D⁰D⁰ Mixing and CP Violation Results from the B Factories *Bostjan Golob, Brian Meadows, Ikaros Bigi*

> Marko Staric, Anze Zupanc, (Belle) Rolf Andreassen, Ray Cowan Kevin Flood + others (Babar)

Legacy Book Meeting, KEK, Japan, 5/17/2010

Outline from 1st Meeting

i. Theory 1. Brief history 2. Mixing 3. CPV 4. NP	11 p.	t-dependent Dalitz 1. Kpipi0 2. Ks h h 3. Other multibody Semileptonic	10 p.
ii. General Exp. Remarks 1. D* tagging 2. Decay-t resolution	5 p.	 General remarks comparison of results tagged/un- tagged 	6 p.
 iii. Decays to CP eigenstates 1. Method 2. Results KK/pipi 3. Results Ksphi + others iv. Hadronic WS decays 1. Formalism 	6 p. 3 p.	t-integrated CPV measurements 1. Using data to measure eff. asymmetry 2. Results KK/pipi 3. Multi-body (KKpi0, pipipi0, KKpipi) 4. T-odd correlations	15 p.
2. Results Kpi		-dependent CPV measurements Summary Op.	1 p. 2 p.

- i. Theory
 - 1. Brief history
 - 2. Mixing
 - 3. CPV
 - 4. NP
- ii. General Exp. Remarks
 - 1. D* tagging
 - 2. Decay-t resolution
- iii. Decays to CP eigenstates
 - 1. Method
 - 2. Results KK/pipi
 - 3. Results Ksphi + others
- iv. Hadronic WS decays
 - 1. Formalism
 - 2. Results Kpi

- v. t-dependent Dalitz
 - 1. Kpipi0
 - 2. Ks h h
 - 3. Other multibody
- vi. Semileptonic
 - 1. General remarks
 - 2. comparison of results tagged/un-tagged
- vii. t-integrated CPV measurements
 - 1. Using data to measure eff. asymmetry
 - 2. Results KK/pipi
 - 3. Multi-body (KKpi0, pipipi0, KKpipi)

- 4. T-odd correlations
- viii. t-dependent CPV measurements
- ix. Summary

Theory (and Formalism)

İ. Theory 1. Brief history Invention of charm (GIM mechanism) Pais and Treiman, 1975 Short range -> x is small 5 p. Long range (Wolfenstein) Compare w/other neutral systems Uniqueness of charm 2. Mixing 3 p. Definitions (x, y, q/p, phi, δ and all that) 3. CPV Mixing, Decay and Interference Define λ_{f} 4. NP Best outlined by theorist ! 3 p.

Theory (and Formalism)

i. Theory

- 1. Brief history
- Invention of charm (GIM mechanism)
- Pais and Treiman, 1975
- Long range (Wolfenstein)
- Compare w/other neutral systems
- Uniqueness of charm

 $\left\langle \overline{B}^{0}\left|H_{wk}\right|B^{0}
ight
angle \infty$ $\sum V_{ib}^{*} V_{id} V_{id} V_{ib}^{*} \mathcal{F}(m_{W}^{2}, m_{i}^{2}, m_{j}^{2})$ i, j=u, c, t

if $m_i = m_j \implies$ due to CKM unitarity: no mixing

more explicitly:

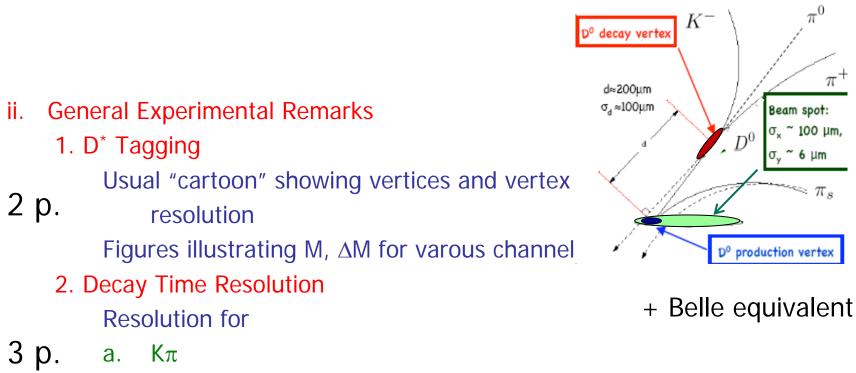
$$\left\langle \overline{D}^{0} \left| H_{w}^{\Delta C = -2} \right| D^{0} \right\rangle = \frac{G_{F}^{2}}{4\pi^{2}} V_{cs}^{*} V_{cd}^{*} V_{ud} V_{us} \frac{(m_{s}^{2} - m_{d}^{2})^{2}}{m_{c}^{2}}$$

