Tensions in Λ CDM: the amplitude of matter fluctuations

A. Blanchard

Toulouse, December 15th, 2021

1970: baryons only, $\Omega \sim$ 0.2 but $\delta T/T < 10^{-4}...$

1970: baryons only, $\Omega \sim$ 0.2 but $\delta \textit{T}/\textit{T} < 10^{-4}...$

Neutrinos as non-baryonic dark matter.

1970: baryons only, $\Omega \sim$ 0.2 but $\delta \textit{T}/\textit{T} < 10^{-4}...$

Neutrinos as non-baryonic dark matter.

Peebles (1981) CDM $\Rightarrow \delta T/T < 10^{-4}$ and LSS $\xi(r)$ has the right shape...

1970: baryons only, $\Omega \sim$ 0.2 but $\delta \textit{T}/\textit{T} < 10^{-4}...$

Neutrinos as non-baryonic dark matter.

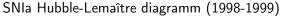
Peebles (1981) CDM $\Rightarrow \delta T/T < 10^{-4}$ and LSS $\xi(r)$ has the right shape...

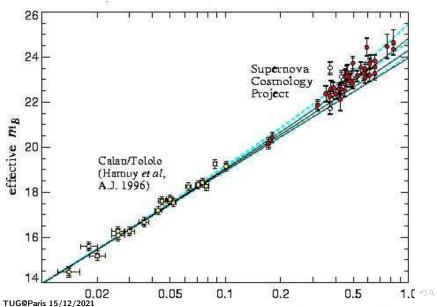
 $\delta \rho/\rho$ and $\delta T/T$ comes from $P_i(k)$ + transfert function T(k)...

1970: baryons only, $\Omega \sim$ 0.2 but $\delta \textit{T}/\textit{T} < 10^{-4}...$

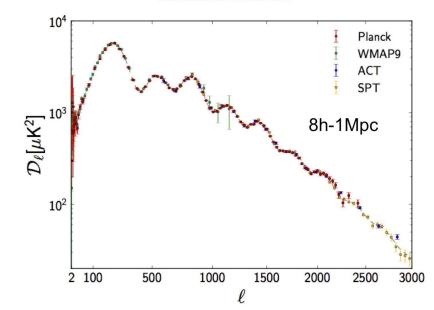
Neutrinos as non-baryonic dark matter.

Peebles (1981) CDM $\Rightarrow \delta T/T < 10^{-4}$ and LSS $\xi(r)$ has the right shape...

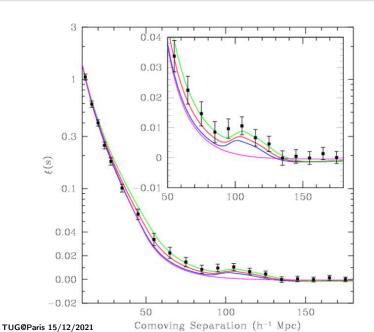

 $\delta \rho / \rho$ and $\delta T / T$ comes from $P_i(k)$ + transfert function T(k)...


Peebles & Ratra (1988) cared about Λ and introduced quintessence...

Evidence for acceleration...


Evidence for acceleration...

Planck results...



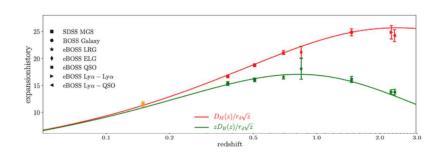
Planck results...

