Quantum gravity at the corner

Marc Geiller ENS de Lyon

Workshop "Théorie, Univers et Gravitation" IHP, December 13th-15th 2021

Quantum gravity

• What are the fundamental degrees of freedom, and where do they live?

- What are the fundamental degrees of freedom, and where do they live?
- We can make educated guesses, or follow guidance from the classical theory

- What are the fundamental degrees of freedom, and where do they live?
- We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries

- What are the fundamental degrees of freedom, and where do they live?
- · We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries, but what are the symmetries of gravity?

Quantum gravity

- What are the fundamental degrees of freedom, and where do they live?
- We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries, but what are the symmetries of gravity?

Quantum gravity

- What are the fundamental degrees of freedom, and where do they live?
- · We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries, but what are the symmetries of gravity?

Gauge theories in bounded regions

• General relativity is a diffeomorphism-invariant gauge theory

Quantum gravity

- What are the fundamental degrees of freedom, and where do they live?
- · We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries, but what are the symmetries of gravity?

- General relativity is a diffeomorphism-invariant gauge theory
- Gauge is more than redundancy, it controls the coupling of subsystems

Quantum gravity

- What are the fundamental degrees of freedom, and where do they live?
- We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries, but what are the symmetries of gravity?

- General relativity is a diffeomorphism-invariant gauge theory
- Gauge is more than redundancy, it controls the coupling of subsystems
- Certain extra features appear on boundaries: charges, algebras, degrees of freedom

Quantum gravity

- What are the fundamental degrees of freedom, and where do they live?
- · We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries, but what are the symmetries of gravity?

- General relativity is a diffeomorphism-invariant gauge theory
- Gauge is more than redundancy, it controls the coupling of subsystems
- Certain extra features appear on boundaries: charges, algebras, degrees of freedom
- This contains important information for the classical theory

Quantum gravity

- What are the fundamental degrees of freedom, and where do they live?
- · We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries, but what are the symmetries of gravity?

- General relativity is a diffeomorphism-invariant gauge theory
- Gauge is more than redundancy, it controls the coupling of subsystems
- Certain extra features appear on boundaries: charges, algebras, degrees of freedom
- This contains important information for the classical theory
- It also lays the foundations for the quantum theory, and reveals new insights

Quantum gravity

- What are the fundamental degrees of freedom, and where do they live?
- · We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries, but what are the symmetries of gravity?

Gauge theories in bounded regions

- General relativity is a diffeomorphism-invariant gauge theory
- Gauge is more than redundancy, it controls the coupling of subsystems
- Certain extra features appear on boundaries: charges, algebras, degrees of freedom
- This contains important information for the classical theory
- It also lays the foundations for the quantum theory, and reveals new insights

Quantum gravity at the corner

Quantum gravity

- What are the fundamental degrees of freedom, and where do they live?
- We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries, but what are the symmetries of gravity?

Gauge theories in bounded regions

- General relativity is a diffeomorphism-invariant gauge theory
- Gauge is more than redundancy, it controls the coupling of subsystems
- Certain extra features appear on boundaries: charges, algebras, degrees of freedom
- This contains important information for the classical theory
- It also lays the foundations for the quantum theory, and reveals new insights

Quantum gravity at the corner

Proposal based on local holography (as opposed to AdS and celestial holographies)

Quantum gravity

- What are the fundamental degrees of freedom, and where do they live?
- We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries, but what are the symmetries of gravity?

Gauge theories in bounded regions

- General relativity is a diffeomorphism-invariant gauge theory
- Gauge is more than redundancy, it controls the coupling of subsystems
- Certain extra features appear on boundaries: charges, algebras, degrees of freedom
- This contains important information for the classical theory
- It also lays the foundations for the quantum theory, and reveals new insights

Quantum gravity at the corner

- Proposal based on local holography (as opposed to AdS and celestial holographies)
- Assign Hilbert spaces, states, irreps., to local subregions based on symmetry algebras

Quantum gravity

- What are the fundamental degrees of freedom, and where do they live?
- We can make educated guesses, or follow guidance from the classical theory
- A powerful concept is that of symmetries, but what are the symmetries of gravity?

Gauge theories in bounded regions

- General relativity is a diffeomorphism-invariant gauge theory
- Gauge is more than redundancy, it controls the coupling of subsystems
- Certain extra features appear on boundaries: charges, algebras, degrees of freedom
- This contains important information for the classical theory
- It also lays the foundations for the quantum theory, and reveals new insights

Quantum gravity at the corner

- Proposal based on local holography (as opposed to AdS and celestial holographies)
- Assign Hilbert spaces, states, irreps., to local subregions based on symmetry algebras
- Why and how?

Modern version of Noether's theorems

Modern version of Noether's theorems

• Covariant phase space formalism, due to Anderson, Ashtekar, Barnich, Brandt, Compère, Crnkovic, Henneaux, Iyer, Kijowski, Lee, Wald, Witten, Zoupas, . . .

Modern version of Noether's theorems

- Covariant phase space formalism, due to Anderson, Ashtekar, Barnich, Brandt, Compère, Crnkovic, Henneaux, Iyer, Kijowski, Lee, Wald, Witten, Zoupas, . . .
 Extended recently by Paraich, Chandracekaran, Compère, Figuresi, Flanagan, Ereidel, MC
- Extended recently by Barnich, Chandrasekaran, Compère, Fiorucci, Flanagan, Freidel, MG, Harlow, Oliveri, Pranzetti, Riello, Ruzziconi, Speranza, Speziale, Troessaert, Wu, Zwikel, . . .

