# Dark matter Subhalos





### **Gaétan Facchinetti** with Julien Lavalle and Martin Stref





We are here



**Dark matter CLUMPS/Subhalos** (CDM paradigm)





# Why is looking for subhalos interesting?

# Nature of DM: Cold DM? Warm DM? Self Interacting DM? ... Can be looked for with several strategies (DM annihilation, lensing, ...) Need a reliable population model for Galactic searches

[lbarra+19, Hütten+19, Calore+19, Hütten+16, Ando+19, ...] [Facchinetti+20]



# **Cosmological simulations:**

Exquisite reproduction of the observable Universe on large scales

Cannot reproduce THE Milky-Way

Cannot probe  $m \lesssim 10^4 \text{ M}_{\odot}$ . Halo mass possibly down to  $10^{-12} \text{ M}_{\odot}$ . [Springel+08]

## Two main ideas to describe the subhalo population

# **Analytical models:**



### Evaluate the statistical distribution of halos

[Stref+17, Hiroshima+18, Bartels+15, Zavala+14, Benson+12, Van den Bosch+05, Peñarrubia+05, ...]





# A dynamically constrained semi-analytical model for the subhalo population in the Milky Way (MW)

From [Stref and Lavalle (2017)] & [GF, Stref and Lavalle (2022, in prep.)]





[Binney+08, Weinberg94, Gnedin+99, Stref+17] [Tormen+98, Hayashi+03, Diemand+08, ....] [Van den Bosch+18, Errani+20]

# Number density of subhalos [kpc<sup>-3</sup>]







[Binney+08, Weinberg94, Gnedin+99, Stref+17] [Tormen+98, Hayashi+03, Diemand+08, ....] [Van den Bosch+18, Errani+20] Part I

### What is the value of m<sub>min</sub> in a given particle model?

Part II

Imply the calibration of mass fraction in subhalos on DM only simulations. How to avoid that?

Part III

Impact of single star encounters (Here for the Milky-Way)









### Part I



## Subhalo minimal mass in a simplified DM model

[arXiv:2203.xxxx]







[Cirelli+06, Abdallah+15, Abercrombie+15, Boveia+15, De Simone+16, Kraml+17, Arina+18, ...]

## « Historically »

![](_page_8_Picture_4.jpeg)

# We work with the following model:

## s-channel simplified model (for fermionc DM):

$$\mathcal{L} \ni -\overline{\chi}_{i}\delta_{\chi}(A_{k}^{ij}\phi_{k}+\iota\gamma^{5}B_{k}^{ij}\varphi_{k})\chi_{j}-\overline{\psi}_{i}(\mathscr{A}_{k}^{i}\phi_{k}+\iota\gamma^{5}\mathscr{B}_{k}^{i}\varphi_{k})\psi_{i}$$
$$+\overline{\chi}_{i}\gamma^{\mu}\delta_{\chi}(X_{k}^{ij}-\gamma^{5}Y_{k}^{ij})V_{k}^{\mu}\chi_{j}+\overline{\psi}_{i}\gamma^{\mu}\left(\mathscr{X}_{k}^{i}-\gamma^{5}\mathscr{Y}_{k}^{i}\right)V_{k}^{\mu}\psi_{i}$$

# **Generic coupling DM-SM through** scalar, pseudoscalar, vector and axial-vector mediators

![](_page_9_Picture_5.jpeg)

# In the literature, no generic connection between simplified models and subhalo minimal mass

For thermally produced particles with abundance fixed with freeze-out mechanism (WIMPs) ... and investigate its properties and features

# Let's make this connection!

![](_page_10_Picture_4.jpeg)

11

![](_page_11_Figure_0.jpeg)

$$k > k_{\rm d} \sim \frac{\sqrt{3}}{c} H(t_{\rm kd})$$

$$M_{\rm halo} > \max\left[\frac{4\pi}{3}\bar{\rho}_m\right]$$

[Hofmann+01, Boehm+01, *Green+05, Loeb+05,* Bringmann+09, Gondolo+12] 12

![](_page_12_Figure_0.jpeg)