this should be at the level of postgrad student;

$$\overline{D}^0 \left| \overline{u} \gamma^{\mu} (1 - \gamma_5) c \overline{u} \gamma_{\mu} (1 - \gamma_5) c \right| D^0 \rangle$$

i.e. DCS and SU(3) violating

should we continue with LD estimates (OPE, exclusive approach)?



- i. Theory
 - 1. Brief history
 - 2. Mixing
 - 3. CPV
 - 4. NP
- ii. General Exp. Remarks
 - 1. D* tagging
 - 2. Decay-t resolution
- iii. Decays to CP eigenstates
 - 1. Method
 - 2. Results KK/pipi
 - 3. Results Ksphi + others
- iv. Hadronic WS decays
 - 1. Formalism
 - 2. Results Kpi

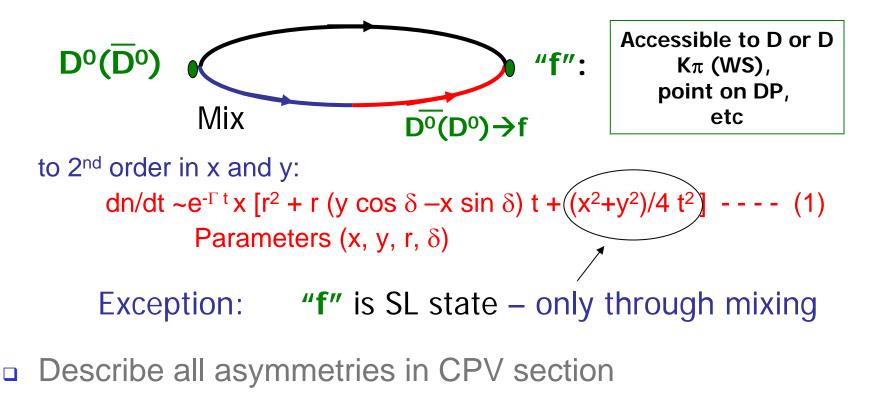
- v. t-dependent Dalitz
 - 1. Kpipi0
 - 2. Ks h h
 - 3. Other multibody
- vi. Semileptonic
 - 1. General remarks
 - 2. comparison of results tagged/un-tagged
- vii. t-integrated CPV measurements
 - 1. Using data to measure eff. asymmetry
 - 2. Results KK/pipi
 - 3. Multi-body (KKpi0, pipipi0, KKpipi)
 - 4. T-odd correlations
- viii. t-dependent CPV measurements
- ix. Summary

General Exp. Remarks

 $K_s \pi^+ \pi^-$ and variation over Dalitz plot b.

biases?

Brian Meadows



Legacy Book Meeting, KEK, Japan, 5/17/2010

İİ.

Common to Each Measurement

- Assume NO CPV discuss this later
- Measurements mostly come from interference between direct decay and decay through mixing

Legacy Book Meeting, KEK, Japan, 5/17/2010

- i. Theory
 - 1. Brief history
 - 2. Mixing
 - 3. CPV
 - 4. NP
- ii. General Exp. Remarks
 - 1. D* tagging
 - 2. Decay-t resolution
- iii. Decays to CP eigenstates
 - 1. Method
 - 2. Results KK/pipi
 - 3. Results Ksphi + others
- iv. Hadronic WS decays
 - 1. Formalism
 - 2. Results Kpi

- v. t-dependent Dalitz
 - 1. Kpipi0
 - 2. Ks h h
 - 3. Other multibody
- vi. Semileptonic
 - 1. General remarks
 - 2. comparison of results tagged/un-tagged
- vii. t-integrated CPV measurements
 - 1. Using data to measure eff. asymmetry
 - 2. Results KK/pipi
 - 3. Multi-body (KKpi0, pipipi0, KKpipi)
 - 4. T-odd correlations
- viii. t-dependent CPV measurements
- ix. Summary

