Les Premières Données dans ATLAS et le Calorimètre à Argon Liquide

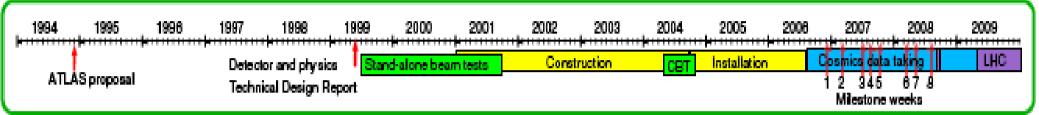
Des muons cosmiques aux premières collisions

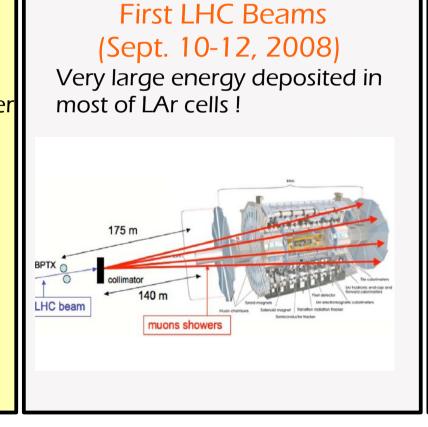
S. Laplace, P. lengo Pour le groupe ATLAS-LAPP

Plan:

- Introduction
- * Commissioning du calo Lar (muons+beam splashes)
- * Résultats des premières collisions

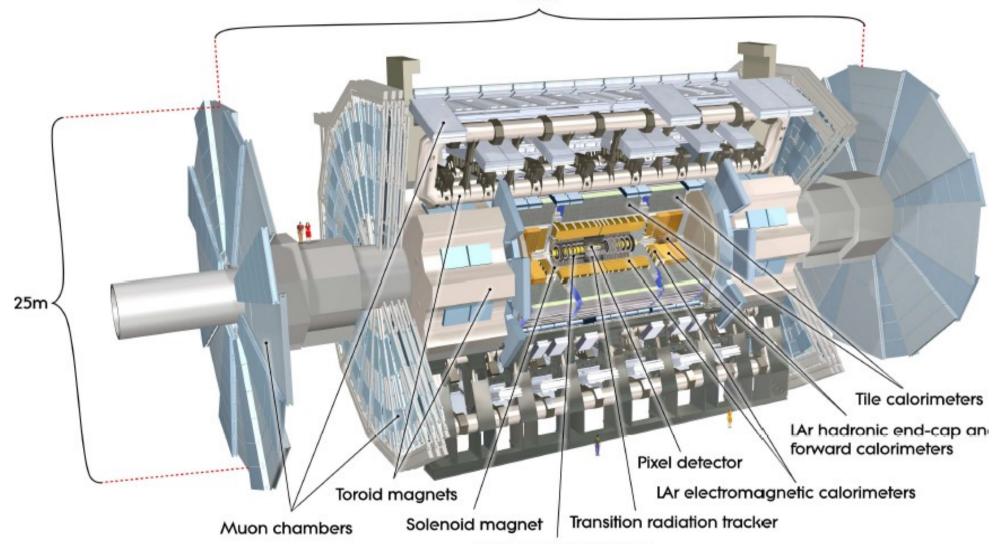
Remarque: le logo


signifie que le LAPP a contribué à l'analyse montrée


Commesioning Steps

In situ commissioning of ATLAS detectors ongoing since 4 years:

Cosmic muons (since 2006) Muon: Minimum Ionizing Particle (MIP) in LAr calorimeter



Detector component	Required resolution	η coverage	
		Measurement	Trigger
Tracking	$\sigma_{p_T}/p_T = 0.05\% \ p_T \oplus 1\%$	±2.5	
EM calorimetry	$\sigma_E/E = 10\%/\sqrt{E} \oplus 0.7\%$	±3.2	±2.5
Hadronic calorimetry (jets) barrel and end-cap forward	$\sigma_E/E = 50\%/\sqrt{E} \oplus 3\%$ $\sigma_E/E = 100\%/\sqrt{E} \oplus 10\%$	± 3.2 $3.1 < \eta < 4.9$	± 3.2 $3.1 < \eta < 4.9$
Muon spectrometer	σ_{p_T}/p_T =10% at p_T = 1 TeV	±2.7	±2.4

44m

Semiconductor tracker

Introduction to the ATLAS LAr Calorimeter (1/3)

LAr hadronic \nearrow end-cap (HEC)

LAr electromagnetic

barrel

LAr electromagnetic

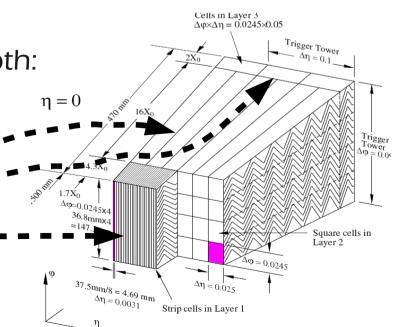
end-cap (EMEC)

