gamma$)

 Generic theory motivation is straightforward, and can refer to EW/radiative penguin section if necessary. Probably need separate short theory motivations individual modes

BABAR refs:

	PRD 77, 032007 (2008)	B ⁰ → <i>I</i> ⁺ / ⁻	full dataset
	PRD-RC 77, 011104 (2008)	B ⁰ → <i>I</i> ⁺ / γ	full dataset
	PRL 96, 241802 (2006)	B⁰→τ⁺τ⁻	old result, but will not be updated
Be	elle refs:		

PRD 68, 111101(R) (2003) $B^0 \rightarrow l^+ l^-$ very old!

B⁰→*l⁺t* is most stringent constraint, but new physics reach superseded by Tevatron B_s⁰→*l⁺t*

Other rare modes

- IV. B⁰→γγ
- V. $B^0 \rightarrow \text{invisible}$
- VI. Lepton number/flavor violating modes
- B⁰→γγ and B⁰→ invisible sections short, with clear motivations and straightforward methodology

BABAR refs:

```
PRL 87, 241803 (2001) very old B^0 \rightarrow \gamma \gamma; update to full dataset expected soon
```

PRL 93, 091802 (2004) $B^0 \rightarrow$ invisible with SL tag (update?)

Belle refs:

PRD 73, 051107 (2006) B⁰→γγ

- $B^0 \rightarrow$ invisible study is in progress and expected to be ready in time for book
- LFV modes mostly published with related modes, with two exceptions: BABAR refs:

PRD-RC 77, 091104 (2008)	B ⁰ →/ ⁺ τ ⁻	(essentially full dataset)
PRL 99, 201801 (2007)	$B^+ \rightarrow K^+ \tau^+ \mu^-$	(might be updated/extended)

Conclusions

- Basic section(s) outline is available and notional content sketched out. Individual contributors not yet specifically identified, but not anticipated to be problematic
- Several key analysis topics are still lacking "final" BABAR and/or Belle results; many anticipated within the next six months (we'll see...)
- Some modest theory input might be useful for interpretation of new physics bounds and theory uncertainties

Backup slides

May 18, 2010

Tagged $B^+ \rightarrow l^+ v \ (l = e, \mu)$

Can use the hadronic B reconstruction method to search for other leptonic modes (e, μ) as well as τ mode

- only 1 neutrino, so reconstruction of tag B completely constrains event kinematics
- Signal B rest frame estimated from tag B 4vector, permitting 2-body signal kinematics to be exploited

 $B^+ \rightarrow l^+ \nu \gamma \quad (l = e, \mu)$

Presence of (hard) photon removes helicity suppression in purely leptonic decay modes, but adds factor of α and form factor uncertainties:

$$\frac{d\Gamma}{dE_{\gamma}} = \frac{\alpha G_F^2 |V_{ub}|^2}{48\pi^2} m_B^4 \left[f_A^2(E_{\gamma}) + f_V^2(E_{\gamma}) \right] x (1-x)^3$$

B(B⁺→ l^+ νγ) ~(1-5)x10⁻⁶ for all three modes

In practice, can extract $\lambda_{_B}$ which is related to B light cone wave function

$$\Gamma(B^+ \to l^+ \nu \gamma) = \alpha \frac{G_F^2 |V_{ub}|^2 m_B^5}{288\pi^2} f_B^2 \left(\frac{Q_u}{Q_B} - \frac{Q_b}{m_b} \right)^2$$

G. Korchemsky, D. Pirjol, T.-M. Yan Phys. Rev. D61:114510, 2000. (hep-ph/9911427)

$\mathbf{B}^+ \rightarrow \boldsymbol{l}^+ \boldsymbol{\nu} \boldsymbol{\gamma} \quad (\boldsymbol{l} = \mathbf{e}, \boldsymbol{\mu})$

In limit of zero photon energy (actually, below a few 100 MeV) "signal" is helicity suppressed leptonic modes

- KPY model only valid down to ~few hundred MeV
- Difference in models mainly impacts angular distributions

$\mathbf{B}^{0} \rightarrow \tau^{+} \tau^{-}$

- Is unfortunately not a particularly good prospect...
 - Only experimental results to date is from BABAR (PhD thesis of Chris Potter, Oregon):

```
B(B<sup>0</sup> → ^{+}\pi) < 3.2x10<sup>-3</sup> (90%CL)
PRL 96 241802 (2006)
```

```
(SM expectation is \sim 1 \times 10^{-7})
```


- hadronic tagged analysis using neural net selection (Run 1-4 data)
 - with 254 background events observed in the signal region
- The issue is irreducible background from b→c containing a K_L and (usually) one or more leptons
 - Naïve scaling to 75ab⁻¹ yields ~2x10⁻⁴, but any real progress would require a very good detector and some additional experimental insight