Parameter	TT+low 2 68% limits	TE+low E 68% limits	EE+lowE 68% limits	TT,TE,EE+lowE 68% limits	TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing 68% limits
Ω _b h ²	0.02212 ± 0.0002	0.02249 ± 0.00025	0.0240 ± 0.0012	0.02236 ± 0.00015	0.02237 ± 0.00015	0.02242 ± 0.00014
Ω _c h ²	0.1206 ± 0.0021	0.1177 ± 0.0020	0.1158 ± 0.0046	0.1202 ± 0.0014	0.1200 ± 0.0012	0.11933 ± 0.00091
1009MC	1.04077 ± 0.00047	1.04139 ± 0.00049	1.03999 ± 0.00089	1.04090 ± 0.00031	1.04092 ± 0.00031	1.04101 ± 0.00029
*	0.0522 ± 0.0080	0.0496 ± 0.0085	0.0527 ± 0.0090	0.0544+0.0000	0.0544 ± 0.0073	0.0561 ± 0.0071
In(10 ¹⁰ A _s)	3.040 ± 0.016	3.018+0.020	3.052 ± 0.022	3.045 ± 0.016	3.044 ± 0.014	3.047 ± 0.014
п	0.9626 ± 0.0057	0.967 ± 0.011	0.980 ± 0.015	0.9649 ± 0.0044	0.9649 ± 0.0042	0.9665 + 0.0038
H ₀ [km s ⁻¹ Mpc ⁻¹]	56.88 ± 0.92	68.44 ± 0.91	69.9 ± 2.7	67.27 ± 0.60	67.36 ± 0.54	67.66 ± 0.42
Ω _A	0. 10±0.01	0.699 ± 0.012	0.711+0.033	0.6834 ± 0.0084	0.6847 ± 0.0073	0.6000 = 0.0006
Ω _m	0.321 ± 0.013	0.301 ± 0.012	0.289+0.026	0.3166 ± 0.0084	0.3153 ± 0.0073	0.3111 ± 0.0056
$\Omega_m h^2$	0.1434 ± 0.0020	0.1408 ± 0.0019	0.1404+0.0034	0.1432 ± 0.0013	0.1430 ± 0.0011	0.14240 ± 0.00087
$\Omega_m h^3$	0.09589 ± 0.00046	0.09635 ± 0.00051	0.0981+0.0016	0.09633 ± 0.00029	0.09633 ± 0.00030	0.00635 _ 0.00030
σε	0.8118 ± 0.0089	0.793 ± 0.011	0.796 ± 0.018	0.8120 ± 0.0073	0.8111 ± 0.0060	0.8102 ± 0.0060
$S_8 \equiv \sigma_8 (\Omega_m/0.3)^{0.5}$.	0.840 ± 0.024	0.794 ± 0.024	0.781 +0.052	0.834 ± 0.016	0.832 ± 0.013	0.825 - 3.011
$\sigma_8\Omega_{\mathrm{m}}^{0.25}$	0.611 ± 0.012	0.587 ± 0.012	0.583 ± 0.027	0.6090 ± 0.0081	0.6078 ± 0.0064	0.6051 ± 0.0058
čre	7.50 ± 0.82	7.11+0.91	7.10 ^{±0.87} _{-0.73}	7.68 ± 0.79	7.67 ± 0.73	7.82 ± 0.71
10°A _s	2.092 ± 0.034	2.045 ± 0.041	2.116 ± 0.047	2.101+0.031	2.100 ± 0.030	2.105 ± 0.030
10°Ase-2r	1.884 ± 0.014	1.851 ± 0.018	1.904 ± 0.024	1.884 ± 0.012	1.883 ± 0.011	1.881 ± 0.010
Age [Gyr]	13.830 ± 0.037	13.761 ± 0.038	13.64+0.16	13.800 ± 0.024	13.797 ± 0.023	13.787 ± 0.020
Parameter	TT-	HowE TT, T	E, EE+lowE	TT, TE, EE+lowE+	lensing TT, TE, EE-	+lowE+lensing+BAC
$\sum m_{\nu} [eV]$		$\begin{array}{lll} 56^{+0.044}_{-0.050} & -0.044^{+0.033}_{-0.034} \\ 0.537 & < 0.257 \\ 0^{+0.57}_{-0.53} & 2.92^{+0.36}_{-0.031} \\ 16^{+0.039}_{-0.004} & 0.240^{+0.004}_{-0.005} \end{array}$		-0.011 ^{+0.013} < 0.241 2.89 ^{+0.36} 0.239 ^{+0.004} 0.239 ^{+0.004}		$0007^{+0.0037}_{-0.0037}$ < 0.120 2.99 $^{+0.34}_{-0.024}$ 3.242 $^{+0.023}_{-0.024}$ 0.004 $^{+0.013}$
r _{0.002}		0.102 56 ^{+0.60} 56 ^{-0.48}	2 < 0.107		-0.005 ^{+0.013} < 0.101 -1.57 ^{+0.50}	

LSS results

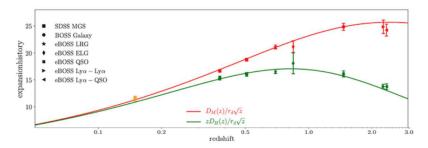
The location of the BAO peak is well measured.

The location of the BAO peak is well measured.