# The minimal mass is directly related to the kinetic decoupling temperature

$$M_{\text{halo}} > \max\left[\frac{4\pi}{3}\bar{\rho}_m(t_{\text{kd}})\left(\frac{2\pi}{k_{\text{d}}}\right)^3, \frac{4\pi}{3}\bar{\rho}_m(t_{\text{eq}})\left(\frac{2\pi}{k_{\text{fs}}}\right)^3\right]$$

![](_page_12_Picture_3.jpeg)

13

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_2.jpeg)

[Lee+77, Binétruy+84, Bernstein+85, Srednicki+88, Gondolo+91, Griest+91, Edsjo+97, Steigman+12]

**O**<sup>th</sup> moment:

**Equation on DM number density:** 

$$\frac{\mathrm{d}n}{\mathrm{d}t} + 3Hn = \left\langle \sigma_{\mathrm{ann}} v \right\rangle (n_{\mathrm{eq}}^2 - n^2)$$

Thermal cross-section

$$\langle \sigma_{\rm ann} v \rangle = \int \sigma_{\rm ann}(s) \dots ds$$

![](_page_14_Figure_6.jpeg)

The equations for chemical and kinetic decoupling are obtained from the Boltzmann equation

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_17.jpeg)

![](_page_14_Picture_18.jpeg)

# Let us treat the example of a single scalar/pseudoscalar mediator

$$\begin{aligned} \mathscr{L} \ni -\frac{1}{2}\lambda_{\chi}\overline{\chi}\phi \\ -\frac{1}{2}\lambda_{\chi}\overline{\chi}\phi \\ \mathscr{L} \ni -\frac{1}{2}\lambda_{\chi}\overline{\chi}\gamma \end{aligned}$$

### Chemical decoupling + correct abundance: constraints on the factor $\lambda = \sqrt{\lambda_{x}\lambda_{z}}$

 $\phi \chi - \sum_{\psi} \lambda_{\psi} \overline{\psi} \phi \psi$   $\psi^{5} \varphi \chi - \sum_{\psi} \lambda_{\psi} \overline{\psi} \gamma^{5} \varphi \psi$ Toy models)

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

![](_page_16_Figure_0.jpeg)

## From the coupling constant to the number of subhalos ... and more

![](_page_16_Picture_2.jpeg)

# We derived several approximate scaling laws

Scattering (kinetic decoupling/direct searches) Annihilation (chemical decoupling/indirect searches)  $\sigma_{\chi\psi\to\chi\psi}^{\text{scalar}} \propto \lambda^4 \frac{m_{\chi}^2 m_{\psi}^2}{m_{\phi}^4 (m_{\chi} + m_{\psi})^2}$ (v-indep.)  $\sigma_{\chi\psi\to\chi\psi}^{\text{pseudo-scalar}} \propto \lambda^4 \frac{m_{\chi}^4 m_{\psi}^4}{m_{\omega}^4 (m_{\chi} + m_{\psi})^6} v_{\text{rel}}^4 \quad (V\text{-}dep.)$ [Abdallah+15] Couplings to have the right abundance if  $m_{\chi} \gg m_{\phi}$ 

if  $m_{\chi} \ll m_{\phi}$ 

$$\sigma_{\chi\chi \to \psi\overline{\psi}}^{\text{scalar}} v_{\text{rel}} \propto \lambda^4 \frac{(m_{\chi}^2 - m_{\psi}^2)^{3/2}}{m_{\chi}^a m_{\phi}^b} v_{\text{rel}}^2 \quad (p\text{-wave})$$

Scalar

Pseudoscalar

$$\sigma_{\chi\chi \to \psi\overline{\psi}}^{\text{pseudo-scalar}} v_{\text{rel}} \propto \lambda^4 \frac{(m_{\chi}^2 - m_{\psi}^2)^{1/2}}{m_{\chi}^a m_{\varphi}^b} \quad \text{(s-wave)}$$

$$\lambda \propto \begin{cases} \sqrt{m_{\chi}} \\ m_{\phi}/\sqrt{m_{\chi}} \end{cases}$$

![](_page_17_Picture_9.jpeg)

![](_page_17_Picture_17.jpeg)

## Minimal halo mass vs. self-interactions

![](_page_18_Figure_1.jpeg)

[Facchinetti+(in prep.)]

