B-Factories Legacy Book CKM sides: V_{td} and V_{ts}

Kevin Flood University of Wisconsin

Physics of the B-Factories

Kevin Flood

- <u>Theory details</u> (possibly covered elsewhere)
 - Mixing through $\Delta F=2$ box diagrams
 - Vtd, Vts from ∆F=1loop diagrams
- <u>Experimental details</u> (possibly covered elsewhere)
 - Description of a generic mixing/CP analysis
 - Description of inclusive/exclusive B -> $X_{s,d}$ gamma
- Physics results
 - Babar, Belle: Δm_d ; Tevatron: Δm_s
 - Lattice QCD dependence extracting $V_{td,ts}$ from $\Delta m_{d,s}$
 - Babar, Belle: excl./incl. BFs B -> X_{s,d} gamma
 - Theory dependence enters in Vtd/Vts ratio calculation
 - Consistency of mixing and radiative penguin results
- Future prospects

Physics of the B-Factories Kevin Flood 17-18 May 2010

Mixing Theory Details (possibly covered elsewhere)

• Mixing formalism for $B_{d,s}$ from time-dependent Sch. Eq. is needed to connect theory ($\Delta m_{d,s}$, $V_{td,ts}$) to experiment (Δt , Δz)

$$i\frac{d}{dt} \left(\begin{array}{c} |B_s(t)\rangle \\ |\bar{B}_s(t)\rangle \end{array} \right) = \left(M^s - \frac{i}{2}\Gamma^s \right) \left(\begin{array}{c} |B_s(t)\rangle \\ |\bar{B}_s(t)\rangle \end{array} \right)$$

 Relevant discussion given in Babar Physics Book (Sec. 11.2) is probably too lengthy, but is a good example of the level of detail needed for a reasonably complete discussion that is accessible a grad student level

Physics of the B-Factories Kevin Flood 17-18 May 2010

Lattice Inputs

Averages taken from Laiho, Van de Water, Lunghi, "Lattice QCD inputs to the CKM unitarity triangle analysis", PRD 81,034503 (2010)

	$f_B({\rm MeV})$	$(\delta f_B)_{\rm stat}$	$(\delta f_B)_{\rm syst}$
FNAL/MILC '08 [28]	195	7	9
HPQCD '09 [29]	190	7	11
Average	192.8 ± 9.9		
	$f_{B_s}(\text{MeV})$	$(\delta f_{B_s})_{\rm stat}$	$(\delta f_{B_s})_{\rm syst}$
FNAL/MILC '08 [28]	243	6	9
HPQCD '09 [29]	231	5	14

TABLE II: Unquenched lattice QCD determinations of the *B*-meson decay constants f_B and f_{B_s} .

Plots showing the $N_f = 2 + 1$ results and their averages are given in Figs. 6 and 7.

17-18 May 2010

TABLE III: Unquenched lattice QCD determinations of the neutral B-meson bag parameters \hat{B}_{B_q} .

4

Physics of the B-Factories

Kevin Flood

Lattice Inputs

$$f_B \sqrt{\widehat{B}_{B_d}} (\text{MeV}) \quad f_{B_s} \sqrt{\widehat{B}_{B_s}} (\text{MeV})$$

Average 216 ± 15 275 ± 13

TABLE IV: Unquenched lattice QCD averages of the neutral *B*-meson mixing matrix elements $f_B \sqrt{\hat{B}_{B_d}}$ and $f_{B_s} \sqrt{\hat{B}_{B_s}}$. The results are obtained by combining the average decay constants given in Table II with the HPQCD determinations of the bag-parameters presented in Table III, thereby minimizing the total uncertainties.

TABLE V: Unquenched lattice QCD determinations of the SU(3)-breaking ratio ξ . A plot showing

the two $N_f = 2 + 1$ results and their average is given in Fig. 8.

Tagged Mixing/CP Analysis Experimental Details (possibly covered elsewhere)

• Description of a generic mixing/CP analysis description outlined at hep-ex/0201020 (PRD 66, 032003 [2002])

- Selection of the B_{CP} sample of signal events for neutral B decays to CP modes J/ψ K⁰_S, ψ(2S)K⁰_S, χ_{c1}K⁰_S, J/ψ K^{*0} (K^{*0} → K⁰_Sπ⁰), and J/ψ K⁰_L; selection of the B_{flav} sample of signal events for neutral flavor-eigenstate decays to D^{(*)-}π⁺/ρ⁺/a⁺₁ and J/ψ K^{*0} (K^{*0} → K⁺π⁻); selection of the B⁺ control sample in the modes D^{(*)0}π⁺, J/ψ K^{(*)+}, ψ(2S)K⁺, χ_{c1}K⁺; and selection of a semileptonic neutral B sample in the mode D^{*+}ℓ⁻ν̄, as described in Section III;
- Determination of the flavor of the B_{tag} , as described in Section IV;
- Measurement of the distance Δz between the two B^0 decay vertices along the $\Upsilon(4S)$ boost axis, and its conversion to Δt , as described in Section V;
- Construction of a log-likelihood function to describe the time evolution of signal and background events in the presence of mixing and *CP* asymmetries, as described in Section VI;

- Measurement of the mixing rate Δm_d , mistag fractions w_i , and vertex resolution parameters \hat{a}_i for the different tagging categories *i*, with an unbinned maximum-likelihood fit to the B_{flav} sample, as described in Section VII;
- Extraction of a value of $\sin 2\beta$, or more generally $Im\lambda/|\lambda|$ and $|\lambda|$, from the amplitude of the *CP* asymmetry, the mistag fractions w_i , and the vertex resolution parameters \hat{a}_i for the different tagging categories *i*, with an unbinned maximum-likelihood fit to the combined B_{flav} and B_{CP} samples, as described in Section VIII.