Modern version of Noether's theorems

- Covariant phase space formalism, due to Anderson, Ashtekar, Barnich, Brandt,
 Compère, Crnkovic, Henneaux, Iyer, Kijowski, Lee, Wald, Witten, Zoupas, ...
 Extended recently by Barnich, Chandrasekaran, Compère, Figuracia, Elabagan, Freidel, MG
- Extended recently by Barnich, Chandrasekaran, Compère, Fiorucci, Flanagan, Freidel, MG, Harlow, Oliveri, Pranzetti, Riello, Ruzziconi, Speranza, Speziale, Troessaert, Wu, Zwikel, . . .
- \bullet Basic ingredient is the symplectic potential $\theta,$ which is the boundary term in

$$\delta L = (Euler-Lagrange) \,\delta \varphi + d\theta$$

Modern version of Noether's theorems

- Covariant phase space formalism, due to Anderson, Ashtekar, Barnich, Brandt,
 Compère, Crnkovic, Henneaux, Iyer, Kijowski, Lee, Wald, Witten, Zoupas, ...
 Extended recently by Barnich, Chandrasekaran, Compère, Figuracia, Elabagan, Freidel, MG
- Extended recently by Barnich, Chandrasekaran, Compère, Fiorucci, Flanagan, Freidel, MG, Harlow, Oliveri, Pranzetti, Riello, Ruzziconi, Speranza, Speziale, Troessaert, Wu, Zwikel, . . .
- \bullet Basic ingredient is the symplectic potential $\theta,$ which is the boundary term in

$$\delta L = (Euler-Lagrange) \, \delta \varphi + d\theta$$

Modern version of Noether's theorems

- Covariant phase space formalism, due to Anderson, Ashtekar, Barnich, Brandt, Compère, Crnkovic, Henneaux, Iyer, Kijowski, Lee, Wald, Witten, Zoupas, ...
 Extended recently by Barnich, Chandrasekaran, Compère, Fiorucci, Flanagan, Freidel, MG.
- Extended recently by Barnich, Chandrasekaran, Compère, Fiorucci, Flanagan, Freidel, MG, Harlow, Oliveri, Pranzetti, Riello, Ruzziconi, Speranza, Speziale, Troessaert, Wu, Zwikel, ...
- \bullet Basic ingredient is the symplectic potential $\theta,$ which is the boundary term in

$$\delta L = (Euler-Lagrange) \, \delta \varphi + d\theta$$

Modern version of Noether's theorems

- Covariant phase space formalism, due to Anderson, Ashtekar, Barnich, Brandt,
 Compère, Crnkovic, Henneaux, Iyer, Kijowski, Lee, Wald, Witten, Zoupas, ...
 Extended recently by Barnich, Chandrasekaran, Compère, Fiorusci, Flanagan, Freidel, MG
- Extended recently by Barnich, Chandrasekaran, Compère, Fiorucci, Flanagan, Freidel, MG, Harlow, Oliveri, Pranzetti, Riello, Ruzziconi, Speranza, Speziale, Troessaert, Wu, Zwikel, ...
- \bullet Basic ingredient is the symplectic potential $\theta,$ which is the boundary term in

$$\delta L = (Euler-Lagrange) \, \delta \varphi + d\theta$$

• It enables to ask questions like: What is the generator of a diffeomorphism along ξ ?

• Non-trivial information about a 3d region Σ is encoded on its 2d boundary S

Modern version of Noether's theorems

- Covariant phase space formalism, due to Anderson, Ashtekar, Barnich, Brandt,
 Compère, Crnkovic, Henneaux, Iyer, Kijowski, Lee, Wald, Witten, Zoupas, ...
 Extended recently by Barnich, Chandrasekaran, Compère, Fiorusci, Flanagan, Freidel, MG
- Extended recently by Barnich, Chandrasekaran, Compère, Fiorucci, Flanagan, Freidel, MG, Harlow, Oliveri, Pranzetti, Riello, Ruzziconi, Speranza, Speziale, Troessaert, Wu, Zwikel, ...
- \bullet Basic ingredient is the symplectic potential $\theta,$ which is the boundary term in

$$\delta L = (Euler-Lagrange) \,\delta \varphi + d\theta$$

- Non-trivial information about a 3d region Σ is encoded on its 2d boundary S
- Many subtleties

Modern version of Noether's theorems

- Covariant phase space formalism, due to Anderson, Ashtekar, Barnich, Brandt,
 Compère, Crnkovic, Henneaux, Iyer, Kijowski, Lee, Wald, Witten, Zoupas, ...
 Extended recently by Barnich, Chandrasekaran, Compère, Fiorusci, Flanagan, Freidel, MG
- Extended recently by Barnich, Chandrasekaran, Compère, Fiorucci, Flanagan, Freidel, MG, Harlow, Oliveri, Pranzetti, Riello, Ruzziconi, Speranza, Speziale, Troessaert, Wu, Zwikel, ...
- \bullet Basic ingredient is the symplectic potential $\theta,$ which is the boundary term in

$$\delta L = (Euler-Lagrange) \,\delta \varphi + d\theta$$

- Non-trivial information about a 3d region Σ is encoded on its 2d boundary S
- Many subtleties
 - the charges are not necessarily finite, nor integrable, nor conserved

Modern version of Noether's theorems

- Covariant phase space formalism, due to Anderson, Ashtekar, Barnich, Brandt, Compère, Crnkovic, Henneaux, Iyer, Kijowski, Lee, Wald, Witten, Zoupas, . . .
- Extended recently by Barnich, Chandrasekaran, Compère, Fiorucci, Flanagan, Freidel, MG, Harlow, Oliveri, Pranzetti, Riello, Ruzziconi, Speranza, Speziale, Troessaert, Wu, Zwikel, ...
- \bullet Basic ingredient is the symplectic potential $\theta,$ which is the boundary term in

$$\delta L = (Euler-Lagrange) \, \delta \varphi + d\theta$$

- Non-trivial information about a 3d region Σ is encoded on its 2d boundary S
- · Many subtleties
 - the charges are not necessarily finite, nor integrable, nor conserved
 - depends on B and what happens there (boundary conditions, radiation flux, ...)

