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Introduction

- Modified gravity theories: predictions different from GR
- Important test: quasinormal modes of black holes
- Up to now, theoretical computations are rare

- Present a systematic algorithm to extract physical information and perform
numerical analysis



Modified gravity: scalar-tensor
theories



Necessity for modified gravity Importance of black hols

Motivation for beyond-GR theories

Heuristic approach
- Design new tests of GR beyond a Singularities (Big Bang, black holes)
null hypothesis check Cosmic expansion
- EFT of some high energy theory

= Important to look for extensions of GR
= Need to develop tests of these modified theories



Necessity for modified gravity

Scalar-tensor gravity

Consider a specific class: quadratic Horndeski theory

S8y $1 = [ dix (FCOR + P(X) + QX)TX +2F'(X) (¢,.,¢" — (O9)?)) ,
¢y = Vy¢, X= gbﬂ)”
- New scalar degree of freedom

- Non-minimal coupling between scalar and metric

- More involved dynamics even in vaccuum



dified gravi Importance of black holes

Tests of modified gravity

Where to look for traces of modified gravity?

Large scale structures Cosmology
New solutions - Different growth - Primordial GWs
Different dynamics rate - CMB
- Screenings
smaller larger

- Each theory is tuned for a specific energy scale

- We focus on modifications of gravity in the black hole regime



Importance of black holes

Quasinormal modes and the ringdown

Ringdown of a merger: excited BH emits GW at precise frequencies, the
quasinormal modes
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Figure 1: Ringdown phase of a binary black hole merger (L. London 2017)



Importance of black holes

Measuring quasinormal modes

- Discrete set (similar to plucked string)
- Complex frequencies: energy loss due to emission towards infinity
- Depend a lot of the theory — very good test
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Figure 2: Principle of ringdown fit" and application to GW1509142.

' Kokkotas, K. D. and Schmidt, B. G. 1999.
2 Ghosh, A., Brito, R, and Buonanno, A. arXiv: 2104.01906.



or modified gravi Importance of black holes

New black holes in DHOST: BCL solution?

Parameters of Horndeski:

FX) =fo+AVX PX) = -pX, QX) =0

Metric sector: RN with imaginary charge Scalar sector
ds? = —A(r) d + —— dr? + 12 d0 p=p@r), W) = P
g‘“) P " VA
I
A<r>_1———§ P g — f1
2 2fop17in X(r) = P2

3 Babichev, E.,, Charmousis, C., and Lehébel, A. arXiv: 1702.01938.



Quasinormal modes of a
Schwarzschild black hole



Perturbation setup

Separating the degrees of freedom

1. Start with the Einstein-Hilbert action

Sigu] = [ d*x =g R
2. Static spherically symmetric background

. = diag(=A(r), 1/A(r), 7%, 12sin* 0), A(r) =1—ry/r

3. Perturb the metric: g,,, = &, + h,,, and linearise Einstein’s equations
= obtain 10 equations
4. Decompose the components of k,,,, over spherical harmonics

5. Separate by parity: polar (even) and axial (odd) modes
6. Gauge fixing via by, — hy,, +V,6, +V, ¢,

- Polar modes: 7 equations for K, Hy, Hy, H,

- Axial modes: 3 equations for kg, hy

7. Fourier transform: f(t,r) = exp(—iwt)f (r)



Perturbation setup Schrédinger equation

Reducing the number of equations

Two systems with more equations than variables — overconstrained?

Axial modes Polar modes
- 2 first-order equations - 4 first-order equations
- 1second-order equation - 2 second-order equations

- 1algebraic equation

Interestingly, each system is equivalent to a system*:
dXyial prolar
% = Maxial(r)xaxial and dr = Mpolar(r)Xpolar-

“ Regge, T. and Wheeler, J. A. 1957; Zerilli, F. J. 1970.



Perturbation setup

Final system of equations

Axial modes

Xaxial =1 (hO hl/w)

pqy =i o
2 2iIN—= —iw
My =| r
axial = | r2 _ T
(r—rs)>? r(r=rs)

(set2(A +1) =Ll + 1))

)

Polar modes

Xpolar = (K Hl/w)

1 ay1(r)+bqq (rw? alz(r)+b12(r)a)2
M — r(r—rg) r2
pOIa‘r 31/ _|_ 2/\1/ ﬂ21<r)+b21 (T’)LLJZ 1122(7‘)+b22(1’)w2
° 2(r—r,)2 r(r=r)

= goal to achieve: simplify these complicated differential systems



Perturbation setup Schrodinger equations

Effect of a change of variables

Changing the functions in X a change of basis for M!

Change of variables

dX 8

— =MmrX, X=PrX

dr
X o dP
— =M@X, M=P'MP-pP1—
dr dr

Main idea: find a change of variables that will put the equation into a better form



Perturbation setup Schrodinger equations

Usual change of variables: propagation equation

Canonical form for M:

- 0 1
M = >
(V(r)—‘j—2 o)

Physical interpretation

XE) = Xl 7 dZXO (Uz > dr
- - = > + —2 — V(T’) XO = 0, = A(T’)
X) = (V(r) —w?/c®)X, drs c dr,

with potential V

r.: “tortoise coordinate”, r =r;, — r, = —ccandr = +o0 — r, = o0



Perturbation setup Schrodinger equations

Interpretation of the equations

Axial case:
0.6
1—r/r r 05 L
P = s , c=1
axal (irz/(r —75) O) 04l
3 0.3
At the horizon and infinity: T
Xo(t,7) o emieottEr) "
0.0 )
—5 0 5 10 15
= Propagation of

Physical interpretation
- Free propagation at ¢ = 1 near the horizon and infinity
- Scattering by the potential V

- At infinity: recover gravitational waves in Minkowski



Perturbation setup Schrodinger equations

Computation of the modes

Quasinormal modes

T T T T T
Vaxial

- Waves ingoing at the horizon:
e—z’w(t+r*)

- Waves outgoing at infinity: e=i«w#=.)