- Sampling calorimeters: Lar+Pb/Cu/W
- Standard barrel/endcap structure:
- barrel ($|\eta|$ <1.4): electromagnetic (EM)
- endcap (|η|<4.9): EM+ hadronic (HAD)+ forward (FCAL)
- presampler up to $|\eta|=1.8$

• Segmentation: lateral (eta,phi) but also in depth:

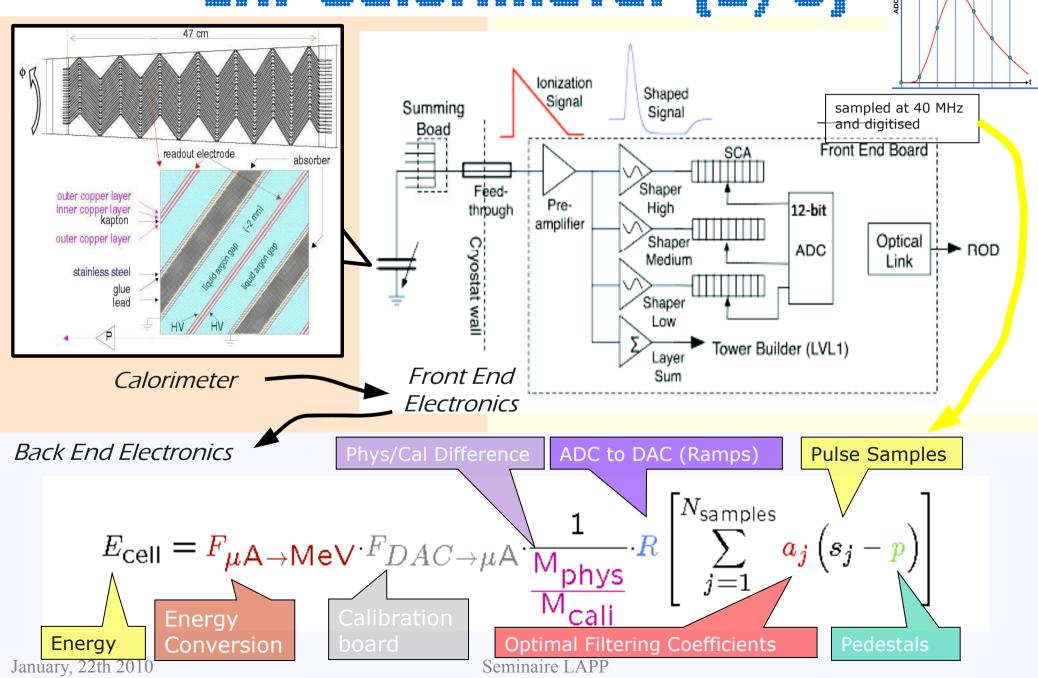
 $\sigma/E \sim 10\%/\sqrt{E} \oplus 0.7\%$ (EM)

 $\sigma/E \sim 50\%/\sqrt{E \oplus 3\%}$ (HAD)

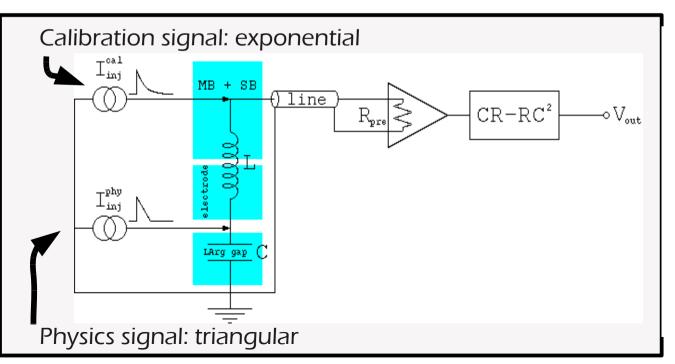

 $\sigma/E \sim 100\%/\sqrt{E} \oplus 10\%$ (FCAL)

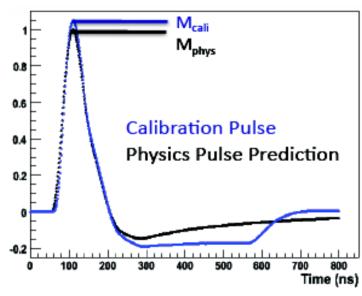
- (Pre-Sampler)