Algebraic structures

Algebraic structures

• When H is integrable, we get a projective representation

$$\left\{H[\xi],H[\zeta]\right\} = H[\xi,\zeta] + C[\xi,\zeta]$$

Algebraic structures

• When H is integrable, we get a projective representation

$$\{H[\xi], H[\zeta]\} = H[\xi, \zeta] + C[\xi, \zeta]$$

When H is not integrable we get

$$\begin{split} \delta_{\xi} H[\zeta] &= H[\xi,\zeta] + \delta_{\xi} F[\zeta] \\ \text{evolution} &= \text{rotation} + \text{dissipation} \end{split}$$

Algebraic structures

• When H is integrable, we get a projective representation

$$\{H[\xi], H[\zeta]\} = H[\xi, \zeta] + C[\xi, \zeta]$$

When H is not integrable we get

$$\begin{split} \delta_{\xi} H[\zeta] &= H[\xi,\zeta] + \delta_{\xi} F[\zeta] \\ \text{evolution} &= \text{rotation} + \text{dissipation} \end{split}$$

• These algebras are **infinite-dimensional**, and can be associated to any boundary

Algebraic structures

• When H is integrable, we get a projective representation

$$\{H[\xi], H[\zeta]\} = H[\xi, \zeta] + C[\xi, \zeta]$$

When H is not integrable we get

$$\begin{split} \delta_{\xi} H[\zeta] &= H[\xi,\zeta] + \delta_{\xi} F[\zeta] \\ \text{evolution} &= \text{rotation} + \text{dissipation} \end{split}$$

- These algebras are infinite-dimensional, and can be associated to any boundary
- True for any gauge theory, e.g. U(1) Chern–Simons ("less is more")

Algebraic structures

• When H is integrable, we get a projective representation

$$\{H[\xi], H[\zeta]\} = H[\xi, \zeta] + C[\xi, \zeta]$$

When H is not integrable we get

$$\begin{split} \delta_{\xi} H[\zeta] &= H[\xi,\zeta] + \delta_{\xi} F[\zeta] \\ \text{evolution} &= \text{rotation} + \text{dissipation} \end{split}$$

- These algebras are infinite-dimensional, and can be associated to any boundary
- True for any gauge theory, e.g. U(1) Chern–Simons ("less is more")

Algebraic structures

• When H is integrable, we get a projective representation

$$\{H[\xi], H[\zeta]\} = H[\xi, \zeta] + C[\xi, \zeta]$$

When H is not integrable we get

$$\delta_{\xi} H[\zeta] = H[\xi, \zeta] + \delta_{\xi} F[\zeta]$$
evolution = rotation + dissipation

- These algebras are infinite-dimensional, and can be associated to any boundary
- True for any gauge theory, e.g. U(1) Chern–Simons ("less is more")

Asymptotic symmetries

A lot is known about symmetries of asymptotic boundaries

Algebraic structures

• When H is integrable, we get a projective representation

$$\{H[\xi], H[\zeta]\} = H[\xi, \zeta] + C[\xi, \zeta]$$

When H is not integrable we get

$$\begin{split} \delta_{\xi} H[\zeta] &= H[\xi,\zeta] + \delta_{\xi} F[\zeta] \\ \text{evolution} &= \text{rotation} + \text{dissipation} \end{split}$$

- These algebras are infinite-dimensional, and can be associated to any boundary
- True for any gauge theory, e.g. U(1) Chern–Simons ("less is more")

- A lot is known about symmetries of asymptotic boundaries
 - asymptotically AdS₃ and double Virasoro symmetry (AdS/CFT)

Algebraic structures

• When H is integrable, we get a projective representation

$$\{H[\xi], H[\zeta]\} = H[\xi, \zeta] + C[\xi, \zeta]$$

When H is not integrable we get

$$\delta_{\xi} H[\zeta] = H[\xi, \zeta] + \delta_{\xi} F[\zeta]$$
evolution = rotation + dissipation

- These algebras are infinite-dimensional, and can be associated to any boundary
- True for any gauge theory, e.g. U(1) Chern–Simons ("less is more")

- A lot is known about symmetries of asymptotic boundaries
 - asymptotically AdS₃ and double Virasoro symmetry (AdS/CFT)
 - asymptotically flat spacetimes and BMS symmetry (celestial/null holography)

Algebraic structures

• When H is integrable, we get a projective representation

$$\{H[\xi], H[\zeta]\} = H[\xi, \zeta] + C[\xi, \zeta]$$

When H is not integrable we get

$$\delta_{\xi}H[\zeta] = H[\xi, \zeta] + \delta_{\xi}F[\zeta]$$

evolution = rotation + dissipation

- These algebras are infinite-dimensional, and can be associated to any boundary
- True for any gauge theory, e.g. U(1) Chern–Simons ("less is more")

- A lot is known about symmetries of asymptotic boundaries
 - asymptotically AdS₃ and double Virasoro symmetry (AdS/CFT)
 - asymptotically flat spacetimes and BMS symmetry (celestial/null holography)
- Extensions of BMS₄ and BMS₃ (e.g. including Weyl) have been proposed by Barnich, Campiglia, Compère, Fiorucci, Flanagan, Freidel, MG, Goeller, Laddha, Nichols, Ruzziconi, Troessaert, Oliveri, Peraza, Prabhu, Pranzetti, Speziale, Zwikel, ...

Symmetries of gravity

Algebraic structures

• When H is integrable, we get a projective representation

$$\{H[\xi], H[\zeta]\} = H[\xi, \zeta] + C[\xi, \zeta]$$

• When H is not integrable we get

$$\delta_{\xi} H[\zeta] = H[\xi, \zeta] + \delta_{\xi} F[\zeta]$$

evolution = rotation + dissipation

- These algebras are infinite-dimensional, and can be associated to any boundary
- True for any gauge theory, e.g. U(1) Chern-Simons ("less is more")

Asymptotic symmetries

- A lot is known about symmetries of asymptotic boundaries
 - asymptotically AdS₃ and double Virasoro symmetry (AdS/CFT)
 - asymptotically flat spacetimes and BMS symmetry (celestial/null holography)
- Extensions of BMS₄ and BMS₃ (e.g. including Weyl) have been proposed by Barnich, Campiglia, Compère, Fiorucci, Flanagan, Freidel, MG, Goeller, Laddha, Nichols, Ruzziconi, Troessaert, Oliveri, Peraza, Prabhu, Pranzetti, Speziale, Zwikel, . . .
- Related to memory observables and IR regime of gauge theories [Strominger, ...]

