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Université de Paris

14 December 2021, IHP Talk

M.V. Takook Krein space regularization



Introduction
Krein space quantisation in de Sitter space

KSQ and quantum metric fluctuation
Krein regularization method

Conclusion

1 Introduction

2 Krein space quantisation in de Sitter space

3 KSQ and quantum metric fluctuation

4 Krein regularization method

5 Conclusion

M.V. Takook Krein space regularization



Introduction
Krein space quantisation in de Sitter space

KSQ and quantum metric fluctuation
Krein regularization method

Conclusion

Divergences in QFT- negative norm states

▶ The appearance of singularities (IR-UV divergences) in QFT is a
manifestation of the existence of anomalies in this theory.

▶ Negative norm states (negative energy solutions of the field equation)
were first considered by Dirac in 1942 to deal with these anomalies [1]:
“The appearance of divergent integrals with odd n-values in Heisenberg
and Pauli’s form of quantum electrodynamics may be ascribed to the
unsymmetrical treatment of positive- and negative-energy photon states.”

▶ Muto et Inoue in 1950 showed that Dirac’s proposal of indefinite metric
quantization has failed to eliminate all divergences in the hole theory [2].

▶ In 1950, Gupta applied the idea of indefinite metric quantization to the
QED for obtaining a covariant formalism [3].

▶ [1] P.A.M. Dirac, Proc. Roy. Soc. A 180, 1 (1942)

▶ [2] T. Muto and K. Inoue, Progress of Theor. Phys. 5, 1033 (1950)

▶ [3] S.N. Gupta, Proc. Phys. Soc. Sect. A 63, 681 (1950)
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Divergences in QFT- quantum metric fluctuation

▶ The idea of using a gravitational field for solving the divergence problem
of QFT was introduced by Deser in 1957 [1].

▶ Finally, it has been proven that the singularity of the light cone can only
be eliminated by using the quantum metric fluctuation and some
singularities remain. For a review see [2,3].

▶ The negative energy solutions of the field equations are discarded for
avoiding negative probability states, but then the symmetrical properties
of the field solutions are broken as was mentioned by Dirac. This fact
can be easily seen in the quantization of the massless minimally coupled
scalar field in de Sitter space-time.

▶ [1] S. Deser, Rev. Mod. Phys. 29, 417 (1957).

▶ [2] H.L. Ford, Int. J. Theor. Phys. 38, 2941 (1999).

▶ [3] H. Yu, H.L. Ford, Phys. Rev. D 60, 084023 (1999).
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mmc scalar field

▶ The “massless” minimally coupled (mmc) field in de Sitter space obeys

□HΦmmc = 0 = Q0Φmmc

where □H is the Laplace-Beltrami operator on dS space-time

▶ As proved by Allen, the covariant canonical quantization procedure with positive
norm states must fail in this case [1]. The Hilbert space generated by any
complete set of positive norme modes is not de Sitter invariant,

H = {∑
k

αk φk ; ∑
k
|αk |2 < ∞},

where k = {(L, l ,m) ∈ N×N×Z; 0 ≤ l ≤ L,−l ≤ m ≤ l}.

▶ This means that the positive norme states are not closed under the action of the
de Sitter group generators.

▶ [1] B. Allen, Phys. Rev. D 32, 3136 (1985).
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Krein space quantization

▶ The appearance of infrared divergence and breaking of de Sitter invarient:

Wp(x ,x ′) =
H2

8π2 [
1

1−Z
− ln(1−Z )+ ln2+ fAB(η ,η ′)], (1)

where fAB(η ,η ′) is a function of the conformal time [1].

▶ Nevertheless, Gazeau et al obtained a fully covariant quantum field by adopting a
new construction [1]. They added all the modes L <−1 or negative norm states:

▶ The field operator in Krein space quantization is:

φ(x) =
1√
2

[
φp(x)−φn(x)

]
,

where
φp(x) = ∑

k
ak φk (x)+H.C., φn(x) = ∑

k
bk φ

∗(x)+H.C..

The positive mode φp(x) is the scalar field as was used by Allen.

▶ [1] B. Allen, A. Folacci, Phys. Rev. D 35, 3771 (1987).