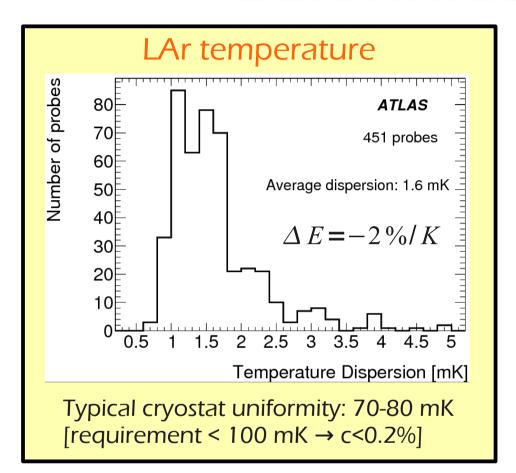
- Strips

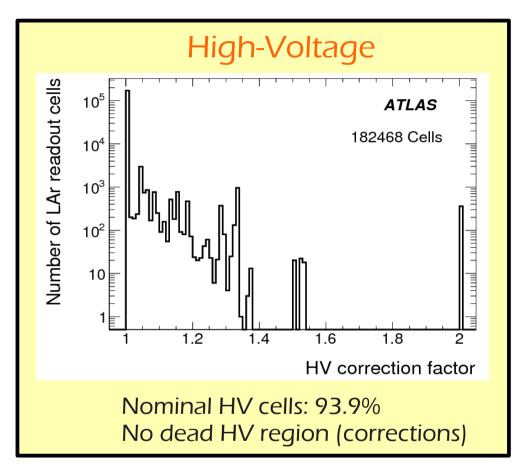

- Middle

- Back


LAr forward (FCal)


Introduction to the Fills Ler Calorineter (2,73)

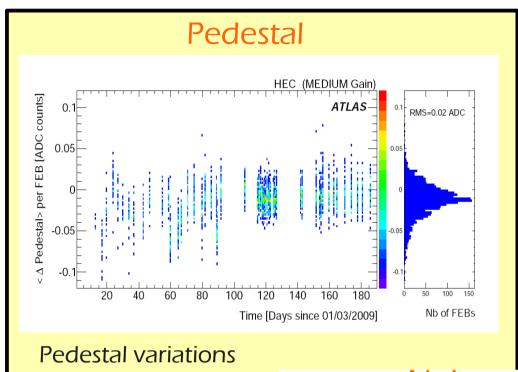

Introduction to the ATLA5 LAr Calorimeter (3/3): The Calibration System

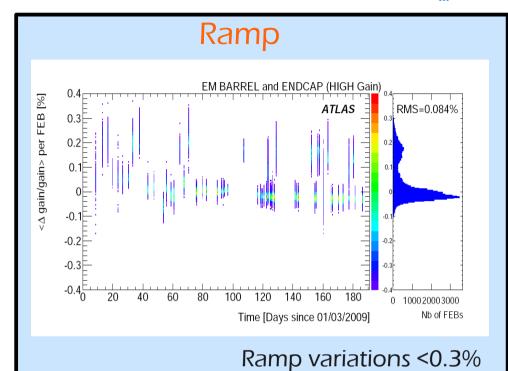

- Used to compute several electronics-related constants, including optimal filtering coefficients
- Calibration and physics pulse are different due to different injected signal and injection points: methods exist to predict physics pulses from calibration pulse

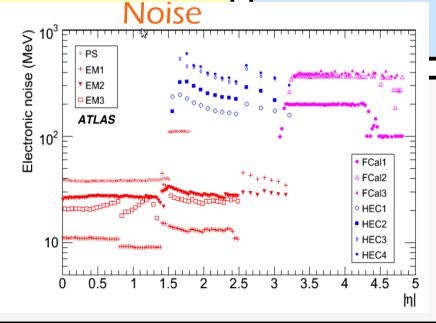
Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	97.9%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.2%
LAr EM Calorimeter	170 k	98.8%
Tile calorimeter	9800	99.2%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Trigger	370 k	98.5%
TGC Endcap Muon Trigger	320 k	99.4%
LVL1 Calo trigger	7160	99.8%

Can recover energy for jet/ETmiss

using trigger tower energy


LAr Readout status (as of end of Sept. 2009:


- 98.7% cells used in reconstruction
- 1.3% remaining:
 - 1.2% (19) inactive FEBs (dead OTx)
 - 0.1% of problematic cells: 0.02% dead


- 0.07% sporadically noisy

Calibration Constants Stability

edestal variations << numerical precision on E

Noise variations negligible

and corrected after

each run

- •Coherent noise = 2%
- (< requirement= 5%)

January, 22th 2010

Seminaire LAPP

Lalorineter Peadiness t

Results from random triggers, cosmics muons and first beams:

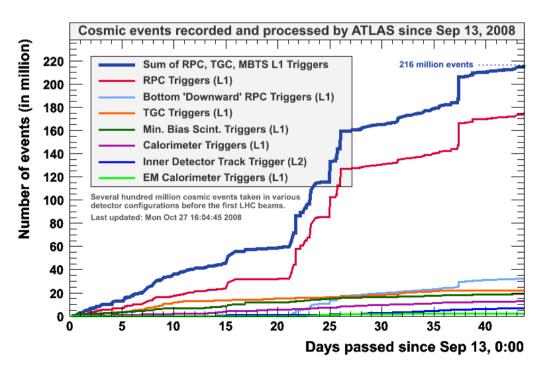
- Timing Alignment
- dE/dx in calo
- Ionization pulse shapes
- Ion drift time measurement (dedicated paper in prep.)
- Missing Transverse Energy
- Calorimeter Uniformity

All these results are (almost) published in EPJC: FIRST ATLAS paper!