Entanglement of subregions

Entanglement of subregions

- Consider a spatial region Σ and its complement $\bar{\Sigma}$

Entanglement of subregions

- Consider a spatial region Σ and its complement $\bar{\Sigma}$
- In non-relativistic QFT we have

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle = 0$$

Entanglement of subregions

- Consider a spatial region Σ and its complement $\bar{\Sigma}$
- In non-relativistic QFT we have

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle = 0$$

· In relativistic QFT we have vacuum entanglement, and

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle \neq 0$$

Entanglement of subregions

- Consider a spatial region Σ and its complement $\bar{\Sigma}$
- · In non-relativistic QFT we have

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle = 0$$

In relativistic QFT we have vacuum entanglement, and

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle \neq 0$$

 In gauge theory the Hilbert spaces don't even factorize [Buividovich, Casini, Das, Datta, Donnelly, Ghosh, Huerta, Ishibashi, Matsuura, Polikarpov, Ryu, Soni, Trivedi, Wall, Wen, ...]

$$\mathcal{H}\supset\mathcal{H}_{\Sigma}\otimes\mathcal{H}_{\bar{\Sigma}}$$

Entanglement of subregions

- Consider a spatial region Σ and its complement $\bar{\Sigma}$
- In non-relativistic QFT we have

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle = 0$$

In relativistic QFT we have vacuum entanglement, and

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle \neq 0$$

 In gauge theory the Hilbert spaces don't even factorize [Buividovich, Casini, Das, Datta, Donnelly, Ghosh, Huerta, Ishibashi, Matsuura, Polikarpov, Ryu, Soni, Trivedi, Wall, Wen, ...]

$$\mathcal{H}\supset\mathcal{H}_{\Sigma}\otimes\mathcal{H}_{\bar{\Sigma}}$$

· What is missing?

Entanglement of subregions

- Consider a spatial region Σ and its complement $\bar{\Sigma}$
- In non-relativistic QFT we have

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle = 0$$

In relativistic QFT we have vacuum entanglement, and

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle \neq 0$$

 In gauge theory the Hilbert spaces don't even factorize [Buividovich, Casini, Das, Datta, Donnelly, Ghosh, Huerta, Ishibashi, Matsuura, Polikarpov, Ryu, Soni, Trivedi, Wall, Wen, ...]

$$\mathcal{H}\supset\mathcal{H}_{\Sigma}\otimes\mathcal{H}_{\bar{\Sigma}}$$

• What is missing? Gauge-invariant observables crossing the boundary

Entanglement of subregions

- Consider a spatial region Σ and its complement $\bar{\Sigma}$
- In non-relativistic QFT we have

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle = 0$$

In relativistic QFT we have vacuum entanglement, and

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle \neq 0$$

 In gauge theory the Hilbert spaces don't even factorize [Buividovich, Casini, Das, Datta, Donnelly, Ghosh, Huerta, Ishibashi, Matsuura, Polikarpov, Ryu, Soni, Trivedi, Wall, Wen, ...]

$$\mathcal{H}\supset\mathcal{H}_{\Sigma}\otimes\mathcal{H}_{\bar{\Sigma}}$$

What is missing? Gauge-invariant observables crossing the boundary

• To describe subregions we should extend the Hilbert space to $\mathcal{H}_{ext}=\mathcal{H}_\Sigma\otimes\mathcal{H}_S$

Entanglement of subregions

- Consider a spatial region Σ and its complement $\bar{\Sigma}$
- In non-relativistic QFT we have

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle = 0$$

In relativistic QFT we have vacuum entanglement, and

$$\mathcal{H} = \mathcal{H}_{\Sigma} \otimes \mathcal{H}_{\bar{\Sigma}} \qquad \langle \Psi_{\Sigma} | \Psi_{\bar{\Sigma}} \rangle \neq 0$$

• In gauge theory the Hilbert spaces don't even factorize [Buividovich, Casini, Das, Datta, Donnelly, Ghosh, Huerta, Ishibashi, Matsuura, Polikarpov, Ryu, Soni, Trivedi, Wall, Wen, . . .]

$$\mathcal{H}\supset\mathcal{H}_{\Sigma}\otimes\mathcal{H}_{\bar{5}}$$

What is missing? Gauge-invariant observables crossing the boundary

- To describe subregions we should extend the Hilbert space to $\mathcal{H}_{ext}=\mathcal{H}_{\Sigma}\otimes\mathcal{H}_{S}$
- \mathcal{H}_S should carry a representation of the local corner symmetry group

[Agarwal, Blommaert, Carlip, Carrozza, MG, Gomes, Hoehn, Jai-akson, Karabali, Mertens, Nair, Pretko, Riello, Verschelde, . . .]

[Agarwal, Blommaert, Carlip, Carrozza, MG, Gomes, Hoehn, Jai-akson, Karabali, Mertens, Nair, Pretko, Riello, Verschelde, . . .]

[Agarwal, Blommaert, Carlip, Carrozza, MG, Gomes, Hoehn, Jai-akson, Karabali, Mertens, Nair, Pretko, Riello, Verschelde, . . .]

Corner symmetry group of gravity

Corner symmetry group of gravity

• The general structure is

$$\begin{split} G = & G_{\text{kinematical}} & \ltimes G_{\text{dynamical}} \\ = & \left(\text{Diff}(S) {\ltimes} H \right) \ltimes G_{\text{dynamical}} \end{split}$$

Corner symmetry group of gravity

The general structure is

$$\begin{split} G = & G_{\text{kinematical}} & \ltimes G_{\text{dynamical}} \\ = & \left(\text{Diff}(S) \! \ltimes \! H \right) \ltimes G_{\text{dynamical}} \end{split}$$

• Noether's theorem provides a representation of these symmetries on the phase space

Corner symmetry group of gravity

The general structure is

$$\begin{split} G &= G_{\text{kinematical}} &\ltimes G_{\text{dynamical}} \\ &= \left(\mathsf{Diff}(S) \! \ltimes \! H \right) \ltimes G_{\text{dynamical}} \end{split}$$

- · Noether's theorem provides a representation of these symmetries on the phase space
- The subgroup H depends on the formulation of gravity!

Corner symmetry group of gravity

The general structure is

$$\begin{split} G &= G_{\text{kinematical}} &\ltimes G_{\text{dynamical}} \\ &= \left(\mathsf{Diff}(S) \! \ltimes \! H \right) \ltimes G_{\text{dynamical}} \end{split}$$

- Noether's theorem provides a representation of these symmetries on the phase space
- The subgroup H depends on the formulation of gravity!

Corner symmetry group of gravity

The general structure is

$$\begin{split} G = & G_{\text{kinematical}} & \ltimes G_{\text{dynamical}} \\ = & \left(\mathsf{Diff}(S) \! \ltimes \! H \right) \ltimes G_{\text{dynamical}} \end{split}$$

- Noether's theorem provides a representation of these symmetries on the phase space
- The subgroup H depends on the formulation of gravity!