▶ [2] J.P. Gazeau, J. Renaud, M.V. Takook, Class. Quant. Grav. 17, 1415 (2000).
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Two-point function

▶ Then we have the following comutation relations

ak |0 >= 0, [ak ,a
†
k ′ ] = δkk ′ , bk |0 >= 0, [bk ,b

†
k ′ ] =−δkk ′ , [ak ,b

†
k ′ ] = 0 .

▶ The two-point function is:

W (x ,x ′) =< 0 | φ(x)φ(x ′) | 0 >=
1
2
[Wp(x ,x ′)+Wn(x ,x ′)],

where Wn(x ,x ′) =−W ∗
p (x ,x ′) and Wp(x ,x ′) is the two-point function for the

positive modes Equation (1).

▶ The two-point function in Krein space quantization is [1]:

W (x ,x ′) =
iH2

8π
ε(x0 −x ′0)[δ(1−Z (x ,x ′))−θ(Z (x ,x ′)−1)],

where

ε(x0 −x ′0) =

 1 x0 > x ′0

0 x0 = x ′0

−1 x0 < x ′0.
,

and θ is the Heaviside step function.

▶ [1] M.V. Takook, Mod. Phys. Lett. A 16, 1691 (2001)
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Generalization

▶ Therefore the theory or the two-point function is 1) de Sitter invariant, 2) free of
any infrared divergence, and 3) only the delta function singularity exist and the
other ultraviolet divergences disappear.

▶ Does one can generalize Krein space quantization to the interaction case and flat
space?

▶ While the Krein space quantization is applied in a rigorous mathematical way to
the free field theory, the description of an interaction field theory in terms of the
Krein-space quantization approach remains an open mathematical question [1]. It
was proved that the negative norm states disappear in the one-loop
approximation.

▶ We can use the Krein space quantization including quantum metric fluctuation as
a new method of quantum field regularisation whereas this property holds at all
orders of perturbation theory [2].

▶ [1] T. Garidi, E. Huguet, J. Renaud, J. Phys. A 38, 245 (2005).

▶ [2] M.V. Takook, ”Krein” regularization method, arXiv:2112.05390, submitted for
publication.
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Green function

▶ The singularity in QFT appears due to the coincident points and also the
multiplication of the Feynman Green functions [1]:

Gp
F (x ,x

′) =−i < 0 | T φp(x)φp(x ′) | 0 >=
∫ d4k

(2π)4
e−ik ·(x−x ′)

k2 −m2 + iε

=− 1
8π

δ(σ)+
m2

8π
θ(σ)

J1

(√
2m2σ

)
− iN1

(√
2m2σ

)
√

2m2σ
− im2

4π2 θ(−σ)
K1

(√
−2m2σ

)
√
−2m2σ

,

(2)
where 2σ = ηµν (xµ −x ′µ )(xν −x ′ν ) is the square of geodesic distance.

▶ The time-ordered product propagator in Krein space quantization is [2]:

GT (x ,x ′) =
∫ d4k

(2π)4 e−ik ·(x−x ′)P
1

k2 −m2 =− 1
8π

δ(σ)+
m2

8π
θ(σ)

J1

(√
2m2σ

)
√

2m2σ
,

where P is principal part symbol.

▶ [1] S.A. Fulling, Cambridge Univ. Press (1989) Aspects of Quantum Field Theory
in Curved Space-Time

▶ [2] M.V. Takook, Int. J. Mod. Phys. E 11, 509 (2002)
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Quantum metric fluctuations

▶ The two-point function has only the light-cone singularity.

▶ It was proved that the quantum metric fluctuations can smear out the
singularity of the Green functions on the light cone.

▶ Due to the quantum metric fluctuation a unique and definite light cone
does not exist and then the Dirac delta singularity disappears.

▶ We are primarily interested in the behavior of functions near the
perturbed light cone:

GF (x −x ′ : m = 0) =
−1
8π

δ (σ) =
−1

16π2

∫
∞

−∞

dαeiασ0 eiασ1 .

▶ In the presence of the perturbation hµν , (gµν = ηµν +hµν ) we have
2σ = gµν (xµ −x ′µ )(xν −x ′ν ), where σ = σ0 +σ1 +O(h2). σ1 is the
first-order shift in σ (an operator in the linear quantum gravity).
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KSQ and QMF

▶ By taking the average over the quantum metric fluctuations, the Green function is
replaced by its quantum expectation value [1]:

⟨GF (x−x ′;m=0)⟩= −1
16π2

∫
∞

−∞

dαeiασ0 e− 1
2 α2⟨σ2

1 ⟩ =
−1

16π2

√
π

2⟨σ2
1 ⟩

exp

(
−

σ2
0

2⟨σ2
1 ⟩

)
.