EPJ manuscript No.

Readiness of the ATLAS Liquid Argon Calorimeter for LHC

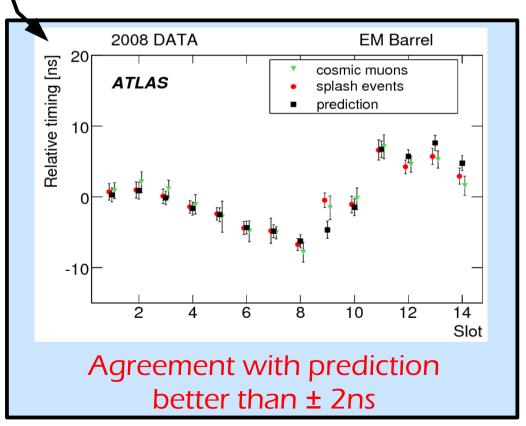
G. Aad⁸³, B. Abbott¹¹⁰, J. Abdallah¹¹, A.A. Abdelalim⁴⁰, A. Abdesselam¹¹⁷, O. Abdinov¹⁰, B. Abi¹¹¹, M. Abolins⁸⁸, H. Abramovicz¹⁰¹, H. Abrem¹¹⁴, B.S. Acharya^{122a,162a}, D.L. Adama²⁴, T.N. Addy²⁶, J. Atsleman¹⁷³, C. Adorisi^{28a,36a}, P. Adrisgna²⁷, T. Adje¹²⁸, S. Aefsky²³, J.A. Aguliar-Saavedra^{122a}, M. Aharrouche²⁸, S.P. Ahlen²¹, F. Ahles²⁸, A. Ahmad²⁴, H. Ahmed², M. Ahsam³, G. Alelin^{25a,132a}, T. Adogani³, T.P.A. Akesson³⁷, G. Akimoto¹⁸³, A.V. Akimov³⁸, A. Aktas⁴⁸, M.S. Alam³, M. Alam²⁵, J. Albert²⁶, S. Abtrand⁴⁸, M. Alekss²⁷, I.N. Aleksandro⁴⁸, A. Akmad⁴⁸, J. Alison¹¹³, M. Alison⁴⁸, D. Alexander⁴⁸, G. Alkerandre⁴⁸, S. Abtrand⁴⁸, M. Alekss²⁷, I.N. Aleksandro⁴⁸, A. Alimond⁴⁸, A. Alison⁴⁸, M. Alison⁴⁸, M. Alison⁴⁸, A. Alison⁴⁸, M. Alison⁴⁸, M. Alison⁴⁸, A. Alonsion⁴⁸, M. Alison⁴⁸, M. Alison⁴⁸, A. Alonsion⁴⁸, M. Alison⁴⁸, M. Alison⁴⁸, M. Alison⁴⁸, A. Alonsion⁴⁸, M. Alison⁴⁸, M. Alison⁴⁸, M. Alison⁴⁸, A. Alonsion⁴⁸, M. Antish⁴⁸, A. Antonalish⁴⁸, S. Antonalish⁴⁸, X.S. Andugas⁴⁹, A. Angerami⁴⁸, F. Angliniolish⁴⁸, N. Anjeis⁴⁸, A. Antonalish⁴⁸, S. Antonalish⁴⁸, S. Antonalish⁴⁸, A. Artamidon⁴⁸, D. Angere⁴⁸, A. Artamidon⁴⁸, D. Angere⁴⁸, C. Arasult⁴⁴, A. Artamonov⁴⁸, D. Angere⁴⁸, C. Arasult⁴⁴, D. Antere⁴⁸, D. Angere⁴⁸, D. Bangere⁴⁸, D. Ban B. Brelier^{1,85}, J. Bremer²⁵, R. Brenner^{1,64}, S. Bressler^{1,85}, D. Breton^{1,14}, N.D. Brett^{1,17}, D. Britton^{2,5}, F.M. Brochu²⁷, L. Brock²⁸, T.J. Brochek²⁷, T.J. Brochek²⁷, E. Brochek²⁷, F. Brodek²⁸, F. Brodek²⁸, F. Brodek²⁸, F. Brodek²⁸, F. Brodek²⁸, F. Brodek²⁸, F. Bruchol²⁸, E. Brubake²⁸, P.A. Bruckman de Renstrom²⁸, D. Brunckol²⁸, R. Brunchere⁴⁸, W.A. Brooks⁵⁰⁻⁷, R. Brucher⁵, R. Brucher⁵, R. Bruckman de Refistrom⁵⁰, R. Brucher⁵⁰, R. Brucher⁵⁰, R. Brucher⁵¹, R. Brucher⁵¹, R. Bucher⁵¹, R. Buchenan⁵¹, P. Buchholz⁵⁰, A.G. Buckley^{71,6}, I.A. Budagor⁶⁰, B. Budick¹⁰⁷, V. Bücher⁵¹, I. Bugge¹¹⁶, O. Bulekov⁶⁰, M. Bunse⁴², T. Buran ¹¹⁶, H. Burckharr⁵², S. Burdin⁵², T. Burgess¹³, S. Burke¹²⁶, E. Busato⁵³, P. Busey⁵³, C.P. Buzello¹⁶⁶, Butin⁵¹, M. Butler⁵², C.M. Buttar⁵³, J.M. Butterworth⁷, T. Byatt⁷, J. Caballero⁵⁴, S. Cabrera Urbán¹⁶⁵, D. Caforio^{19a,196}, O. Cakir³, P. Calaflura¹⁴, G. Caklerin¹⁷⁸, P. Calflayan⁹⁸, R. Calkins⁵,

