Théo Abounnasr--Martins, summer student

RAPPORT D'ACTIVITÉS 12/07/2021

GUIDE TUBE CALIBRATION DARKSIDE20K

Before calibrating the detector with sources in the guide tube, it is necessary to estimate the **background rate of events generated in the TPC by the tube** material in itself

FOCUS ON ELECTRONIC RECOIL

There are two kind of events:

- Nuclear Recoil events

- Particle scatters on nucleus (if WIMP: through unknown process)
- Fast but small \(\) production, few e-
- nucleus-nucleus and WIMP/nucleus interactions *apriori* undistinguishable from
 - ---> Events discriminated with veto outside of TPC

- Electronic Recoil events

- Y scatters on electronic orbitals
- Many but slow \(\) production, many e-
- Distinguishable to an extent through Pulse Shape Discrimination (PSD) method

We will focus on the **electronic recoil events** generated in the TPC by radioactive elements of the tube

PULSE SHAPE DISCRIMINATION (PSD)

ER* BACKGROUND RATES

<u>A</u>

Estimate decay rates from radioactive elements of the tube

<u>B</u>

Find the number of events in the TPC volume through GEANT4DS simulation of the tube for each radioactive source

Apply various cuts to estimate the number of remaining events in a given fiducial volume

RADIOACTIVE COMPONENTS

Propreties of radioactive elements in SSArDM (The Lund/LBNL Nuclear Data Search)

Element	Halflife (years)	Activity (Bq/mg)	Proportion in SSArDM (ng/kg)	Contamination in SSArDM (mBq/kg)
¹³⁷ Cs	30.18	3.20e+09	4.69e-10	1.50
⁴⁰ K	1.28e+09	2.59e+02	0.02	6.40
⁶⁰ Co	5.27	4.18e+10	3.11e-10	13.00
²³⁸ U	4.47e+09	12.44	4.01	50.00
²³² Th	1.40e+10	4.06	4.92	20.00

DECAY PER YEAR ESTIMATION

DECAY PER YEAR ESTIMATION TUBE MASS

A-DECAY RATE

2 tubes en U

M(tubes) = 56 kg

DECAY PER YEAR ESTIMATION

ACTIVITY

STAINLESS STEEL ACTIVITY

Sample identifier	Radioa	ctive co	ntamin	ation [1	nBq/kg]
	$^{232}\mathrm{Th}$	238U	⁶⁰ Co	$^{40}\mathrm{K}$	$^{137}\mathrm{Cs}$
SS	10	10	_	1200	
SS $ArDM$	20	50	13	6.4	(1.5)

Exemple 137Cs

Activity = 0.0015 Bq/kg

Rate = 0.0015 Bq/kg x 56kg = 0.084 decay/s =
$$2.6x10$$
 decay/y

NUMBER OF SURVIVING EVENTS

33234 ROI events in TPC

Taking detector response into account

 $Res(E)=0.0023 + 0.334/\sqrt{E}$

--Res(E)=0:009-+-0:485/\E-

150 224 LE events in TPC

33347 ROI events in TPC

150 352 LE events in TPC

Exclude non-single scatter events

ONLY SINGLE SCATTERS (SS) at LE ∈ [0,200 keV]

26478 SS at ROI

0 SS in FV (ROI)

DECAY PER YEAR ESTIMATION

ACTIVITY

STAINLESS STEEL ACTIVITY

Sample identifier	Radioa	ctive co	ntamin	ation [r	nBq/kg]
	$^{232}\mathrm{Th}$	²³⁸ U	⁶⁰ Co	$^{40}\mathrm{K}$	$^{137}\mathrm{Cs}$
SS	10	10	_	<u>()</u>	_
SS $ArDM$	20	50	13	6.4	(1.5)

Exemple 137Cs

Activity = 0.0015 Bq/kg

Rate = 0.0015 Bq/kg x 56kg = 0.084 decay/s

= $2.6 \times 10^6 \text{decay/y}$

Surviving Events Rate < 2.3 events 2.6x106 decay/y 107 events

0.60 events/y

PSD : x 10⁻

Element	Contamination (mBq/kg)	Decay/s	decay/y	events sim FV	events/y	events/y PSD
¹³⁷ Cs	1.5	0.08	2.65e+06	<2.30	<0.60	<0.00
⁴⁰ K	6.4	0.35	1.13e+07	<2.30	<2.59	<0.00
⁶⁰ Co	13.0	0.72	2.30e+07	<2.30	<5.28	<0.00
²³⁸ U	50.0	2.80	8.83e+07	<2.30	<20.30	<0.00
²³² Th	20.0	1.12	3.53e+07	<2.30	<8.12	<0.00

Predic	ted backs	ground ra	te [events	year]
²³² Th	238 U	60 Co	⁴⁰ K	137Cs
< 1.6	< 2.4	-	-	-[
< 4.4	<12.2	< 1.1	< 0.5	< 0.1

A. Kish's results for 25 kg tube, and statistical margin of 1 (instead of 2.3)

BACKUP

6557 SS at ROI

0 SS in FV (ROI)

50

X [cm]

100

150

ONLY SINGLE SCATTERS (SS) IN ROI

68564 SS at ROI

0 SS in FV (ROI)

50

X [cm]

100

150

-150

-100

ONLY SINGLE SCATTERS (SS) IN ROI

8046 SS at ROI

0 SS in FV (ROI)

0 SS in FV (ROI)