Decays to CP eigenstates

iii. Decays to CP eigenstates1. Method			
	1		
Decay not truly exponential but nearly so - relate to (1)	Тр.		
Definitions of $y_{CP} = y$ if no CPV			
2. Results KK/pipi			
Compare D [*] -tagged with untagged results			
3. Results K _s + others	2 n		
Outline method and results	3 p.		
Comment on $D^0 \rightarrow \pi^+ \pi^- \pi^0$ (dominated by I=0 \rightarrow CP=+1)			

- i. Theory
 - 1. Brief history
 - 2. Mixing
 - 3. CPV
 - 4. NP
- ii. General Exp. Remarks
 - 1. D* tagging
 - 2. Decay-t resolution
- iii. Decays to CP eigenstates
 - 1. Method
 - 2. Results KK/pipi
 - 3. Results Ksphi + others
- iv. Hadronic WS decays
 - 1. Formalism
 - 2. Results Kpi

- v. t-dependent Dalitz
 - 1. Kpipi0
 - 2. Ks h h
 - 3. Other multibody
- vi. Semileptonic
 - 1. General remarks
 - 2. comparison of results tagged/un-tagged
- vii. t-integrated CPV measurements
 - 1. Using data to measure eff. asymmetry
 - 2. Results KK/pipi
 - 3. Multi-body (KKpi0, pipipi0, KKpipi)
 - 4. T-odd correlations
- viii. t-dependent CPV measurements
- ix. Summary

Hadronic WS decays

iv. Hadronic WS decays	
1. Formalism	
Refer to Eq. (1)	
 this implies we measure (x'², y') and r 	1 p.
2. Results Kpi	
Describe results obtained	
Include some discussion on the confidence level	
contour plots	
[Project the 68.3% contour onto (x,y) plane ?]	2 p.

if in decays subsection discussion on DCS decays, then part of the measurement (R_WS) to be described there

Legacy Book Meeting, KEK, Japan, 5/17/2010

- i. Theory
 - 1. Brief history
 - 2. Mixing
 - 3. CPV
 - 4. NP
- ii. General Exp. Remarks
 - 1. D* tagging
 - 2. Decay-t resolution
- iii. Decays to CP eigenstates
 - 1. Method
 - 2. Results KK/pipi
 - 3. Results Ksphi + others
- iv. Hadronic WS decays
 - 1. Formalism
 - 2. Results Kpi

- v. t-dependent Dalitz
 - 1. Kpipi0
 - 2. Ks h h
 - 3. Other multibody
- vi. Semileptonic
 - 1. General remarks
 - 2. comparison of results tagged/un-tagged
- vii. t-integrated CPV measurements
 - 1. Using data to measure eff. asymmetry
 - 2. Results KK/pipi
 - 3. Multi-body (KKpi0, pipipi0, KKpipi)
 - 4. T-odd correlations
- viii. t-dependent CPV measurements
- ix. Summary

t-dependent Dalitz

v. t-dependent Dalitz

Point out that each "bin" (coordinates (s_1, s_2) in Dalitz plot is analogous to WS K π decay – refer to Eq. (1)

- 3 p. t-dependence for each bin determined by local " $r(s_1,s_2)$ " and " $\delta(s_1,s_2)$ " An amplitude model can provide both, but not the overall phase δ_0 between D⁰ and D⁰ decays to that point.
 - 1. Kpipi0
 - δ_0 is "unknown" (though recently measured by CLEO) Outline results (only Babar so far).
 - 2. Ks h h

3 p.

Method pioneered by CLEO (9 fb⁻¹)

- δ_0 =0 since self-conjugate final state is sum of CP=+/-1 eigenstates
- 3 p. $0_0 = 0$ since sen Outline results
 - Discuss Belle extraction of CPV parameters
 - 3. Other multibody
- 1 p. Describe Babar phase-space averaged preliminary results
 - No amplitude models so far.