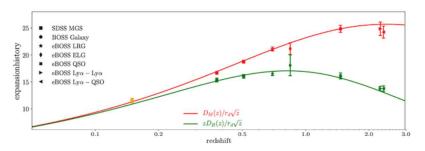

Physical origin simple -> sound horizon:

$$r_{s} = \int_{z_{*}}^{+\infty} \frac{c_{s}(t)dt}{R(t)} \propto \int_{z_{*}}^{+\infty} \frac{c_{s}(z)dz}{\rho(z)}$$
 (1)

The location of the BAO peak is well measured.

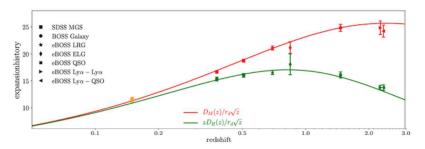

Physical origin simple -> sound horizon:

$$r_{s} = \int_{z_{*}}^{+\infty} \frac{c_{s}(t)dt}{R(t)} \propto \int_{z_{*}}^{+\infty} \frac{c_{s}(z)dz}{\rho(z)}$$
 (1)


The location of the BAO peak is well measured.

Physical origin simple

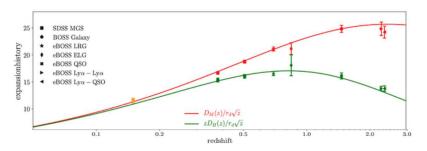
The location of the BAO peak is well measured.


Physical origin simple

CMB(T) + BBN + SNIa

The location of the BAO peak is well measured.

Physical origin simple



$$CMB(T) + BBN + SNIa$$

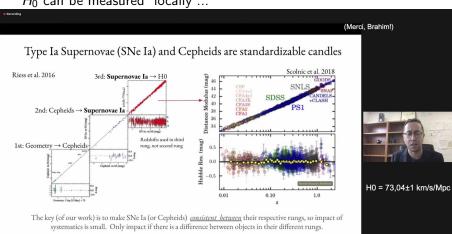
Provides independant measure of H_0 ...

The location of the BAO peak is well measured.

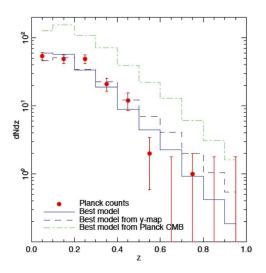
Physical origin simple

$$CMB(T) + BBN + SNIa$$

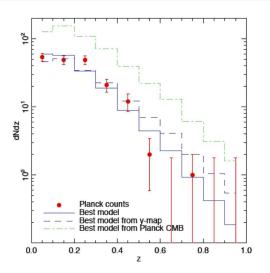
Provides independant measure of $H_{0...}=67.5\pm1~\text{km/s/Mpc}$


Where the tensions come...

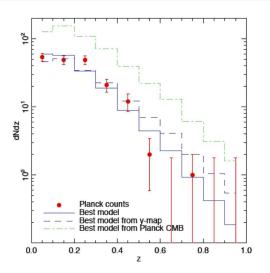
Where the tensions come...


 H_0 can be measured "locally"...

Where the tensions come.


H_0 can be measured "locally"...

The Planck clusters-CMB tension



The Planck clusters-CMB tension

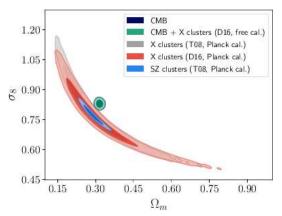
The "tension" corresponds to a deficit by a factor \sim 3.

The Planck clusters-CMB tension

The "tension" corresponds to a deficit by a factor \sim 3. The "tension" is relieved if $\sigma_8\sim$ 0.75.

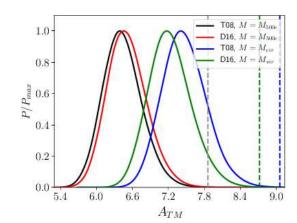
The tensions: Issues

• Pb in the data (selection,...)

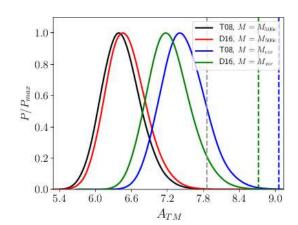

The tensions: Issues

- Pb in the data (selection,...)
- Astrophysical modeling. Calibration, ...

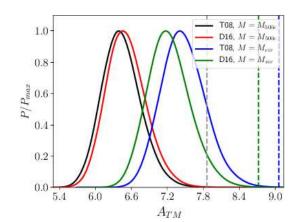
The tensions: Issues


- Pb in the data (selection,...)
- Astrophysical modeling. Calibration, ...
- New physics?