Corner terms

 \bullet For any formulation F of gravity, the symplectic potential θ is the sum of

Corner symmetry group of gravity

The general structure is

$$\begin{split} G &= G_{\text{kinematical}} & \ltimes G_{\text{dynamical}} \\ &= \left(\mathsf{Diff}(S) \! \ltimes \! H \right) \ltimes G_{\text{dynamical}} \end{split}$$

- Noether's theorem provides a representation of these symmetries on the phase space
- The subgroup H depends on the formulation of gravity!

- \bullet For any formulation F of gravity, the symplectic potential θ is the sum of
 - a universal bulk piece, that of canonical ADM, which gives Diff(S)

Corner symmetry group of gravity

The general structure is

$$\begin{split} G &= G_{\text{kinematical}} &\ltimes G_{\text{dynamical}} \\ &= \left(\mathsf{Diff}(S) \! \ltimes \! H \right) \ltimes G_{\text{dynamical}} \end{split}$$

- Noether's theorem provides a representation of these symmetries on the phase space
- The subgroup H depends on the formulation of gravity!

- \bullet For any formulation F of gravity, the symplectic potential θ is the sum of
 - a universal bulk piece, that of canonical ADM, which gives Diff(S)
 - a corner term, which adds extra charges and components to $\ensuremath{\mathsf{H}}$

Corner symmetry group of gravity

The general structure is

$$\begin{split} G = & G_{\text{kinematical}} & \ltimes G_{\text{dynamical}} \\ = & \left(\mathsf{Diff}(S) \! \ltimes \! H \right) \ltimes G_{\text{dynamical}} \end{split}$$

- Noether's theorem provides a representation of these symmetries on the phase space
- The subgroup H depends on the formulation of gravity!

- \bullet For any formulation F of gravity, the symplectic potential θ is the sum of
 - a universal bulk piece, that of canonical ADM, which gives Diff(S)
 - a corner term, which adds extra charges and components to H

$$\theta_{\text{F}} = \theta_{\text{ADM}} + d\theta_{\text{F/ADM}} + \delta L_{\text{F/ADM}}$$

Corner symmetry group of gravity

The general structure is

$$\begin{split} G &= G_{\text{kinematical}} &\ltimes G_{\text{dynamical}} \\ &= \left(\mathsf{Diff}(S) \! \ltimes \! H \right) \ltimes G_{\text{dynamical}} \end{split}$$

- Noether's theorem provides a representation of these symmetries on the phase space
- The subgroup H depends on the formulation of gravity!

Corner terms

- \bullet For any formulation F of gravity, the symplectic potential θ is the sum of
 - a universal bulk piece, that of canonical ADM, which gives Diff(S)
 - a corner term, which adds extra charges and components to H

$$\theta_{\text{F}} = \theta_{\text{ADM}} + \frac{\text{d}\theta_{\text{F/ADM}}}{\text{d}\theta_{\text{F/ADM}}} + \delta L_{\text{F/ADM}}$$

Different formulations have different symmetry groups!

Corner symmetry group of gravity

The general structure is

$$\begin{aligned} G &= G_{\text{kinematical}} &\ltimes G_{\text{dynamical}} \\ &= \left(\mathsf{Diff}(S) \! \ltimes \! H \right) \ltimes G_{\text{dynamical}} \end{aligned}$$

- Noether's theorem provides a representation of these symmetries on the phase space
- The subgroup H depends on the formulation of gravity!

- ullet For any formulation F of gravity, the symplectic potential ullet is the sum of
 - a universal bulk piece, that of canonical ADM, which gives Diff(S)
 - a corner term, which adds extra charges and components to H

$$\theta_{\text{F}} = \theta_{\text{ADM}} + \text{d}\theta_{\text{F/ADM}} + \delta L_{\text{F/ADM}}$$

- · Different formulations have different symmetry groups!
- This leads to potentially inequivalent quantizations

Example of metric gravity

Example of metric gravity

• Einstein-Hilbert Lagrangian $L_{\text{EH}} = \sqrt{g}\,R$

Example of metric gravity

- Einstein-Hilbert Lagrangian $L_{EH} = \sqrt{g} R$
- Potential

$$\begin{split} \theta_{\text{EH}} &= \sqrt{q} \, n^{\mu} \nabla^{\nu} (\delta g_{\mu\nu} - g_{\mu\nu} g^{\alpha\beta} \delta g_{\alpha\beta}) \\ &= \sqrt{q} \, (K g^{\mu\nu} - K^{\mu\nu}) \delta g_{\mu\nu} + \frac{\text{d}(\sqrt{q} \, s_{\mu} \delta n^{\mu})}{2} - 2 \delta (\sqrt{q} \, K) \\ &= \theta_{\text{ADM}} + \frac{\text{d}\theta_{\text{EH/ADM}}}{2} - 2 \delta (\sqrt{q} \, K) \end{split}$$

Example of metric gravity

- Einstein-Hilbert Lagrangian $L_{EH} = \sqrt{g} R$
- Potential

$$\begin{split} \theta_{\text{EH}} &= \sqrt{q} \, n^{\mu} \nabla^{\nu} (\delta g_{\mu\nu} - g_{\mu\nu} g^{\alpha\beta} \delta g_{\alpha\beta}) \\ &= \sqrt{q} \, (K g^{\mu\nu} - K^{\mu\nu}) \delta g_{\mu\nu} + \text{d}(\sqrt{q} \, s_{\mu} \delta n^{\mu}) - 2 \delta(\sqrt{q} \, K) \\ &= \theta_{\text{ADM}} + \text{d}\theta_{\text{EH/ADM}} - 2 \delta(\sqrt{q} \, K) \end{split}$$

• Boundary Lagrangians (here the GHY term) can carry a corner symplectic structure [Ciambelli, Compère, Freidel, MG, Harlow, Jai-akson, Leigh, Marolf, Pranzetti, Speziale, Wald, Wieland, Wu, ...]