- i. Theory
 - 1. Brief history
 - 2. Mixing
 - 3. CPV
 - 4. NP
- ii. General Exp. Remarks
 - 1. D* tagging
 - 2. Decay-t resolution
- iii. Decays to CP eigenstates
 - 1. Method
 - 2. Results KK/pipi
 - 3. Results Ksphi + others
- iv. Hadronic WS decays
 - 1. Formalism
 - 2. Results Kpi

- v. t-dependent Dalitz
 - 1. Kpipi0
 - 2. Ks h h
 - 3. Other multibody
- vi. Semileptonic
 - 1. General remarks
 - 2. comparison of results tagged/un-tagged
- vii. t-integrated CPV measurements
 - 1. Using data to measure eff. asymmetry
 - 2. Results KK/pipi
 - 3. Multi-body (KKpi0, pipipi0, KKpipi)
 - 4. T-odd correlations
- viii. t-dependent CPV measurements
- ix. Summary

Mixing from WS Semileptonic Decays

- vi. Semileptonic
 - 1. General remarks

 $\begin{array}{rcl} & \text{Time-dependence is} \sim (x^2+y^2) \ t^2 \ e^{-\Gamma \ t} \ -\ refer \ to \ Eq. \ (1) \\ & R_M = (x^2+y^2)/2 \ \sim \ 5 \ x \ 10^{-5} \quad [x \ very \ small, \ y \ \sim \ 0.01] \\ & \rightarrow \quad \text{Too small to have been observed so far.} \\ & \text{Backgrounds need to be kept under control} \\ & \text{Missing neutrinos make life difficult} \\ & D^* \ tagging \ essential \\ \textbf{2. comparison of results tagged/un-tagged} \\ & \text{Belle chose a D}^* \ -\ tagged \ sample \\ & \rightarrow \ Large \ RS \ signal \ and \ background \ of \ \sim \ 5000 \ events \\ & \text{Babar chose a double tagged sample} \\ & \rightarrow \quad Small \ RS \ signal \ but \ low \ background \ \sim \ 3 \ events \\ & \text{Results are relatively comparable} \end{array}$

semileptonic for mixing: different method than for semileptonic decays

- i. Theory
 - 1. Brief history
 - 2. Mixing
 - 3. CPV
 - 4. NP
- ii. General Exp. Remarks
 - 1. D* tagging
 - 2. Decay-t resolution
- iii. Decays to CP eigenstates
 - 1. Method
 - 2. Results KK/pipi
 - 3. Results Ksphi + others
- iv. Hadronic WS decays
 - 1. Formalism
 - 2. Results Kpi

- v. t-dependent Dalitz
 - 1. Kpipi0
 - 2. Ks h h
 - 3. Other multibody
- vi. Semileptonic
 - 1. General remarks
 - 2. comparison of results tagged/un-tagged
- vii. t-integrated CPV measurements
 - 1. Using data to measure eff. asymmetry
 - 2. Results KK/pipi
 - 3. Multi-body (KKpi0, pipipi0, KKpipi)
 - 4. T-odd correlations
- viii. t-dependent CPV measurements
- ix. Summary

t-integrated CPV measurements

	vii.	t-integrated CPV measurements			
		1.	Using data to measure eff. Asymmetry		
_			Describe - D [*] /D ratio same for both charges of π_s		
4 p.			Point out that this means results should improve with higher luminosity.		
		2.	Results KK/pipi		
3р.			Add new $D_{(s)}^{+} \rightarrow K_{s} \pi^{+}(K^{+})$ results from Belle		
		3.	Multi-body (KKpi0, pipipi0, KKpipi)		
4 p.			Point out that CPV probably occurs in some channels but not others Model-dependent vs Model-independent approaches		
			Normalization to total in phase space (Dalitz) plot.		
		4.	T-odd correlations		
4 p.			Describe		
· ٢·			New results from Babar on $K^+K^-\pi^+\pi^-$		

- i. Theory
 - 1. Brief history
 - 2. Mixing
 - 3. CPV
 - 4. NP
- ii. General Exp. Remarks
 - 1. D* tagging
 - 2. Decay-t resolution
- iii. Decays to CP eigenstates
 - 1. Method
 - 2. Results KK/pipi
 - 3. Results Ksphi + others
- iv. Hadronic WS decays
 - 1. Formalism
 - 2. Results Kpi