### Scalar

![](_page_18_Picture_4.jpeg)

### Part II

![](_page_19_Picture_1.jpeg)

The cosmological mass function from merger trees

Formalism used in [Lacroix, GF+(in prep.)]

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

# **Recall:** Initial/cosmological mass function $\frac{\mathrm{d}N_{\mathrm{sub}}}{\mathrm{d}m} \propto m^{-\alpha}\Theta(m-m_{\mathrm{min}})$

Imply the calibration of mass fraction in subhalos on DM only simulations. How to avoid that?

![](_page_20_Picture_3.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

$$11 R \rightarrow$$

$$z) = \frac{8\pi^2 k}{25} \left[ \frac{D_1(z)}{\Omega_{m,0} H_0^2} T(k) \right]^2 \mathscr{A}_S \left( \frac{k}{k_0} \right)^{n_s - 1}$$
(matter power spectrum)  
$$R) = \sigma_R^2 = \frac{1}{2\pi^2} \int_0^{1/R} P_m(k, z = 0) k^2 dk$$
(Smoothed variance)

![](_page_21_Picture_6.jpeg)

![](_page_21_Picture_7.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

$$ll R \rightarrow$$

$$z) = \frac{8\pi^2 k}{25} \left[ \frac{D_1(z)}{\Omega_{m,0} H_0^2} T(k) \right]^2 \mathscr{A}_S \left( \frac{k}{k_0} \right)^{n_s - 1}$$
(matter power spectrum)  
$$R) = \sigma_R^2 = \frac{1}{2\pi^2} \int_0^{1/R} P_m(k, z = 0) k^2 dk$$
(Smoothed variance)

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_7.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_1.jpeg)

$$\frac{1}{\ln R} \rightarrow \frac{1}{\sqrt{2}}$$

(matter power spectrum)

(Smoothed variance)

$$D = \frac{8\pi^2 k}{25} \left[ \frac{D_1(z)}{\Omega_{m,0} H_0^2} T(k) \right]^2 \mathscr{A}_S \left( \frac{k}{k_0} \right)^{n_s - 1}$$
(matter p

 $P_{\rm m}(k, z=0)k^2 {\rm d}k$ 

1/*I* 

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

![](_page_24_Figure_0.jpeg)

 $\dots$  it can be obtained from fits on the output of merger tree algorithms  $_{25}$ 

![](_page_24_Picture_2.jpeg)

![](_page_24_Picture_3.jpeg)

![](_page_24_Picture_4.jpeg)

![](_page_25_Figure_0.jpeg)

 $\dots$  it can be obtained from fits on the output of merger tree algorithms  $_{26}$ 

![](_page_25_Picture_3.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_25_Picture_5.jpeg)

![](_page_26_Figure_0.jpeg)

### New fitting procedure

### **Constraint on the shape by imposing** the constraint

$$\frac{1}{M} \int_{0}^{M} m \frac{\mathrm{d}N_{1}}{\mathrm{d}m} \mathrm{d}m = 1$$

The host halo is entirely made of subhalos **Consistent with the fractal picture** 