Example of metric gravity

- Einstein-Hilbert Lagrangian $L_{EH} = \sqrt{g} R$
- Potential

$$\begin{split} \theta_{\text{EH}} &= \sqrt{q} \, n^{\mu} \nabla^{\nu} (\delta g_{\mu\nu} - g_{\mu\nu} g^{\alpha\beta} \delta g_{\alpha\beta}) \\ &= \sqrt{q} \, (K g^{\mu\nu} - K^{\mu\nu}) \delta g_{\mu\nu} + \text{d}(\sqrt{q} \, s_{\mu} \delta n^{\mu}) - 2 \delta(\sqrt{q} \, K) \\ &= \theta_{\text{ADM}} + \text{d}\theta_{\text{EH/ADM}} - 2 \delta(\sqrt{q} \, K) \end{split}$$

- Boundary Lagrangians (here the GHY term) can carry a corner symplectic structure [Ciambelli, Compère, Freidel, MG, Harlow, Jai-akson, Leigh, Marolf, Pranzetti, Speziale, Wald, Wieland, Wu, ...]
- · Boundary terms do not necessarily implement canonical transformations

Example of metric gravity

- Einstein-Hilbert Lagrangian $L_{EH} = \sqrt{g} R$
- Potential

$$\begin{split} \theta_{\text{EH}} &= \sqrt{q} \, n^{\mu} \nabla^{\nu} (\delta g_{\mu\nu} - g_{\mu\nu} g^{\alpha\beta} \delta g_{\alpha\beta}) \\ &= \sqrt{q} \, (K g^{\mu\nu} - K^{\mu\nu}) \delta g_{\mu\nu} + \text{d}(\sqrt{q} \, s_{\mu} \delta n^{\mu}) - 2 \delta(\sqrt{q} \, K) \\ &= \theta_{\text{ADM}} + \text{d}\theta_{\text{EH/ADM}} - 2 \delta(\sqrt{q} \, K) \end{split}$$

- Boundary Lagrangians (here the GHY term) can carry a corner symplectic structure [Ciambelli, Compère, Freidel, MG, Harlow, Jai-akson, Leigh, Marolf, Pranzetti, Speziale, Wald, Wieland, Wu, . . .]
- Boundary terms do **not** necessarily implement canonical transformations
- · Here we find that in ADM part of the symmetries are represented trivially

$$\begin{split} G_{kinematical}^{EH} &= \mathsf{Diff}(S) \ltimes \mathsf{SL}(2,\mathbb{R})_{\perp} \\ G_{kinematical}^{ADM} &= \mathsf{Diff}(S) \end{split}$$

Example of metric gravity

- Einstein-Hilbert Lagrangian $L_{EH} = \sqrt{g} R$
- Potential

$$\begin{split} \theta_{\text{EH}} &= \sqrt{q} \, n^{\mu} \nabla^{\nu} (\delta g_{\mu\nu} - g_{\mu\nu} g^{\alpha\beta} \delta g_{\alpha\beta}) \\ &= \sqrt{q} \, (K g^{\mu\nu} - K^{\mu\nu}) \delta g_{\mu\nu} + \text{d}(\sqrt{q} \, s_{\mu} \delta n^{\mu}) - 2 \delta(\sqrt{q} \, K) \\ &= \theta_{\text{ADM}} + \text{d}\theta_{\text{EH/ADM}} - 2 \delta(\sqrt{q} \, K) \end{split}$$

- Boundary Lagrangians (here the GHY term) can carry a corner symplectic structure [Ciambelli, Compère, Freidel, MG, Harlow, Jai-akson, Leigh, Marolf, Pranzetti, Speziale, Wald, Wieland, Wu, ...]
- Boundary terms do not necessarily implement canonical transformations
- · Here we find that in ADM part of the symmetries are represented trivially

$$\begin{split} G_{kinematical}^{EH} &= \mathsf{Diff}(S) \ltimes \mathsf{SL}(2,\mathbb{R})_{\perp} \\ G_{kinematical}^{ADM} &= \mathsf{Diff}(S) \end{split}$$

Going further

Example of metric gravity

- Einstein-Hilbert Lagrangian $L_{EH} = \sqrt{g} R$
- Potential

$$\begin{split} \theta_{\text{EH}} &= \sqrt{q} \, n^{\mu} \nabla^{\nu} (\delta g_{\mu\nu} - g_{\mu\nu} g^{\alpha\beta} \delta g_{\alpha\beta}) \\ &= \sqrt{q} \, (K g^{\mu\nu} - K^{\mu\nu}) \delta g_{\mu\nu} + \text{d}(\sqrt{q} \, s_{\mu} \delta n^{\mu}) - 2 \delta(\sqrt{q} \, K) \\ &= \theta_{\text{ADM}} + \text{d}\theta_{\text{EH/ADM}} - 2 \delta(\sqrt{q} \, K) \end{split}$$

- Boundary Lagrangians (here the GHY term) can carry a corner symplectic structure [Ciambelli, Compère, Freidel, MG, Harlow, Jai-akson, Leigh, Marolf, Pranzetti, Speziale, Wald, Wieland, Wu, ...]
- Boundary terms do not necessarily implement canonical transformations
- Here we find that in ADM part of the symmetries are represented trivially

$$\begin{split} G_{kinematical}^{EH} &= \mathsf{Diff}(S) \! \ltimes \! \mathsf{SL}(2,\mathbb{R})_{\perp} \\ G_{kinematical}^{ADM} &= \mathsf{Diff}(S) \end{split}$$

Going further

• If G plays a role in quantizing gravity, what is its largest extension?

Example of metric gravity

- Einstein-Hilbert Lagrangian $L_{EH} = \sqrt{g} R$
- Potential

$$\begin{split} \theta_{\text{EH}} &= \sqrt{q} \, n^{\mu} \nabla^{\nu} (\delta g_{\mu\nu} - g_{\mu\nu} g^{\alpha\beta} \delta g_{\alpha\beta}) \\ &= \sqrt{q} \, (K g^{\mu\nu} - K^{\mu\nu}) \delta g_{\mu\nu} + \text{d}(\sqrt{q} \, s_{\mu} \delta n^{\mu}) - 2 \delta(\sqrt{q} \, K) \\ &= \theta_{\text{ADM}} + \text{d}\theta_{\text{EH/ADM}} - 2 \delta(\sqrt{q} \, K) \end{split}$$

- Boundary Lagrangians (here the GHY term) can carry a corner symplectic structure [Ciambelli, Compère, Freidel, MG, Harlow, Jai-akson, Leigh, Marolf, Pranzetti, Speziale, Wald, Wieland, Wu, . . .]
- Boundary terms do **not** necessarily implement canonical transformations
- · Here we find that in ADM part of the symmetries are represented trivially

$$\begin{split} G_{kinematical}^{EH} &= \mathsf{Diff}(S) \! \ltimes \! \mathsf{SL}(2,\mathbb{R})_{\perp} \\ G_{kinematical}^{ADM} &= \mathsf{Diff}(S) \end{split}$$

Going further

- If G plays a role in quantizing gravity, what is its largest extension?
- · What do different formulations reveal about gravity?