Physics of the B-Factories

Kevin Flood

Δm_s Experimental Results (CDF/Tevatron)

Δm_s = 17.77 ± 0.10 (stat) ± 0.07 (syst) ps⁻¹

Physics of the B-Factories

Kevin Flood

Δm_d Experimental Results (HFAG 2010)

Physics of the B-Factories

Kevin Flood

17-18 May 2010

8

<u>∆m_d B-Factory Experimental Results (HFAG 2010)</u>

BELLE

B

A

B

A

R

Studies of BO - anti-BO mixing properties with inclusive dilepton events

[8] N.C. Hastings et al. (Belle Collaboration), Phys. Rev. D 67, 052004 (2003).

Improved measurement of CP-violation parameters sin 2phi(1) and |lambda|, B meson lifetimes, and BO - anti-BO mixing parameter Delta m(d) [72] K. Abe *et al.* (Belle Collaboration), Phys. Rev. D 71, 072003 (2005).

Measurement of the BO - anti-BO mixing rate with BO (anti-BO) --->

D*-+ pi+- partial reconstruction

[133] Y. Zheng et al. (Belle Collaboration), Phys. Rev. D 67, 092004 (2003).

Simultaneous measurement of the BO meson lifetime and mixing frequency with BO ---> D*- l+ nu(l) decays

[69] B. Aubert et al. (Babar Collaboration), Phys. Rev. D 67, 072002 (2003).

Measurement of the anti-BO lifetime and the BO anti-BO oscillation frequency using partially reconstructed anti-BO ---> D*+ I- anti-nu(I) decays

[71] B. Aubert et al. (Babar Collaboration), Phys. Rev. D 73, 012004 (2006).

Measurement of BO - anti-BO flavor oscillations in hadronic BO decays
[131] B. Aubert *et al.* (Babar Collaboration), Phys. Rev. Lett. 88, 221802 (2002) and Phys. Rev. D 66, 032003 (2002).

Measurement of the BO - anti-BO oscillation frequency with inclusive dilepton events [132] B. Aubert *et al.* (Babar Collaboration), Phys. Rev. Lett. 88, 221803 (2002).

<u>Vtd/Vts from Radiative Penguins</u>

• Exclusive decays:

Babar: PRD 78, 112001 (2008) $|V_{td}/V_{ts}|_{\rho/\omega} = 0.233^{+0.025+0.022}_{-0.024-0.021}$ Belle: PRL 101, 111801 (2008) $|V_{td}/V_{ts}| = 0.195 \substack{+0.020 \\ -0.019} (exp.) \pm 0.015 (th.)$

Relatively large theory uncertainty in calculating ratio

$$\frac{\mathcal{B}[B \to \rho(\omega)\gamma]}{\mathcal{B}(B \to K^*\gamma)} = S \left| \frac{V_{td}}{V_{ts}} \right|^2 \cdot \left(\frac{1 - m_{\rho(\omega)}^2 / m_B^2}{1 - m_{K^*}^2 / m_B^2} \right)^3 \zeta_{\rho(\omega)}^2 \left[1 + \Delta R_{\rho(\omega)} \right].$$
(1)

The coefficient S is 1 for ρ^+ and $\frac{1}{2}$ for ρ^0 or ω , m is the particle mass, $\zeta_{\rho(\omega)}$ is the ratio of the form factors for the decays $B \to \rho(\omega)\gamma$ and $B \to K^*\gamma$, and $\Delta R_{\rho(\omega)}$ accounts for differences in decay dynamics, including weak annihi-

Physics of the B-Factories

Vtd/Vts from Radiative Penguins

• <u>Inclusive decays</u>

Babar Xdgamma result shown at conference, paper soon

Small theory uncertainties in calculating ratio

$$|V_{td}/V_{ts}| = \pm 0.002(t\dot{h}.)$$

$$\frac{\Gamma(b \to d\gamma)}{\Gamma(b \to s\gamma)} = \zeta^2 \left| \frac{V_{td}}{V_{ts}} \right|^2 (1 + \Delta R)$$

where ζ accounts for any remaining SU(3) breaking and ΔR accounts for weak annihilation in B^+ decays

Physics of the B-Factories

Kevin Flood

Future Prospects

- Somewhat better precision in lattice inputs needed for mixingbased ratio will likely appear over time
- Precision in ratio from exclusive final state radiative penguins already limited by theory inputs, and no substantial improvements seem likely
- Vtd/Vts from inclusive radiative penguins may achieve total uncertainty of just a few percent with ~10/ab Super-FF dataset
- In the long run, final ~50-100/ab Super-FF datasets will also allow ratio from B->XII
 - With SM B->X_dII rate should also be able to probe Vtd/Vts as a function of di-lepton mass

Physics of the B-Factories

Kevin Flood

Some Final Details

- Belle co-editor still needed
 - Lacking this, at least Belle review of relevant material
- Expect to need 4-6 pages
- Debbie Bard has agreed to contribute Vtd/Vts discussion
 Lead analyst for Babar semi-inclusive B->Xdgamma
- The selection of material here has been discussed in general terms with Tobias Hurth (theory ed.), but the details presented here still need to be reviewed and agreed upon
- Will be useful to see initial draft of Radiative Penguin and Mixing sections in order to guide the writing here

Physics of the B-Factories Kevin Flood

