Hawking radiation of primordial black holes

Alexandre Arbey

Lyon University & IP2I & CERN TH

Théorie, Univers et Gravitation

Institut Henri Poincaré – December 13th, 2021

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
<u></u>				
Observed black holes				

Three types of black holes have been discovered

- Stellar black holes BHs originated in the explosion of massive stars/supernovae, $\sim 3-100\,M_{\odot}$
- Intermediate mass black holes (IMBH) New class of recently discovered BHs, $\sim 10^3 - 10^6 M_{\odot}$
- supermassive black holes (SMBH) BHs at the center of galaxies, $\sim 10^6 - 10^9 M_{\odot}$

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
000				
Origin of primordial bl	ack holes			

Multiple inflationary origins

- collapse of large primordial overdensities
- phase transitions
- collapse of cosmic strings, domain walls

Mass predictions

Assuming that one PBH can be formed in a Hubble volume in the early Universe, one gets

$$M_{
m PBH} \sim M_{
m Planck} imes rac{t_0}{t_{
m Planck}} \sim 10^{38} \ {
m g} \ imes t_0({
m s})$$

where t_0 is the creation time.

We get:

- $M \sim 10^{-5}$ g for $t_0 \sim 10^{-43}$ s ightarrow Planck black holes
- $M\sim 10^{15}$ g for $t_0\sim 10^{-23}$ s ightarrow lightest black holes still (possibly) existing
- $M \sim 10^5 \ M_{\odot}$ for $t_0 \sim 1 \ {
 m s}
 ightarrow {
 m IMHB}$? seeds for SMBH?

Primordial black holes ○○●	Hawking radiation	Constraints	Non-standard BHs	BlackHawk ∩
Constraints on Prin	nordial Black Holes			

Plausible dark matter candidates

- no need for Standard Model / General Relativity extension
- dynamically cold
- BH existence (somehow) proven
- mass ranges still available for BHs to represent all of dark matter

Constraints on PBHs - from Carr & Kuhnel, 2006.02838

red: evaporation blue: lensing gray: gravitational waves light blue: accretion orange CMB distortions green: dynamical effects purple: large scale structure

A-D: possible open windows

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
000	0000000	000	000000	0

Hawking radiation

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
	<u></u>			
Why are PBHs so	special?			

Light PBHs cannot be described only with General Relativity...

from B. Carr

... because they emit Hawking radiation and evaporate!

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
	000000			
Black hole Hawking r	adiation			

Fundamental equation for Kerr BHs

Rate of emission of Standard Model particles i at energy E by a BH of mass M and spin parameter a^* :

$$Q_i = \frac{\mathrm{d}^2 N_i}{\mathrm{d}t \mathrm{d}E} = \frac{1}{2\pi} \sum_{\mathrm{dof.}} \frac{\Gamma_i(M, E, a^*)}{e^{E'/T(M, a^*)} \pm 1}$$

 Γ_i is the greybody factor (~ absorption coefficient in Planck's black-body law)

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
	000000			
Hawking temperature				

Hawking temperature for Kerr BHs

$$T(M, a^*) = \frac{1}{4\pi M} \left(\frac{\sqrt{1 - (a^*)^2}}{1 + \sqrt{1 - (a^*)^2}} \right) \stackrel{Schwarzschild}{a^* = 0} \frac{1}{8\pi M}$$

Comparison with the e^{\pm} rest mass and QCD scale $\Lambda_{\rm QCD}$ 10^{1} $a^{*} = 0$ 10^{0} $a^* = 0.9$ $a^* = 0.9999$ $\Lambda_{\rm QCD}$ 10^{-1} 10^{-3} 10^{-4} 10^{-5} 10^{14} 10^{15} 10^{16} $M\left(\mathbf{g}\right)$

BHs get warmer when they lose energy via Hawking radiation.

Alexandre Arbey

Théorie, Univers et Gravitation - Institut Henri Poincaré, Dec. 13th, 2021

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
	000000			
Kerr Hawking radiation equations				

Kerr metric

$$ds^{2} = \left(1 - \frac{2Mr}{\Sigma^{2}}\right)dt^{2} + \frac{4a^{*}M^{2}r\sin^{2}\theta}{\Sigma^{2}}dt\,d\phi - \frac{\Sigma^{2}}{\Delta}dr^{2}$$
$$-\Sigma^{2}d\theta^{2} - \left(r^{2} + (a^{*})^{2}M^{2} + \frac{2(a^{*})^{2}M^{3}r\sin^{2}\theta}{\Sigma^{2}}\right)\sin^{2}\theta d\phi^{2}$$

$$\Sigma \equiv r^2 + (a^*)^2 M^2 \cos^2 heta$$
 and $\Delta \equiv r^2 - 2 M r + (a^*)^2 M^2$