Example of tetrad gravity [Freidel, MG, Pranzetti]

Example of tetrad gravity [Freidel, MG, Pranzetti]

• Let us consider a Lagrangian in connection and tetrad variables

$$L = (* + \frac{\gamma}{\gamma}) E \wedge F \qquad \qquad E = e \wedge e$$

Example of tetrad gravity [Freidel, MG, Pranzetti]

• Let us consider a Lagrangian in connection and tetrad variables

$$L = (* + \gamma)E \wedge F \qquad \qquad E = e \wedge e$$

• γ is the Barbero–Immirzi parameter, which multiplies a topological term (like θ -YM)

Example of tetrad gravity [Freidel, MG, Pranzetti]

• Let us consider a Lagrangian in connection and tetrad variables

$$L = (* + \gamma)E \wedge F \qquad \qquad E = e \wedge e$$

- γ is the Barbero–Immirzi parameter, which multiplies a topological term (like θ -YM)
- The potential differs from that of canonical gravity by a corner term

$$\theta = E \wedge \delta K + d(E\delta n + \gamma \delta e \wedge e)$$

Example of tetrad gravity [Freidel, MG, Pranzetti]

• Let us consider a Lagrangian in connection and tetrad variables

$$L = (* + \gamma)E \wedge F \qquad E = e \wedge e$$

- γ is the Barbero–Immirzi parameter, which multiplies a topological term (like θ -YM)
- The potential differs from that of canonical gravity by a corner term

$$\theta = E \wedge \delta K + d(E\delta n + \gamma \delta e \wedge e)$$

New charges are activated classically, and new quantum numbers at the quantum level

Example of tetrad gravity [Freidel, MG, Pranzetti]

Let us consider a Lagrangian in connection and tetrad variables

$$L = (* + \gamma)E \wedge F$$
 $E = e \wedge e$

- γ is the Barbero–Immirzi parameter, which multiplies a topological term (like θ -YM)
- The potential differs from that of canonical gravity by a corner term

$$\theta = E \wedge \delta K + d(E\delta n + \gamma \delta e \wedge e)$$

- New charges are activated classically, and new quantum numbers at the quantum level
- The symmetry group is

$$G_{kinematical} = Diff(S) \ltimes (SL(2, \mathbb{C}) \times SL(2, \mathbb{R})_{\parallel})$$

Example of tetrad gravity [Freidel, MG, Pranzetti]

Let us consider a Lagrangian in connection and tetrad variables

$$L = (* + \gamma)E \wedge F$$
 $E = e \wedge e$

- γ is the Barbero–Immirzi parameter, which multiplies a topological term (like θ -YM)
- The potential differs from that of canonical gravity by a corner term

$$\theta = E \wedge \delta K + d(E\delta n + \gamma \delta e \wedge e)$$

- New charges are activated classically, and new quantum numbers at the quantum level
- The symmetry group is

$$G_{kinematical} = Diff(S) \ltimes (SL(2, \mathbb{C}) \times SL(2, \mathbb{R})_{\parallel})$$

• When $\gamma \neq 0$ the metric on S satisfies an $SL(2,\mathbb{R})$ algebra with Casimir $\mathfrak{C} = -\big(\gamma \sqrt{q}\big)^2$

Example of tetrad gravity [Freidel, MG, Pranzetti]

Let us consider a Lagrangian in connection and tetrad variables

$$L = (* + \gamma)E \wedge F \qquad E = e \wedge e$$

- γ is the Barbero–Immirzi parameter, which multiplies a topological term (like θ -YM)
- The potential differs from that of canonical gravity by a corner term

$$\theta = \mathsf{E} \wedge \delta \mathsf{K} + \mathsf{d} (\mathsf{E} \delta \mathsf{n} + \gamma \delta \mathsf{e} \wedge \mathsf{e})$$

- New charges are activated classically, and new quantum numbers at the quantum level
- The symmetry group is

$$G_{\text{kinematical}} = \mathsf{Diff}(S) \ltimes \left(\mathsf{SL}(2,\mathbb{C}) \times \mathsf{SL}(2,\mathbb{R})_{\parallel}\right)$$

- When $\gamma \neq 0$ the metric on S satisfies an $SL(2,\mathbb{R})$ algebra with Casimir $\mathfrak{C} = -\big(\gamma \sqrt{q}\big)^2$
- This implies that the area of S is quantized

$$\sqrt{q}(\sigma) = \gamma^{-1}\,\ell_{\text{Planck}}^2 \sum_i \sqrt{j_i(j_i+1)}\,\delta^{(2)}(\sigma-\sigma_i)$$

Example of tetrad gravity [Freidel, MG, Pranzetti]

Let us consider a Lagrangian in connection and tetrad variables

$$L = (* + \gamma)E \wedge F \qquad E = e \wedge e$$

- γ is the Barbero–Immirzi parameter, which multiplies a topological term (like θ -YM)
- The potential differs from that of canonical gravity by a corner term

$$\theta = \mathsf{E} \wedge \delta \mathsf{K} + \mathsf{d} (\mathsf{E} \delta \mathsf{n} + \gamma \delta \mathsf{e} \wedge \mathsf{e})$$

- New charges are activated classically, and new quantum numbers at the quantum level
- The symmetry group is

$$G_{kinematical} = \mathsf{Diff}(S) \ltimes \left(\mathsf{SL}(2,\mathbb{C}) \times \mathsf{SL}(2,\mathbb{R})_{\parallel}\right)$$

- When $\gamma \neq 0$ the metric on S satisfies an $SL(2,\mathbb{R})$ algebra with Casimir $\mathfrak{C} = -\big(\gamma \sqrt{q}\big)^2$
- This implies that the area of S is quantized

$$\sqrt{q}(\sigma) = \gamma^{-1}\,\ell_{\text{Planck}}^2 \sum_{i} \sqrt{j_i(j_i+1)}\,\delta^{(2)}(\sigma-\sigma_i)$$