- 2 boundary conditions + 2" order system — conditions on w
- “Eigenvalue problem”: find values of parameter such that solutions exist
- Very different from plucked string: wave propagation at each boundary!



Quasinormal modes in modified
gravity




Comparison with the GR case

Summary: computation of QNMs in GR

@ @ ® ® ® ®

Linearized Gauge First-order Schrodinger Numerical
Einstein's — choice — Background —  system — equations — computa-
eqs tion

(1) Many different theories

Major difficulties: @ Many different backgrounds
@ Highly non-trivial change of variables!



Comparison with the GR case QNM

New challenges in modified gravity

New backgrounds

New theories
BCL solution: more involved metric

Scalar-tensor: new scalar degree of
freedom that function

Schrodinger equation

In general, very hard to solve:
dp

0 1
w? =P 'MP-P 1 —
V(i) —% 0 dr
c2

= need for a systematic approach that does not rely on specific simplifications



Comparison with the GR case

Example: polar BCL perturbations

2 2
r r f
Ap=1-Tm gl e e
v fop1in p1r2VA(r)
1,.u u i(14A) v
roo2rA 7 wr? r3 -
w2 A Twoy TwS 2 UV _dwr iQ+MU A 3U G
— | A2 A 2rA T 4442 T 2r5A A 2r3wA A 2r3A  2rtA
M(r) iwyv 2iw  iwll U v
r2A r r3A r3A r2A
1, u 2 _ 0¥ e i0+dy 1 U ouv
r o 2r3A r2 2r6A A wr? r 2r3A  215A

U() =10(r+ 5, V) =12+8r,

S(r) = r? + 28r(2r,, — 1) + 2E%72,.



ymparison with the GR case QNMs from the first order system

First-order system and boundary conditions

Main idea

Skip step @: get boundary conditions and perform numerical computations
from the first-order system

Steps to perform
- Find asymptotic behaviour at the horizon and infinity

- |dentify ingoing and outgoing modes

- Use a numerical method that does not require Schrodinger equations

Naively:

dx 7 s P+l
E = MX, M(T’) = Mpr + O(r ) = X ~ exp Mplm XC



)mpariso the GR case  QNMs from the first order system

Failure of naive approach

Axial Schwarzschild Polar Schwarzschild
M(r) = (?i _ig)z) +0 (%) M(r) = (l% 8) 2+ O(r)
X ~ (e";” e—?wf) X, X s (Z“X—}g (1)) X,

We the e*@’ behaviour all the time!

This is because of a nilpotent leading order in the polar case

A more advanced mathematical treatment is needed



ympariso he GR case QNMs from the first order system

Mathematical results

Solution: behaviour studied in®, mathematical algorithm from®
Mathematical algorithm
Main idea: diagonalize M order by order using

- dp
M=prPMp-p1—
dr

= important result: diagonalization is !
M = M,r? + M, 777! + ...

General result: M =Dyl + Dy_qr17 + ...
X ~ ePMyPaF ()X,

> Wasow, W. 1965.
¢ Balser, W. 1999.



QNMs from the first order system

Example for the BCL solution: polar perturbations at infinity

., r,
gl 4= £ o r
( 7 ) g§ (7,) = aieizwrrilwrm ,

& 1'((’(1 + ,I—”)
M- _\/E(U(l + rﬂ) 53.0(1/) = b+ei\/§(ﬂ7’riw7‘m/\/§,
2r ac T
rm
\/E(U(l + 57)
H—/
Gravitational Scalar

- The modes are decoupled locally

- The gravitational mode propagates at ¢ = 1 at infinity

- One can identify one ingoing and one outgoing gravitational mode
- The scalar mode does not propagate at infinity



QNMs from the first order system

Example for the BCL solution: polar perturbations at the horizon

. .
, g (r) =c (r—r, )W,
~ [((7/1.(] 1 n -

12 1 |r=r, 52*(1*):(dlln(r—r+)+d2)‘/r—r+,

1/2 5;+(r):d1,/r—r+,

- The modes are again decoupled locally

- The gravitational mode propagates at ¢ = ¢y at the horizon
- One can identify one ingoing and one outgoing gravitational mode

- The scalar mode does not propagate at the horizon



QNMs from the first order system

“Recipe” for the computation of quasinormal modes

@

@ ® ® ® ®

Linearized Gauge First-order Numerical
Einstein's — choice — Background —  system — Asymptotical - computa-

eqs

behaviour tion

- Generic algorithm that should work for any modified gravity theory
- Go around the technical difficulties of steps (1) and @
- Caveat: we do not get the full decoupled equations for the modes =

impossible to get a potential

- Asymptotical behaviour is enough to obtain boundary conditions for

numerical resolution



Conclusion

- Computing quasinormal modes can be very difficult in modified theories of
gravity

- We propose a new technique: use the first-order system instead of looking
for Schrodinger-like equations

- A mathematical algorithm enables us to decouple the modes asymptotically,
which allows us to find their physical behaviour and obtain boundary
conditions

- This approach is systematical and theory-agnostic: it can be applied to any
theory of gravity and any background



Thank you for your attention!
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