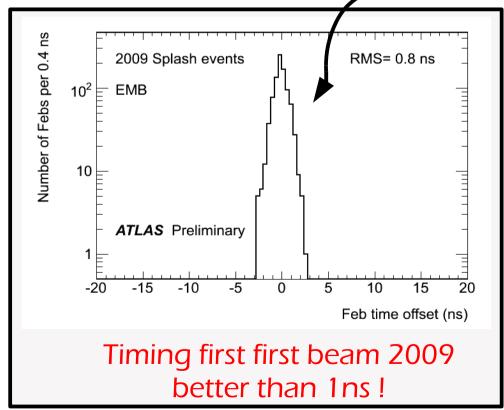

arXiv:0912.2642

Seminaire LAPP 10 January, 22th 2010

Cosmic Data Taking

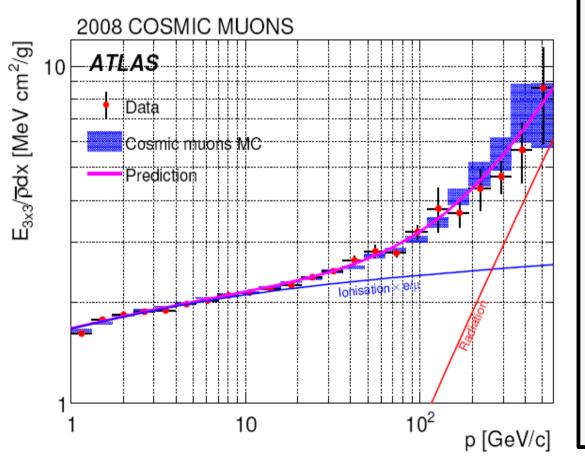
- Long cosmic runs in September-october 2008 and june-july 2009: more than 300 million events were recorded (>500 TB of data)
- Triggers used for studies preented here:
 - L1: muon chambers, L1Calo
 - L2: inner detector tracks




Timing Hilgnment

- Predicted (=calibration) versus measured (=physics) timing:
 - Measurement: time obtained from Optimal Filtering algorithm + time of flight correction
 - Prediction: calibration pulse + readout path

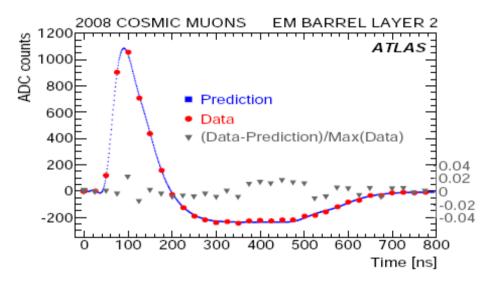
Adjustable delay per Front End Board (FEB): obtain values for first collisions

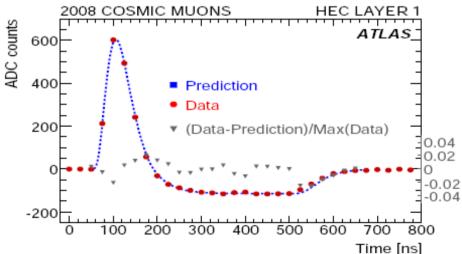


derent the en barrel

Mean energy deposit per unit length as a function of the

incoming muon momentum:




$$\frac{dE}{\rho \, dx} = \frac{E_{3x3}}{\bar{\rho} \, L}$$

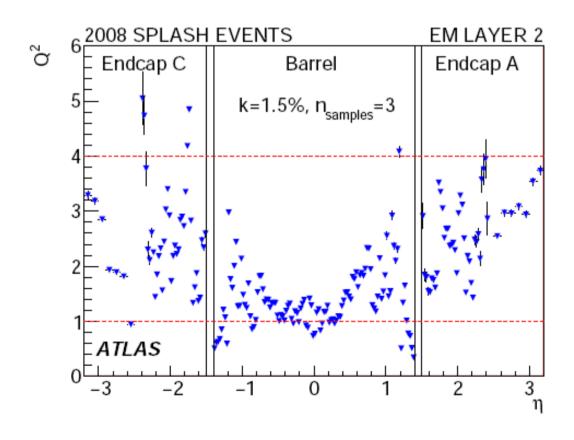
- **E33** = energy measured in a 3x3 clusters (middle layer) taking into account sampling fraction
- **Mean density**: rho=4.01 g/cm3 from "equivalent" molecule for calo: Pb₃₀ Ar₅₆ Fe₂₄ C₂₁ H₄₁
- → Data and MC agree very well
- → Also agree with theoretical energy loss from PDG

lonization Pulse Shapes [1/2]