• Foundational result of loop quantum gravity [Ashtekar, Rovelli, Smolin, Lewandowski] derived here in the continuum, without extra inputs

Example of tetrad gravity [Freidel, MG, Pranzetti]

Let us consider a Lagrangian in connection and tetrad variables

$$L = (* + \gamma)E \wedge F \qquad E = e \wedge e$$

- γ is the Barbero-Immirzi parameter, which multiplies a topological term (like θ -YM)
- The potential differs from that of canonical gravity by a corner term

$$\theta = E \wedge \delta K + d(E\delta n + \gamma \delta e \wedge e)$$

- New charges are activated classically, and new quantum numbers at the quantum level
- The symmetry group is

• When $\gamma \neq 0$ the metric on S satisfies an $SL(2,\mathbb{R})$ algebra with Casimir $\mathfrak{C} = -\big(\gamma \sqrt{\mathfrak{q}}\big)^2$ This implies that the area of S is quantized

 $G_{\text{kinematical}} = \text{Diff}(S) \ltimes (SL(2, \mathbb{C}) \times SL(2, \mathbb{R})_{\parallel})$

$$\sqrt{\mathsf{q}}(\sigma) \! = \gamma^{-1} \, \ell_{\mathsf{Planck}}^2 \sum_{:} \sqrt{\mathfrak{j}_{\mathfrak{i}}(\mathfrak{j}_{\mathfrak{i}} + 1)} \, \delta^{(2)}(\sigma - \sigma_{\mathfrak{i}})$$

- Foundational result of loop quantum gravity [Ashtekar, Rovelli, Smolin, Lewandowski] derived here in the continuum, without extra inputs
- The free parameter γ is also related to **dual charges**, i.e. potentially measurable [De Paoli, Godazgar, Godazgar, Kol, Speziale, Oblak, Oliveri, Perry, Pope, Porrati, Seraj, ...]

	Corner symmetries				
Formulation of 4d gravity	Diff(S)	$SL(2,\mathbb{R})_{\perp}$	SL(2, ℝ)	SU(2)	Boosts
Canonical ADM	√				
Einstein-Hilbert	√	✓			
Einstein-Cartan	√				√
Einstein-Cartan-γ (LQG)	√		✓	✓	✓
3d Einstein–Cartan	$Diff(S) \ltimes Diff(S) \text{ or } Diff(S) \ltimes Vect(S)_{ab} \text{ when } \Lambda = 0$				

Loop quantum gravity redux

- Based on a particular finite-dimensional truncation and representation of $\boldsymbol{G}_{\text{kinematical}}$

- ullet Based on a particular finite-dimensional truncation and representation of $G_{\mbox{\scriptsize kinematical}}$
- The basic variables are

- ullet Based on a particular finite-dimensional truncation and representation of $G_{kinematical}$
- · The basic variables are
 - fluxes (electric fields) encoding the non-commutative boundary metric $\mathfrak{q}_{\mathfrak{a}\mathfrak{b}}$

- ullet Based on a particular finite-dimensional truncation and representation of $G_{kinematical}$
- · The basic variables are
 - fluxes (electric fields) encoding the non-commutative boundary metric $q_{\alpha b}$
 - holonomies h encoding the gluing of neighboring boundary data

- ullet Based on a particular finite-dimensional truncation and representation of $G_{\mbox{\scriptsize kinematical}}$
- · The basic variables are
 - fluxes (electric fields) encoding the non-commutative boundary metric $q_{\alpha b}$
 - holonomies h encoding the gluing of neighboring boundary data
- This grounds LQG into the framework of local holography [Bianchi, Dittrich, Freidel, MG, Goeller, Girelli, Han, Livine, Perez, Pranzetti, Riello, Speziale, Tsimiklis, Wieland, . . .]

Lessons

• In gravity (gauge theory), physical information is encoded on corners

- In gravity (gauge theory), physical information is encoded on corners
- This is gravity revealing its holographic nature through Noether's theorems

- In gravity (gauge theory), physical information is encoded on corners
- This is gravity revealing its holographic nature through Noether's theorems
- The least we can do is try to identify these boundary symmetry groups

- In gravity (gauge theory), physical information is encoded on corners
- This is gravity revealing its holographic nature through Noether's theorems
- The least we can do is try to identify these boundary symmetry groups
- They contain formulation-dependent infos. about classical and quantum gravity

Lessons

- In gravity (gauge theory), physical information is encoded on corners
- This is gravity revealing its holographic nature through Noether's theorems
- The least we can do is try to identify these boundary symmetry groups
- They contain formulation-dependent infos. about classical and quantum gravity

Prospects

Lessons

- In gravity (gauge theory), physical information is encoded on corners
- This is gravity revealing its holographic nature through Noether's theorems
- The least we can do is try to identify these boundary symmetry groups
- They contain formulation-dependent infos. about classical and quantum gravity

Prospects

Quantize and represent the boundary symmetry groups

Lessons

- In gravity (gauge theory), physical information is encoded on corners
- This is gravity revealing its holographic nature through Noether's theorems
- The least we can do is try to identify these boundary symmetry groups
- They contain formulation-dependent infos. about classical and quantum gravity

Prospects

- Quantize and represent the boundary symmetry groups
- Understand how strongly symmetries constrain the dynamics (charge conservation)

Lessons

- In gravity (gauge theory), physical information is encoded on corners
- This is gravity revealing its holographic nature through Noether's theorems
- The least we can do is try to identify these boundary symmetry groups
- They contain formulation-dependent infos. about classical and quantum gravity

Prospects

- Quantize and represent the boundary symmetry groups
- Understand how strongly symmetries constrain the dynamics (charge conservation)
- · Inclusion of matter

Lessons

- In gravity (gauge theory), physical information is encoded on corners
- This is gravity revealing its holographic nature through Noether's theorems
- The least we can do is try to identify these boundary symmetry groups
- They contain formulation-dependent infos. about classical and quantum gravity

Prospects

- Quantize and represent the boundary symmetry groups
- Understand how strongly symmetries constrain the dynamics (charge conservation)
- Inclusion of matter

Thanks for your attention!