Dark matter bound states

Kallia Petraki

Sorbonne Université, LPTHE, Paris and Nikhef, Amsterdam

Established by the European Cor

Théorie, Univers et Gravitation Institut Henri Poincaré Paris, 15 December 2021

Frontiers in dark matter

(simplistic description)

Heavy DM

Particles with $m \ge TeV$ coupled to the Standard Model via the Weak or other interactions not constrained by collider experiments

 \rightarrow existing and upcoming **telescopes** observing multi-TeV sky with increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

• Light DM

Particles with $m \leq few \ GeV$, possibly coupled to SM via a portal interaction, not constrained by older direct detection experiments

 \rightarrow development of new generation of **direct detection** experiments

Frontiers in dark matter

(simplistic description)

Heavy DM

Particles with $m \ge TeV$ coupled to the Standard Model via the Weak or other interactions not constrained by collider experiments

 \rightarrow existing and upcoming **telescopes** observing multi-TeV sky with increasing sensetive e.g. HESS, IceCube, CTA, Antares

Light DM
 Simple thermal-relic WIMP models live in the (multi-)TeV scale.
 Thermal-relic DM can be as heavy as few × 100 TeV.
 How heavy can thermal-relic DM be, and what are the underlying dynamics of heavy (≥ TeV) thermal-relic DM?

Long-range interactions

If dark matter is very heavy, then in many scenarios:

$$egin{aligned} \lambda_B &\sim rac{1}{\mu v_{
m rel}}, \, rac{1}{\mu lpha} &\lesssim rac{1}{m_{
m mediator}} \sim {
m interaction \ range} \ &\mu: \ {
m reduced \ mass} \ (m_{
m \tiny DM}/2) \end{aligned}$$

Long-range interactions

If dark matter is very heavy, then in many scenarios:

$$egin{aligned} \lambda_B &\sim rac{1}{\mu v_{ ext{rel}}}, \, rac{1}{\mu lpha} &\lesssim rac{1}{m_{ ext{mediator}}} &\sim ext{interaction range} \ &\mu: ext{ reduced mass } (m_{ ext{dM}}/2) \end{aligned}$$

Relevant for various models

- Self-interacting DM
- WIMP DM with m_{DM} > few TeV. [Hisano et al. 2002]
- WIMP DM with m_{DM} < TeV, in scenarios of DM co-annihilation with coloured partners.

Implications of long-range interactions

Sommerfeld effect

distortion of wavefunctions \Rightarrow affects all cross-sections, incl. annihilation

- Freeze-out ⇒ alters mass – coupling correlation
- Indirect detection signals

Bound states

- Unstable bound states
 ⇒ extra annihilation channel
 - Freeze-out
 - Indirect detection
 - Novel low-energy indirect detection signals
- Stable bound states (particularly important for asymmetric DM)
 - Novel low-energy indirect detection signals
 - Affect DM self-interactions (screening)
 - Inelastic scattering in direct detection experiments (?)

Outline

Bound states and thermal-relic dark matter

Abelian: dark U(1) sector

 Non-Abelian: neutralino-squark coannihilation

The Higgs!

Bound states

Sommerfeld

 Unitarity limit and long-range interactions

Dark U(1) sector

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{p}

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{p}

Unitarity limit and long-range interactions

Partial-wave unitarity limit in non-relativistic regime

$$\sigma_{
m inel}^{(\ell)} v_{
m rel} ~\leqslant~ \sigma_{
m uni}^{(\ell)} v_{
m rel} ~=~ rac{4\pi(2\ell+1)}{M_{
m _DM}^2 v_{
m rel}}$$

Implies upper bound on the mass of thermal-relic DM

Griest, Kamionkowski (1990)

$$egin{aligned} &\sigma_{
m ann} v_{
m rel} &\simeq 2.2 imes 10^{-26} \ {
m cm}^3/{
m s} &\leqslant rac{4\pi}{M_{
m DM}^2 v_{
m rel}} \ &\langle v_{
m rel}^2
angle^{1/2} &= (6T/M_{
m DM})^{1/2} \quad {
m freeze-out} M_{
m DM}/T pprox 25 \ &0.49 \ &M_{
m DM}/T pprox 25 \ &0.49 \ &M_{
m uni} &\simeq egin{cases} 117 \ {
m TeV}, & {
m self-conjugate DM} \ {
m 83 \ TeV}, & {
m non-self-conjugate DM} \ &
m non-self-conjugate DM \ &M_{
m uni} & {
m cm} \end{array}$$

- Assumes contact-type interactions, $\sigma v_{rel} = constant$
- Considers only s-wave annihilation

Parametric dependence on mass and velocity implies that σ_{uni} can be approached or attained only by longrange interactions.