This integral converges only if ⟨σ2
1 ⟩ is greater than zero (⟨σ2

1 ⟩> 0).

▶ Then by considering the QFT in Krein space quantization with quantum metric
fluctuations included, all singular behaviors of the free scalar Green functions are
completely removed:

⟨GT (x −x ′)⟩=− 1
8π

√
π

2⟨σ2
1 ⟩

exp

(
−

σ2
0

2⟨σ2
1 ⟩

)
+

m2

8π
θ(σ0)

J1

(√
2m2σ0

)
√

2m2σ0
. (3)

▶ In the case of σ0 = 0, due to the quantum metric fluctuation, hµν , ⟨σ2
1 ⟩ ̸= 0, and

we obtain:

⟨GT (0)⟩=− 1
8π

√
π

2⟨σ2
1 ⟩

+
m2

8π

1
2
.

It should be noted that ⟨σ2
1 ⟩ is related to the density of gravitons [1].

▶ [1] H. Yu, H.L. Ford, Phys. Rev. D 60, 084023 (1999)
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Regularization method

▶ The singularity in QFT appears due to the coincident points and also the
multiplication of the Feynman Green functions:

Gp
F (xi ,xi ) ,

[
Gp

F (xi ,xj )
]n

, · · · .

▶ Krein regularization method can be completed in two simple steps:

▶ (a) Replacing the Feynman Green functions (2) with the time-ordered
product propagator (3).

▶ (b) Using the same renormalization conditions as the usual method.

▶ From step (a), it is clear that the theory is completely finite and there is
no appearance of any singularity since the two-point function is finite and
free of any divergences.

▶ The other step (b) guarantees that the physical result does not change.
The effect of the negative norm states and quantum metric fluctuations
for the internal lines is the elimination of the singularity.
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Renormalization

▶ For the λφ4 theory, the classical Lagrangian density and S-matrix
operator are given respectively by:

Lc(φ) =
1
2

∂
µ

φ∂µ φ − 1
2

m2
φ

2 − λ

4!
φ

4, S = Tei λ

4!
∫

φ4(x)d4x .

▶ The effective Lagrangian or “quantum Lagrangian” can be established
through the loop correction to the classical Lagrangian:

Lq = Lc + h̄L1 + h̄2L2 + · · · .

▶ The renormalization conditions are imposed through:

λµ =−
δ 4Lq

δφ4

∣∣∣∣∣
φ=µ

, m2
µ =−

δ 2Lq

δφ2

∣∣∣∣∣
φ=µ

, 1 =
δ

δ∂ ν φ

δLq

δ∂ν φ

∣∣∣∣
φ=µ

. (4)

The parameter µ is the energy scale according to which the mass and
the coupling constant are measured.
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Beta function

▶ λµ is a function of a parameter µ which is the energy scale of the
interaction [1]:

λµ = λ − λ 2

(8π)2

[
6 ln

µ2

m2 +19+12 ln2

]
+O(λ 3).

▶ For calculating the running coupling constant a scale of energy must be
chosen as φ = µ = e−t . Then the running coupling constant is defined
as λ̄ (t ,λ ).

▶ The Beta function can be calculated as well [1]:

β =
d λ̄ (t ,λ )

dt
=

3λ 2

16π2 ,

which is the same as in the usual results in the one-loop approximation.

▶ [1] A. Refaei and M.V. Takook, Mod. Phys. Lett. A 26, 31 (2011).
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Conclusion

▶ Krein space quantization including quantum metric fluctuation results to
the disappearence of all types of divergences in the physical quantities
at all orders of perturbation theory.

▶ The infrared divergence is non-existent in either quantization of the
scalar field Φmmc, or the linear quantum gravity. In this construction the
two-point functions are all analytic.

▶ One not need to change the Einstein field equations in absorbing the
singularity of the scalar effective action in curved space, contrarily to
usual previous methods, where the higher derivatives of metric appear.

▶ The problem of non-renormalizability of linear quantum gravity can be
solved and then the linear quantum gravity is renormalizable in KSQ.

▶ We now have all of the building blocks needed to build a unitary
super-gravity in de Sitter space-time.
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Thank you
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