Fixes the slope at small mass dNwith  $\alpha \sim 1.95$ dm

## $\dots$ it can be obtained from fits on the output of merger tree algorithms $_{27}$

![](_page_26_Picture_8.jpeg)

$$\frac{\mathrm{d}N_1}{\mathrm{d}m}(m,M) = f(m,M) \longrightarrow$$

### Total number of subhalos (before tidal disruption)

$$N_1(M) = \int_0^M f(n)$$

Cosmological simulations no longer needed! Can be easily adapted to any host/cosmology

$$\frac{\mathrm{d}N_1}{\mathrm{d}m}(m,M) = f(m,M)\Theta(m-m_{\min})$$

 $(m, M)\Theta(m - m_{\min})\mathrm{d}m$ 

![](_page_27_Picture_6.jpeg)

### Part III

Stellar encounters in the Milky-Way (Snapshots)

[arXiv:2201.xxxx]

![](_page_28_Picture_3.jpeg)

[Darth Vador+(a long time ago)]

![](_page_28_Picture_5.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_1.jpeg)

### **Galactic stellar disc**

![](_page_29_Picture_3.jpeg)

### Number of encountered stars

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

## The total velocity kick is the result of a random walk

1) Evaluate the total energy/velocity kick received by the particles:

$$\Delta E = \frac{1}{2} (\Delta \mathbf{v})^2 + \mathbf{v} \cdot \Delta \mathbf{v}$$

Random walk in velocity space

- 2) Ask whether the energy kick is high enough for the particles to be expelled:  $"\Delta E(r) > |\Phi(r)|"?$
- 3) Evaluate it for the entire population of subhalo
- Following/imrpoving on [Spitzer58, Gerhard+83, Carr+99, Green+07, Schneider+10, Delos19]

![](_page_30_Picture_14.jpeg)

![](_page_31_Figure_0.jpeg)

**Distance from the Galactic center** [kpc]

# Star encounters have an important effect on the number density

32

![](_page_32_Picture_0.jpeg)

### Gaétan Facchinetti — gaetan.facchinetti@umontpellier.fr

## **Recent developments on analytical dark matter subhalo population models:**

In the WIMP scenario we made the connection between generic particle physics models and the distribution of subhalos.

## 2.

We developed a new method to derive a constrained cosmological subhalo mass function in any host and for any cosmology.

![](_page_32_Picture_7.jpeg)

3.

We showed that encounters between stars and subhalos can significantly impact on their distribution.

![](_page_32_Picture_10.jpeg)

![](_page_32_Picture_11.jpeg)

![](_page_33_Picture_0.jpeg)

Back-up slides

![](_page_33_Picture_2.jpeg)

Brightness traces the DM density in a halo (obtained with cosmological simulations)

a

b

2 kpc

![](_page_34_Picture_2.jpeg)

200 kpc

 $\bigcirc$ 

4 kpc

![](_page_34_Figure_3.jpeg)

![](_page_34_Figure_4.jpeg)

20 kpc

2 kpc

![](_page_34_Figure_5.jpeg)

### Hierarchical formation leads to a fractal distribution

![](_page_34_Picture_7.jpeg)

![](_page_34_Picture_8.jpeg)

![](_page_35_Figure_0.jpeg)

## Cosmological simulations cannot probe very small scales

![](_page_35_Picture_4.jpeg)

### **Chemical decoupling**

![](_page_36_Figure_1.jpeg)

## Decoupling are characterized by a divergence from the equilibrium quantity

Kinetic decoupling

![](_page_36_Figure_4.jpeg)

![](_page_36_Picture_5.jpeg)

![](_page_37_Figure_0.jpeg)

Initial mass distribution (cosmological mass function)

$$R)\frac{1}{N_{\rm sub}}\frac{\mathrm{d}N_{\rm sub}}{\mathrm{d}m}p_c(c\mid m)$$

**Distribution in concentration** 

[Bullock+01,Sánchez-Conde+14]

![](_page_37_Picture_5.jpeg)

![](_page_37_Picture_6.jpeg)

![](_page_38_Figure_0.jpeg)

# + Constraints from dynamical effects

Initial mass distribution (cosmological mass function)

$$R)\frac{1}{N_{\rm sub}}\frac{\mathrm{d}N_{\rm sub}}{\mathrm{d}m}p_c(c\mid m)$$

**Distribution in concentration** 

[Bullock+01,Sánchez-Conde+14]

 $p_{\text{sub}}^{\text{init}}(m, c, R) \rightarrow p_{\text{sub}}^{\text{late}}(m, c, R)$ 

![](_page_38_Picture_6.jpeg)

![](_page_38_Picture_7.jpeg)

### Minimal halo mass

![](_page_39_Figure_1.jpeg)

[Facchinetti+(in prep.)]