Long-range interactions imply **bound states**, which may form by **higher partial waves.**

- Thermal relic DM can be much heavier than anticipated
 - In viable thermal scenarios, expect long-range behavior at m_{DM} ≥ few TeV!

Baldes, KP: 1703.00478

Neutralino-squark co-annihilation scenarios

Neutralino in SUSY models Squark-neutralino co-annihilation scenarios

- Degenerate spectrum \rightarrow soft jets \rightarrow evade LHC constraints
- Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP

⇒ DM density determined by "effective" Boltzmann equation $n_{\text{tot}} = n_{\text{LSP}} + n_{\text{NLSP}}$ $\sigma_{\text{ann}}^{\text{eff}} = [n_{\text{LSP}}^2 \sigma_{\text{ann}}^{\text{LSP}} + n_{\text{NLSP}}^2 \sigma_{\text{ann}}^{\text{NLSP}} + n_{\text{LSP}} n_{\text{NLSP}} \sigma_{\text{ann}}^{\text{LSP-NLSP}}]/n_{\text{tot}}^2$ Scenario probed in colliders. Important to compute DM density accurately! → QCD corrections

DM coannihilation with scalar colour triplet MSSM-inspired toy model

DM coannihilation with scalar colour triplet MSSM-inspired toy model

The Higgs doublet as a light mediator

The Higgs as a light mediator

- Sommerfeld enhancement of direct annihilation
- Binding of bound states

Harz, KP: 1711.03552

Harz, KP: 1901.10030

Higgs enhancement and relic density MSSM-inspired toy model

The Higgs as a light mediator

- Sommerfeld enhancement of direct annihilation
- Binding of bound states

Harz, KP: 1711.03552

Harz, KP: 1901.10030

• Formation of bound states via Higgs (*doublet*) emission ?

Capture via emission of neutral scalar suppressed, due to selection rules: quadruple transitions

KP, Postma, Wiechers: 1505.00109 An, Wise, Zhang: 1606.02305 KP, Postma, de Vries: 1611.01394

Capture via emission of charged scalar [or its Goldstone mode] very very rapid: monopole transitions ! Ko,Matsui,Tang:1910: Oncala, KP: 1911.026

Ko,Matsui,Tang:1910:04311 Oncala, KP: 1911.02605 Oncala, KP: 2101.08666/7

Sudden change in effective Hamiltonian precipitates transitions. Akin to atomic transitions precipitated by β decay of nucleus.

Renormalisable Higgs-portal WIMP models

Singlet-Doublet coupled to the Higgs: $L \supset -y \overline{D} H S$

 $m_D \simeq m_S \rightarrow D$ and S co-annihilate. Freeze-out begins before the EWPT if $m_{DM} > 5$ TeV

Oncala, KP: 2101.08666/7

Renormalisable Higgs-portal WIMP models

Singlet-Doublet coupled to the Higgs: $L \supset -y \overline{D} H S$ $m_D \simeq m_S \rightarrow D$ and S co-annihilate.

Freeze-out begins before the EWPT if $m_{DM} > 5TeV$

Oncala, KP: 2101.08666/7

Conclusion

Bound states indicate the onset of a new type of inelasticity

- Non-relativistic unitarity limit ↔ long-range interactions
 - ⇒ bound states play very important role! Baldes, КР: 1703.00478
- Complete reconsideration of DM thermal decoupling at m_{DM} ≥ TeV.
 Essentially no unitarity limit on mass of thermal relic DM!
- Important experimental implications for dark matter:
 - DM heavier than anticipated: multi-TeV probes very important.
 - Indirect detection
 - Enhanced rates due to BSF
 - Novel signals: low-energy radiation emitted in BSF
 - Indirect detection of asymmetric DM
 - Colliders: improved detection prospects due increased mass gap in coannihilation scenarios