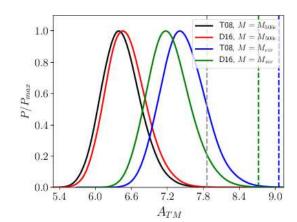
The cluster-CMB tension (in Λ CDM)


No sign of systematics between x-ray clusters ($z\sim$ 0.05) and SZ clusters ($z\sim$ 0.25)

X-ray


Sakr, Ilić & Blanchard (2018)

X-ray


Sakr, Ilić & Blanchard(2018), Blanchard & Ilić (2021)

X-ray

Sakr, Ilić & Blanchard(2018) , Blanchard & Ilić (2021) From $> 6\sigma$...

X-ray

Sakr, Ilić & Blanchard(2018) , Blanchard & Ilić (2021) From $> 6\sigma$...down to 0!

What could be the solution?

Astrophysics

What could be the solution?

Astrophysics

• Calibration issue.

What could be the solution?

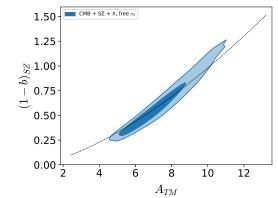
Astrophysics

• Calibration issue.

New physics

What could be the solution?

Astrophysics

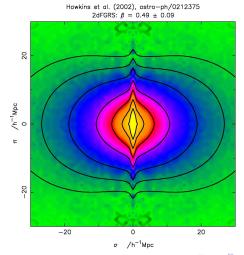

Calibration issue.

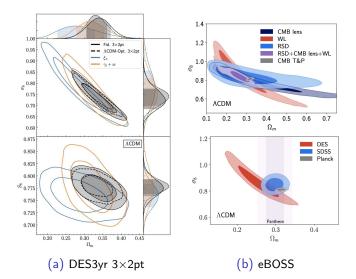
New physics

• Modification in the gravitational sector (MG).

Without Planck calibration on σ_8

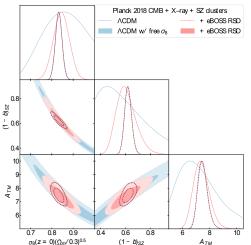
X-ray+SZ+CMB but free σ_8 .




Ilić, Sakr & Blanchard (2019)

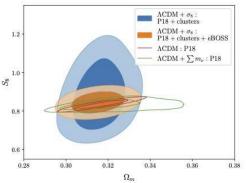
weak lensing

- weak lensing
- RSD (redshift space distorsion) $\to f\sigma_8$


- weak lensing
- RSD (redshift space distorsion) $\to f\sigma_8$

Without Planck calibration on σ_8

Planck+eBOSS+X-ray+SZ Free σ_8 .



Blanchard & Ilić (2021)

Without Planck calibration on σ_8

Planck+eBOSS+X-ray+SZ Free σ_8 .

Blanchard & Ilić (2021)

• ΛCDM is a 40-years old theory that matches remarkably well data.

- ΛCDM is a 40-years old theory that matches remarkably well data.
- Tensions are a serious concern anyway.

- ΛCDM is a 40-years old theory that matches remarkably well data.
- Tensions are a serious concern anyway.
- CMB-cluster counts tension is real for $1-b\sim 0.8$ for ΛCDM .

- ΛCDM is a 40-years old theory that matches remarkably well data.
- Tensions are a serious concern anyway.
- CMB-cluster counts tension is real for $1-b\sim 0.8$ for ΛCDM .
- In all "simple" scenarios $1-b\sim 0.6$ is preferred (Planck: $1-b=0.620\pm 0.029$).

- ΛCDM is a 40-years old theory that matches remarkably well data.
- Tensions are a serious concern anyway.
- CMB-cluster counts tension is real for $1-b\sim 0.8$ for ΛCDM .
- In all "simple" scenarios $1-b\sim 0.6$ is preferred (Planck: $1-b=0.620\pm 0.029$).
- Dynamical from eBOSS $1 b = 0.608^{+0.063}_{-0.089}$

- ΛCDM is a 40-years old theory that matches remarkably well data.
- Tensions are a serious concern anyway.
- CMB-cluster counts tension is real for $1-b\sim 0.8$ for ΛCDM .
- In all "simple" scenarios $1-b\sim 0.6$ is preferred (Planck: $1-b=0.620\pm 0.029$).
- Dynamical from eBOSS $1 b = 0.608^{+0.063}_{-0.089}$
- No tension on σ_8 at low z...

Thank You

