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= General relativity is a diffeomorphism-invariant gauge theory

» Gauge is more than redundancy, it controls the coupling of subsystems

- Certain extra features appear on boundaries: charges, algebras, degrees of freedom
= This contains important information for the classical theory

= |t also lays the foundations for the quantum theory, and reveals new insights

Quantum gravity at the corner

+ Proposal based on local holography (as opposed to AdS and celestial holographies)

= Assign Hilbert spaces, states, irreps., to local subregions based on symmetry algebras
« Why and how?
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Q = Noether charge

- Non-trivial information about a 3d region X is encoded on its 2d boundary S
- Many subtleties

- the charges are not necessarily finite, nor integrable, nor conserved
- depends on B and what happens there (boundary conditions, radiation flux, ...)
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- Related to memory observables and IR regime of gauge theories [Strominger, .. .|
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» What is missing? Gauge-invariant observables crossing the boundary
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X

« To describe subregions we should extend the Hilbert space to Hew = Hy @ Hs
» Hs should carry a representation of the local corner symmetry group
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» The general structure is

G= Gkinematical X Gdynamical
= (DIff(S)lXH) X Gdynamical
» Noether's theorem provides a representation of these symmetries on the phase space

= The subgroup H depends on the formulation of gravity!

Corner terms

= For any formulation F of gravity, the symplectic potential 8 is the sum of
- a universal bulk piece, that of canonical ADM, which gives Diff(S)
- a corner term, which adds extra charges and components to H

OF = Oapm + dOBr/apm + SLg/apm

= Different formulations have different symmetry groups!

= This leads to potentially inequivalent quantizations
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- Potential
Oen = /qn"VY(8g,y — guvgcxﬁégaﬁ)

=/q(Kg"” —K")dg,v + d(v/qs.dn*) —25(,/q K)
= 0apm + dBer/aom — 28(1/q K)

« Boundary Lagrangians (here the GHY term) can carry a corner symplectic structure

[Ciambelli, Compére, Freidel, MG, Harlow, Jai-akson, Leigh, Marolf, Pranzetti, Speziale,
Wald, Wieland, Wu, .

]
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GEilr_:ematical = DIff(S) KSL(Z R)l
GpPM .. = Diff(S)

kinematical —

Going further
- If G plays a role in quantizing gravity, what is its largest extension?
- What do different formulations reveal about gravity?
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« When vy # 0 the metric on S satisfies an SL(2, R) algebra with Casimir € = —(y\/q)2
« This implies that the area of S is quantized

\fq(o) = ‘Y71 eg’lanck Z m5(2)(0 - Gi)

- Foundational result of loop quantum gravity [Ashtekar, Rovelli, Smolin, Lewandowski]
derived here in the continuum, without extra inputs

» The free parameter v is also related to dual charges, i.e. potentially measurable
[De Paoli, Godazgar, Godazgar, Kol, Speziale, Oblak, Oliveri, Perry, Pope, Porrati, Seraj, .. .]
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Corner symmetries

Corner symmetries

Formulation of 4d gravity | Diff(S) | SL(2,R), | SL(2,R); | SU(2) | Boosts

Canonical ADM v
Einstein—Hilbert v v
Einstein—Cartan v v
Einstein—Cartan—y (LQG) v v v v
3d Einstein—Cartan Diff(S) x Diff(S) or Diff(S)xVect(S)., when A =0
77—
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Loop quantum gravity redux

= Based on a particular finite-dimensional truncation and representation of Gyinematical
» The basic variables are

- fluxes (electric fields) encoding the non-commutative boundary metric qqp

- holonomies h encoding the gluing of neighboring boundary data

» This grounds LQG into the framework of local holography [Bianchi, Dittrich, Freidel,
MG, Goeller, Girelli, Han, Livine, Perez, Pranzetti, Riello, Speziale, Tsimiklis, Wieland, .. .]
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Thanks for your attention!

11/11



	Motivations
	Symmetries of gravity
	Local subsystems
	Corner symmetries
	Loop quantum gravity at the corner
	Perspectives