Equations of motion in free space

Dirac:
$$(i\partial - \mu)\psi = 0$$
 (fermions)
Proca: $(\Box + \mu^2)\phi = 0$ (bosons)

 $\mu = \text{rest mass}$

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
	000000			
Kerr Hawking radiation equations				

Teukolsky radial equation

$$\frac{1}{\Delta^{s}}\frac{\mathrm{d}}{\mathrm{d}r}\left(\Delta^{s+1}\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \left(\frac{K^{2}+2is(r-M)K}{\Delta} - 4isEr - \lambda_{slm} - \mu^{2}r^{2}\right)R = 0$$

R radial component of ψ/ϕ $K \equiv (r^2 + a^2)E + am, s = spin, l = angular momentum and m = projection$

Transformation into a Schrödinger equation

Change $\psi/\phi \longrightarrow Z$ and $r \longrightarrow r^*$ (generalized Eddington-Finkelstein coordinate system) (Chandrasekhar & Detweiler 1970s)

$$\frac{\mathrm{d}^2 Z}{\mathrm{d}r^{*2}} + (E^2 - V(r^*))Z = 0$$

Solved with purely outgoing solution $Z \xrightarrow[r^* \to -\infty]{} e^{-i Er^*}$ Transmission coefficient $\Gamma \equiv |Z_{out}^{+\infty}/Z_{out}^{horizon}|^2$

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
	0000000			
Hawking radiation	of particles			

All particles can be emitted by a black hole!

Including gravitons / gravitational waves... and even new physics particles!

Hawking radiation is enhanced for particles of spin 1 or 2.

Alexandre Arbey

Théorie, Univers et Gravitation – Institut Henri Poincaré, Dec. 13th, 2021

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
000	000000	000	000000	

Constraints on primordial black holes

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
		<u></u>		
lsotropic gamma ra	y background (IGRI	B) constraints		

Origin

Diffuse background +

- Active galactic nuclei
- Gamma ray bursts
- DM annihilation/decay?
- Hawking radiation?

Flux estimation for BHs

AA et al., arXiv:1906.04750

$$egin{split} I &\approx rac{1}{4\pi} E \int_{t_{
m CMB}}^{t_{
m today}}(1+z(t)) \ & imes \int_M \left[rac{{
m d}n}{{
m d}M} rac{{
m d}^2 N}{{
m d}t {
m d}E}(M,(1+z(t))E) \, {
m d}M
ight] {
m d}t \end{split}$$

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
		000		
IGRB and Kerr PBHs:	monochromatic ma	ss distributions		

Main spin effects

- enhanced luminosity \Rightarrow stronger constraints
- reduced temperature \Rightarrow reduced emission energy \Rightarrow weaker constraints

 000	000000	

Complementary constraints

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
			000000	

Non-standard black holes

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
000	000000	000	<u></u>	

The case of static spherically-symmetric metrics

AA, J. Auffinger, M. Geiller, E. Livine, F. Sartini, arXiv:2101.02951 + 2107.03293

$$\mathrm{d}s^{2} = -G(r)\mathrm{d}t^{2} + \frac{1}{F(r)}\mathrm{d}r^{2} + H(r)\mathrm{d}\Omega^{2}$$

Equations of motion:

$$\partial_{r^*}^2 Z + \left(\omega^2 - V(r(r^*))\right) Z = 0$$

where $dr^*/dr \equiv 1/\sqrt{FG}$ and the spin-dependent potentials V are related to F, G, H. Transmission coefficient: $\Gamma_i \equiv |Z_{out}^{+\infty}/Z_{out}^{horizon}|^2$

Rate of emission of one degree of freedom i per unit time t and energy E:

$$\frac{\mathrm{d}^2 N_i}{\mathrm{d}t \,\mathrm{d}E} = \sum_{I,m} \frac{1}{2\pi} \frac{\Gamma_i(E,M,x_j)}{e^{E/T} - (-1)^{2s_j}} \,,$$

where s_i is the spin of the particle *i* and T is its Hawking temperature given by

$$T = rac{1}{4\pi} \left. rac{F^{1/2} G'}{G^{1/2}}
ight|_{
m hor}$$

where "hor" denotes the horizon $r = r_{\rm H}$.