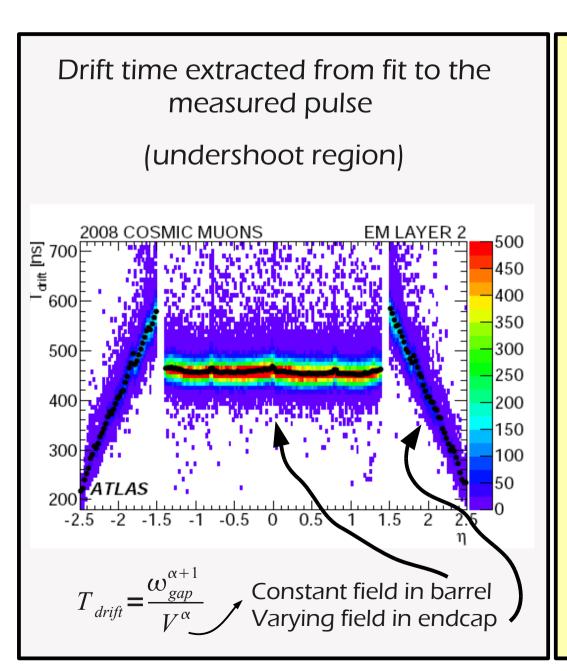
Main ingredient to compute optimal filtering coefficients: need to be precisely known!

- Prediction using calibration pulses + cell modeled as resonant RLC circuit
- Measurement using 32-sample samples of radiating cosmic muons

→ agreement at the 1-2% level



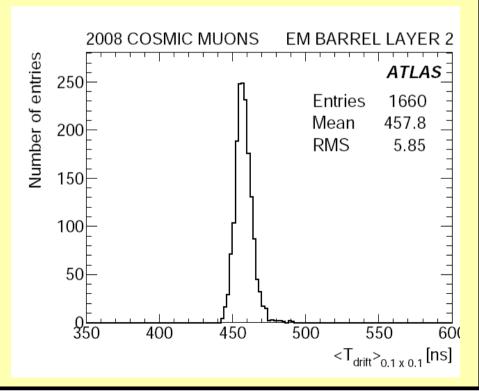
lonization Pulse Shapes [2/2]


 More quantitative conclusion on signal prediction accuracy obtained by looking at following quality estimator:

$$Q^{2} = \frac{1}{N_{dof}} \sum_{j=1}^{N_{samples}} \frac{\left(s_{j} - Ag_{j}^{phys}\right)^{2}}{\sigma_{noise}^{2} + (kA)^{2}}$$

- Factor "k" quantifies the relative accuracy on the amplitude:
 - Barrel: k = 1.4%
 - Endcap: k = 2.6%
- Similar to testbeam result where contrib. to constant term due to signal prediction was 0.25%

lonization Drift Time

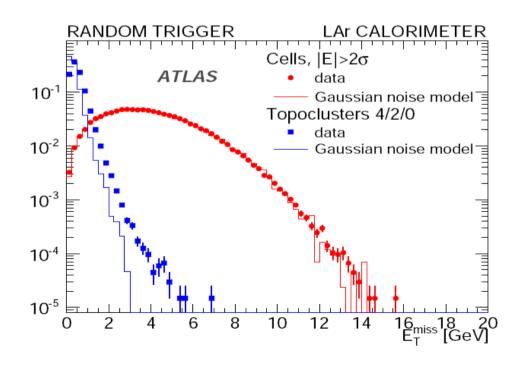


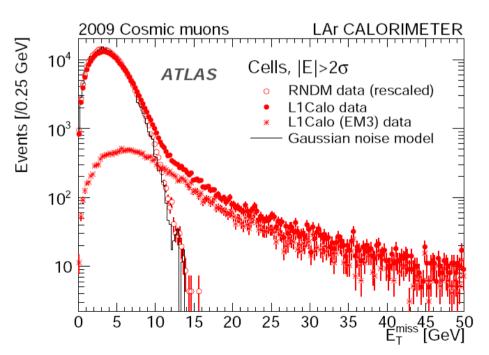
Drift time variations linked to intrinsic calorimeter uniformity:

RMS/mean = 0.29 +- 0.01%

→ upper bound on corresponding constant term

(at construction: 0.16%)



