
Challenging the CDM paradigm:

Constraining DM properties with CMB data

Stéphane Ilić
IJCLab (Orsay, France)

In collaboration with
M. Kopp, D. Thomas, and C. Skordis (CEICO, Prague)

Atelier Théorie, Univers et Gravitation
@ IHP, 15/12/2021



2

The standard model of cosmology

● The ΛCDM paradigm: a (relatively) simple model, with many successes...CDM paradigm: a (relatively) simple model, with many successes...



3

The standard model of cosmology

● The ΛCDM paradigm: a (relatively) simple model, with many successes...CDM paradigm: a (relatively) simple model, with many successes...



4

The standard model of cosmology

● The ΛCDM paradigm: a (relatively) simple model, with many successes...CDM paradigm: a (relatively) simple model, with many successes...

● … but rests on some pillars that are “shrouded in darkness”:

• Primordial Universe, inflation

• Dark ages & reionisation 
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Cold dark matter, hot questions

●    Is it really there ?

●    If yes, what it is made of ?



13

(pick your favorite)

T. Tait

Dark Matter
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 Can we devise a framework 
to explore the landscape of 

theories efficiently?
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DM as a (more) general fluid

● CDM: non-interacting, pressureless perfect fluid

● But general fluid has pressure…

● ...and non-zero shear

(Planck 2018 results. X)

(Planck 2018 results. VI)

isocurv. IC contribution

e.g. ultralight axions quantum pressure

e.g. free-streaming warm dark matter
(sterile neutrinos, ...)

e.g. CDM + EFTofLSS
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Generalized Dark Matter (GDM, Hu 1998)

● Defined for FLRW, linear perturbations

● Background: (non-zero) equation of state

● Perturbations: sound speed            & viscosity 

● Standard eqs. for density contrast & velocity divergence

● Continuity & Euler eqs. : requires closure equations (here by Hu):
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GDM phenomenology

● Equation of state:

for constant w 

→ angular diam. dist., changes peak positions

→ early rad/matter ratio, changes peak heights
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GDM phenomenology

● Equation of state:

● Sound speed & viscosity:

for constant w 

→ angular diam. dist., changes peak positions

→ early rad/matter ratio, changes peak heights

→ potentials decay below kdecay

(expected degeneracy)
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Relating GDM to realistic theories

(courtesy of M. Kopp)



21

Constant w, cs
2, and cv

2 constraints

(courtesy of M. Kopp)
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Ingredients for constraining GDM

● Theoretical predictions:
custom modified version of public code CLASS,
solving for arbitrary w, cs

2, and cv
2

● Datasets:
• Planck 2015 low/high-ell T/E/B data + lensing
• H0 (Riess) measurement
• Assortment of BAO data

● Sampling: 
Affine Invariant Markov chain Monte Carlo
Ensemble sampler
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Constant w, cs
2, and cv

2 constraints

a
Thomas, Kopp, Skordis, 2016,
arXiv:1601.05097
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Binned w(a), cs
2 = cv

2 = 0 constraints

8 w bins

Kopp, Thomas, Skordis, Ilić, 2018, arXiv:1802.09541
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Binned w(a), cs
2(a), and cv

2(a) constraints

8 w bins

Kopp, Thomas, Skordis, Ilić, 2018, arXiv:1802.09541
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Binned w(a), cs
2(a), and cv

2(a) constraints

+ 8 w bins        or               w=0

9 cs
2, and cv

2 bins

02345 (1)678

02345  1678

a

Ilić et al., 2020, arXiv:2004.09572
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Ilić et al., 2020, arXiv:2004.09572
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Effects of priors
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Binned w(a), cs
2(a), and cv

2(a) constraints
Ilić et al., 2020, arXiv:2004.09572
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GDM and H0
Ilić et al., 2020, arXiv:2004.09572
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Identifying prior effects with ECLAIR
Ilić et al., 2020, arXiv:2004.09572
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Summary

● No convincing evidence for w, cs2, cv2 to be nonzero

● Varying w improved fit marginally

● Only free cs2 and cv2 → virtually no improvement

● w+cs2+cv2 free: DM abundance around equality ++
while abundance today, H0, and s8 – – 
→ help in solving s8 and H0 tensions ?

Ilić et al., 2020, arXiv:2004.09572
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Beyond CMB-only constraints

Galaxy Clustering

Cosmic Microwave 
Background

Weak
Lensing
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Take-away message(s)

● CDM remains (mostly) unchallenged

● Plethora of contenders

● GDM model : efficient way of pruning model space

● We put constraints on free, non-parametric functions

describing GDM properties

● We applied GDM on current state-of-the-art data

● Ongoing preparation for new era of instruments, 

with some promising first results
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Thank you
for your attention !
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Beyond CMB-only constraints

Galaxy Clustering

Cosmic Microwave 
Background

Weak
Lensing
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GDM Halo model & LSS constraints
Thomas et al., 2019, arXiv:1905.02739

GDM cosmological constraints 

with free, constant w, cs
2, and cv

2

+ New Halo model for non-linearities

+ LSS data : WiggleZ matter power spectrum
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GDM Halo model & LSS constraints
Thomas et al., 2019, arXiv:1905.02739
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GDM and massive neutrinos
Thomas et al., 2019, arXiv:1905.02739
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GDM and massive neutrinos
Thomas et al., 2019, arXiv:1905.02739
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Ensemble sampling with ECLAIR
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Ensemble sampling

Collection of 
“walkers” 

initialized at 
random 
positions
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quickly spread 

throughout 
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Ensemble sampling

...and end up 
sitting in the 
“interesting” 

region of 
parameter 

space 
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Ensemble sampling

A single 
snapshot of 

walkers 
positions

=
A representative 

sample of the 
posterior 

distribution
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Introducing : ECLAIR

● Written in python (2 & 3 compatible) 

● Two (fairly) short files : main (~200) & parser (~500)

● Human-readable/tweakable, well-commented

● Working with any CLASS variant, no modification required

● Growing number of likelihoods/datasets implemented
(easy to add new ones)

● Intuitive visualization scripts to assess convergence
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Contour plots
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ECLAIR parsing features
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Introducing : ECLAIR

● Written in python (2 & 3 compatible) 

● Two (fairly) short files : main (~200) & parser (~500)

● Human-readable/tweakable, well-commented

● Working with any CLASS variant, no modification required

● Growing number of likelihoods/datasets implemented
(easy to add new ones)

● Intuitive visualization scripts to assess convergence

● Contour plot scripts (interfaced with getdist)

● Convenient custom parser :“constraint” and “deriv” features

● Robust minimizer combining simulated annealing
& ensemble sampling
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Minimizing with ECLAIR
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Minimizing with ECLAIR
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Minimizing with ECLAIR
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