Alexandre Arbey

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
			00000	
Extra-dimensional PE	3H s			

Metric:

$$F(r) = G(r) \equiv 1 - \left(\frac{r_{\mathrm{H}}}{r}\right)^{n+1}, \quad H(r) = r^2$$

where n > 0 is the number of extra dimensions.

Horizon radius is given by

$$r_{\rm H} = rac{1}{\sqrt{\pi}M_*} \left(rac{M}{M_*}
ight)^{1/(n+1)} \left(rac{8\Gamma((n+3)/2)}{n+2}
ight)^{1/(n+1)}$$

where Γ is the Euler gamma function and the rescaled Planck mass is

$$M_{\rm Pl}^2 = M_*^{n+2} R^n$$

with R the radius of the extra-dimension(s).

Temperature:

$$T_n = \frac{\kappa_n}{2\pi} = \frac{n+1}{4\pi r_{\rm H}}$$

Remark: Schwarzschild metric retrieved for n = 0.

Alexandre Arbey

 $x \equiv Er_{\rm H}$

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
			000000	
LQG-inspired PBHs				

Schwarzschild BHs are singular at the center ightarrow non-physical ightarrow quantum gravity?

Loop Quantum gravity (LQG): structure of spacetime described by spin networks.

Metric inspired by LQG, regularising the naked singularity at the center of the Schwarzschild metric:

$$G = \frac{(r - r_{+})(r - r_{-})(r + \sqrt{r_{+}r_{-}})^{2}}{r^{4} + a_{0}^{2}}, \quad F = \frac{(r - r_{+})(r - r_{-})r^{4}}{(r + \sqrt{r_{+}r_{-}})^{2}(r^{4} + a_{0}^{2})}, \quad H = r^{2} + \frac{a_{0}^{2}}{r^{2}}.$$
Two roots:
$$r_{+} = \frac{2M}{(1 + P)^{2}} \text{ and } r_{-} = \frac{2MP(\varepsilon)^{2}}{(1 + P)^{2}}$$
M: (ADM) mass
$$P(\varepsilon) = \frac{\sqrt{1 + \varepsilon^{2}} - 1}{\sqrt{1 + \varepsilon^{2}} + 1}: \text{ polymerization factor}$$

a₀: minimal area in loop quantum gravity, typically of the Planck scale $\varepsilon \ge 0$: typical scale of the geometry fluctuations (a priori independent parameter) Temperature: $T_{LQG} = \frac{r_+^2(r_+ - r_-)}{4\pi(r_+^4 + a_0^2)}$

red: $\epsilon = 10$

Primordial black holes	Hawking radiation	Constraints	Non-standard BHs	BlackHawk
000	000000	000	00000	
LQG-inspired PBHs				

Predictions for the sensitivity of the AMEGO gamma-ray experiment to classical and polymerised LQG-inspired PBHs

 ε : scale of deformation of spacetime due to polymerisation in Loop Quantum Gravity

AA, J. Auffinger, M. Geiller, E. Livine, F. Sartini, arXiv:2101.02951 + 2107.03293

ightarrow Theories beyond General Relativity predict very different signals of Hawking radiation.

Primordial black holes ୦୦୦	Hawking radiation	Constraints	Non-standard BHs	BlackHawk ●
BlackHawk				
Public C code com	puting Hawking radia	ition:		
 Schwarzschild 	& Kerr PBHs + non	-standard BHs		
 primary spects 	a of all Standard Mo	del fundamental	particles	
 secondary spe 	ctra of stable particle	S		
 extended mass 	s and spin functions			
 time evolution 	of the PBHs			
	Download: http:/	//blackhawk.he	pforge.org	

Manual: arXiv:1905.04268, Eur.Phys.J. C79, 693 + arXiv:2108.02737, Eur.Phys.J. C81, 10

	Home Description Manual Download Contact	BlackHawk By Alexandre Arbey and Jérémy Auffinger Calculation of the Hawking evaporation spectra of any black hole distribution BlackHawk is a public C program for calculating the Hawking evaporation spectra of any black hole distribution. This program enables the users to compute the primary and secondary spectra of stable or long-lived particles generated by Hawking adatution of the distribution of black holes, and to study their evolution in time. If you use BlackHawk to publish a paper, please cite: A Arbey and J. Auffinger, arXiv 1905 04206 [gr-qc] For any comment question or bug report lease contact us.	
Alexandre Art)ev	Théorie, Univers et Gravitation – Institut Henri Poincaré, Dec. 13th, 2021	20 /