- v. t-dependent Dalitz
 - 1. Kpipi0
 - 2. Ks h h
 - 3. Other multibody
- vi. Semileptonic
 - 1. General remarks
 - 2. comparison of results tagged/un-tagged
- vii. t-integrated CPV measurements
 - 1. Using data to measure eff. asymmetry
 - 2. Results KK/pipi
 - 3. Multi-body (KKpi0, pipipi0, KKpipi)
 - 4. T-odd correlations
- viii. t-dependent CPV measurements
- ix. Summary

t-dependent CPV measurements

viii. t-dependent CPV measurements

Discuss all mixing asymmetries here A_D , A_M , A_τ

Belle time-dependent analysis of $K_s \pi^+ \pi^-$ Dalitz plot Any other ??

here or previously

Legacy Book Meeting, KEK, Japan, 5/17/2010

1 p.

- i. Theory
 - 1. Brief history
 - 2. Mixing
 - 3. CPV
 - 4. NP
- ii. General Exp. Remarks
 - 1. D* tagging
 - 2. Decay-t resolution
- iii. Decays to CP eigenstates
 - 1. Method
 - 2. Results KK/pipi
 - 3. Results Ksphi + others
- iv. Hadronic WS decays
 - 1. Formalism
 - 2. Results Kpi

- v. t-dependent Dalitz
 - 1. Kpipi0
 - 2. Ks h h
 - 3. Other multibody
- vi. Semileptonic
 - 1. General remarks
 - 2. comparison of results tagged/un-
 - tagged
 - t-integrated CPV measurements
 - 1. Using data to measure eff. asymmetry
 - 2. Results KK/pipi
 - 3. Multi-body (KKpi0, pipipi0, KKpipi)
 - 4. T-odd correlations
- viii. t-dependent CPV measurements

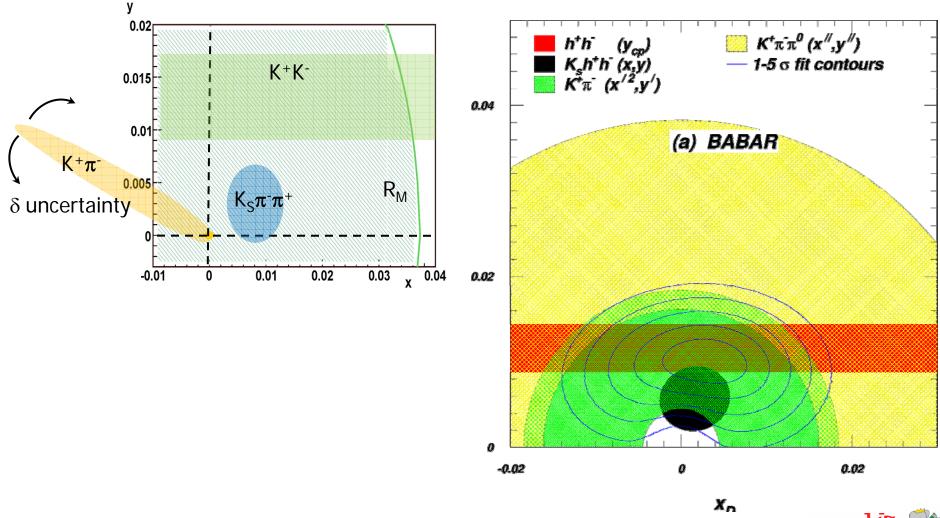
Brian Meadows

ix. Summary

Summary

ix. Summary

2 p. Make average(s) for Babar and Belle Either as a group or individually? Compare one with the other ? we can compare diff. methods; the main message is to be on the combined knowledge we have, i.e. combination of all results


Given that a principal group of readers is to consist of new students and postdocs working on future flavour experiments, make a projection of our results to these experiments.

in general, we should avoid extensive projections because it may take another book to do those seriously; of course few statements like "at the future ... the parameter x will be measured with an accuracy of ... once ?? ab⁻¹ of data is collected [reference to detailed document]" can be afforded

Legacy Book Meeting, KEK, Japan, 5/17/2010

Summary of Measurements - Babar

Legacy Book Meeting, KEK, Japan, 5/17/2010