![](_page_39_Figure_3.jpeg)

![](_page_39_Picture_4.jpeg)

![](_page_40_Figure_0.jpeg)

### Self-interaction

![](_page_40_Picture_2.jpeg)

 $p_{\rm sub}^{\rm late}(m,$ 

### New number of subh

$$N_{sub} \to K_t N_{sub}$$

![](_page_41_Picture_5.jpeg)

### [Binney+08, Weinberg94, Gnedin+99, Stref+17]

![](_page_42_Figure_1.jpeg)

### **Global tides**

 $\rm L_{5}~\times$ 

$$\left\langle \frac{\delta E}{m_{\chi}} \right\rangle = \frac{2}{3} \frac{g_{d}^{2}}{V_{z}^{2}} A(\eta) r^{2}$$

$$Clump$$

Galactic disk

**Disk shocking** 

Two sources of tidal stripping are considered and impact on the probability distribution

![](_page_42_Picture_8.jpeg)

$$P_{\rm m}(k,z) = \frac{8\pi^2 k}{25} \left[ \frac{D_1(z)}{\Omega_{\rm m,0} H_0^2} T(k) \right]^2 \mathscr{A}_S \left( \frac{k}{k_0} \right)^2$$
$$S(R) = \sigma_R^2 = \frac{1}{2\pi^2} \int_0^{1/R} P_{\rm m}(k,z=0) k^2 dx$$

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_3.jpeg)

Fraction of mass in halos between M and M+dM  

$$f(M) \left| \frac{\mathrm{d}S}{\mathrm{d}M} \right| \,\mathrm{d}M = \frac{\delta_{\mathrm{c}}}{\sqrt{2\pi}S^{3/2}} \exp\left(-\frac{\delta_{\mathrm{c}}}{2S}\right) \left| \frac{\mathrm{d}S}{\mathrm{d}M} \right| \,\mathrm{d}M$$

![](_page_43_Picture_5.jpeg)

![](_page_43_Picture_6.jpeg)

![](_page_44_Figure_0.jpeg)

### New calibration method

![](_page_44_Figure_2.jpeg)

![](_page_44_Picture_3.jpeg)

# Let us finish part I with a small computation (preliminary)

дт

![](_page_45_Figure_2.jpeg)

![](_page_45_Figure_3.jpeg)

OM

дт

*dm* 

46

Solution  

$$\frac{\partial N_{tot}(m,M)}{\partial m} = \frac{\partial N_1(m,M)}{\partial m} + \int_0^M \frac{\partial N_1(m,m')}{\partial m} dx$$
Change of variables  
Assuming universality  

$$\frac{\partial N_p(m,M)}{\partial m} = \frac{1}{m} g_p \left( -\ln\left(\frac{m}{M}\right) \right)$$
Laplace transform

$$\hat{g}_p(s) \equiv \int_{[0,\infty[} g_p(x)e^{-sx} dx$$

![](_page_46_Figure_2.jpeg)

![](_page_46_Picture_3.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_47_Picture_2.jpeg)

## Merger Trees Monte Carlo results

![](_page_48_Figure_1.jpeg)

![](_page_48_Figure_2.jpeg)

![](_page_48_Picture_3.jpeg)

![](_page_49_Picture_0.jpeg)

# ULB

### UNIVERSITÉ LIBRE DE BRUXELLES

![](_page_49_Picture_3.jpeg)