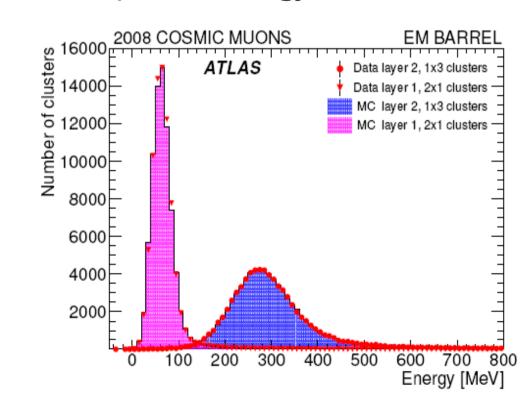

Missing Transverse Energy

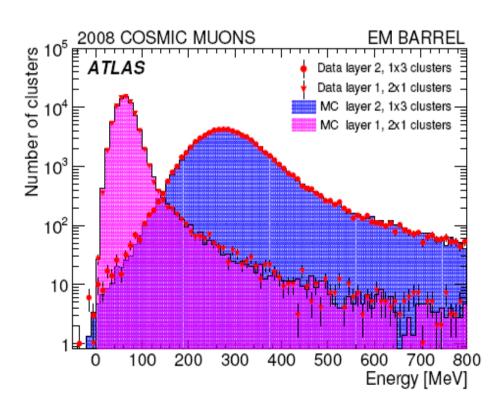
- Two noise-suppression methods to compute ETmiss:
 - All cells with |E|>2 sigmas_noise
 - Topological clusters "4-2-0"
- Noisy cells are masked

0σ 0σ 2σ 0σ 0σ 2σ 4σ 2σ 0σ 0σ 0σ 0σ 0σ

ETmiss measured in random events, and L1Calo triggered events:

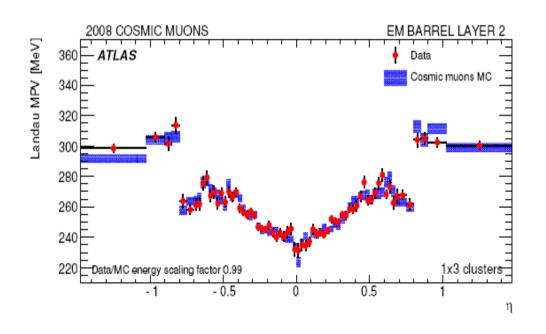
Lalorimeter Uniformity: Introduction

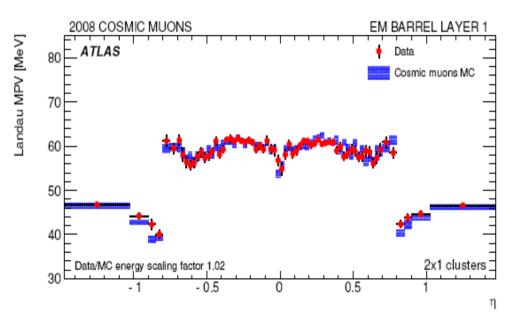



- Cosmic muons used to probe calorimeter uniformity response:
 - Deposited energy proportional to LAr crossed (cell depth)
 → uniformity measured by comparing with MC prediction
 - Muons not sensitive to material as electrons, but allow to measure uniformity cell-by-cell
- Muon energy reconstruction:
 - Use muon track to seed calo cluster search
 - Deposited energy in calo reconstructed using 1x3 (middle) and 2x1 (strips) clusters
 - Projectivity/centrality cuts allow to reduce biases

Calorimeter Unitormity: Energy Lineshapes

- Agreement between data and MC lineshapes is very good
- Global energy scale agrees between MC and data at the 1-2% level: Impressive!
- Lineshapes are fitted with Landau convoluted with Gaussian:
- → Landau Most Probably Value (MPV) estimates the muon deposited energy

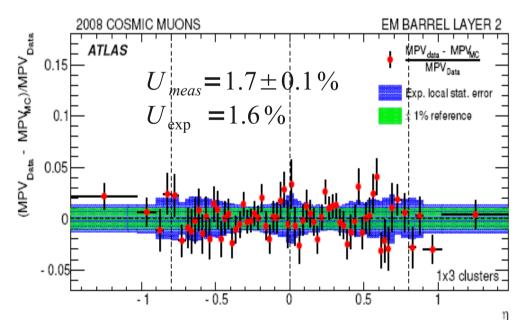


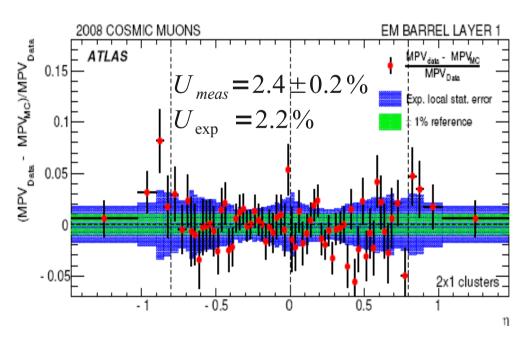


Calorimeter Unitornity: MPVs versus eta

- Limited statistics → natural choice to group cells along phi
- Look at Landau MPV along eta for data and MC:
 - Layer 2: typical V-shape due to cell depth variation+ transition at eta=0.8 (lead thickness)
 - Layer 1: flat + transition at eta=0.8

Calorimeter Unitormity



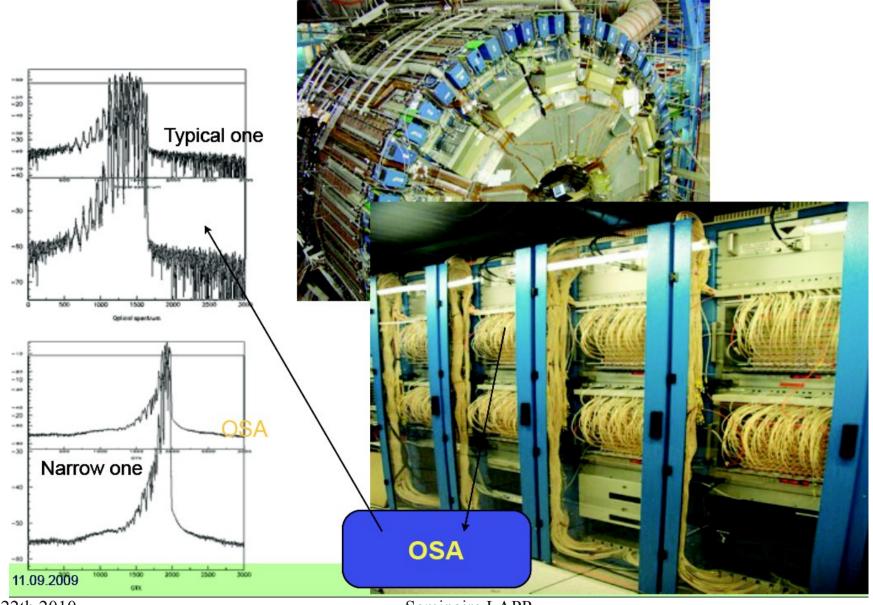

• Measured uniformity (RMS of normalized difference in data and MC MPV):

$$U_{meas} = \sqrt{\sum_{i=1}^{N_{bins}} \left(U_{i,meas} - \langle U_{i,meas} \rangle\right)^2 / N_{bins}} \quad \text{with} \quad U_{i,mean} = \frac{MPV_{i,Data} - MPV_{i,Data}}{MPV_{i,Data}}$$

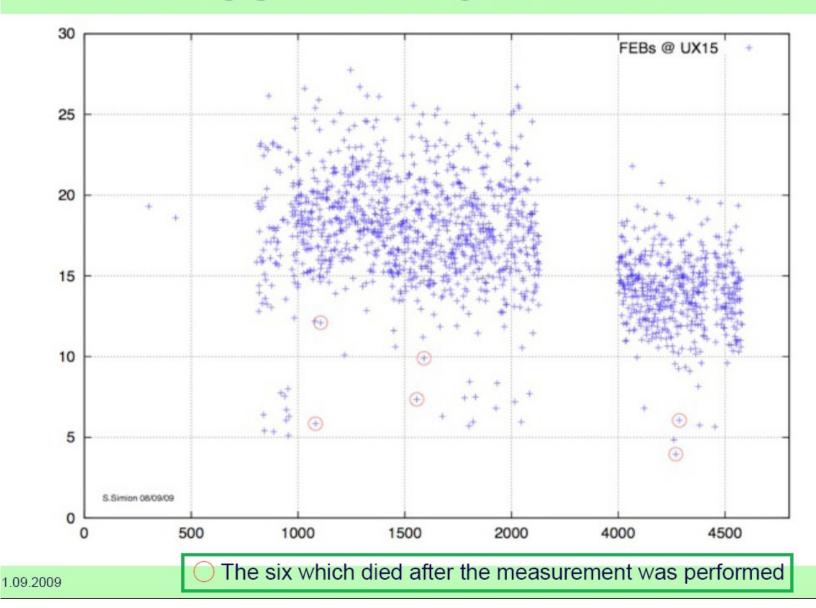
To be compared with expected uniformity (fluctuations due to noise, ...):

$$U_{\text{exp}} = \sqrt{U_{i,Data}^2 + U_{i,MC}^2} \quad \text{with} \quad U_{i,Data(MC)} = \sqrt{\sum_{i=1}^{N_{bins}} \left| \frac{\sigma(MPV_{i,Data(MC)})}{MPV_{i,Data(MC)}} \right|^2}$$

Limits at 95% CL on non-uniformities: 1.1% in middle layer, 1.7% in first layer


• LAr calorimeter was in very good shape for first collisions:

→ Paolo



Optical Spectrum: an indicator of End of Life?

Dyna Ota (z/z)

Results: OSwidth vs OTx serial number

January, 22th 2010 Seminaire LAPP 25

10