What to do with structure@horizon?

Iosif Bena IPhT, CEA Université Paris-Saclay

BPS Multipoles (w/ Daniel Mayerson)

- Short paper - 2006.10750, accepted in PRL
- Long paper-2007.09152

Almost-BPS multipoles (w/ Ibou Bah, Pierre Heidmann, Yixuan Li, and Daniel Mayerson)

- 2104.10686

Tidal Love Numbers (w/ Pierre Heidmann and Daniel Mayerson)

- 22XX. $X X X X X$

JOHN TEMPLETON

Quantum Mechanics vs General Relativity Hawking's Information Paradox \rightarrow conflict

black hole of TON618 quasar: $\quad S_{\text {Bekenstein-Hawking }} \sim 10^{98}$

Quantum
Mechanics:

General
Relativity
HAIR
1 big fat state

Biggest unexplained number of physics !

The resolution:
 There must exist structure@horizon

Mathur 2009,
Almheiri, Marolf, Polchinski, Sully 2012

Only other viable alternative: ER=EPR, Islands
\Rightarrow wormholes over megaparsec distances

Structure@horizon

 in vogue these days (ECO)- Gravastars
- Quark-stars
- Boson-stars
- Gas of wormholes (ER=EPR)
- Quantum Black Boxes
- BMS / Soft hair \& horizon
- Mirrors floating on Pixie Dust
- Modified gravity
- Bose-Einstein condensate of gravitons
- Infinite density firewall hovering just above horizon

Not so easy

1. Growth with $G_{N} \leftrightarrow B H$ size for all masses

Horowitz

- Normal objects shrink; BH horizon grows
- microstate geometries have BH size for all masses
- D-branes = solitons, $m \sim 1 / g_{s}$ lighter as $G_{N}=g_{s}^{2}$ increases

> To build structure@horizon, non-perturbative degrees of freedom you must use!

- Boson stars need scalar fields of different masses to replace various BH's: One field for M , another for 30 M , etc.
- String theory non-perturbative d.o.f. \rightarrow fields whose mass decreases for larger BH

2. Mechanism not to fall into BH

Very difficult !!!

GR Dogma:

Thou shalt not put anything at the horizon !!!

- Null \rightarrow speed of light.
- If massive: ∞ boost $\rightarrow \infty$ energy
- If massless: dilutes with time
- Nothing can live there!
(or carry degrees of freedom)
- No membrane, no spins, no "quantum stuff"
- No (fire)wall

If support mechanism have you not, go home and find one
"Quantum Coyote principle"

Quantum Coyote Principle

GRAVITY DOES NOT WORK `TILL YOU LOOK DOWN

Such is the fate of
Firewalls, quantum black boxes, Mirrors \& their brothers

3. Avoid forming a horizon

- Collapsing shell forms horizon @ low curvature Oppenheimer and Snyder (1939)
- By the time shell becomes curved-enough for quantum effects to become important, horizon in causal past (180 hours for TON618 BH)

Backwards in time - illegal !

BH has e^{S} microstates with no horizon Small tunneling probability $=e^{-S}$ Shell tunnels with probability ONE !!!
Kraus, Mathur; Bena, Mayerson, Puhm, Vercnocke

Only es horizon-sized microstates can do it !

Black hole entropy the structure must have

Rules out gravastars \& almost everything else

Microstate (Fuzzball) Geometries:

- Only construction with all three properties
- Top-down
- Largest family of solutions known to mankind

Arbitrary fns. of 3 variables: $\infty \mathrm{X} \infty \mathrm{X} \infty$ parameters ! Cohomogeneity-5!

Bena, Giusto, Russo, Shigemori, Warner, 2015 Heidmann, Mayerson, Walker, Warner, 2019

Issue: only for SUSY and extremal black holes

$$
\begin{aligned}
& \left.d s_{10}^{2}=\frac{1}{\sqrt{\alpha}} d s_{6}^{2} \right\rvert\, \sqrt{Z_{1}} d \hat{s}_{4}^{2}, \\
& d s_{6}^{2}={ }_{\sqrt{\mathcal{P}}}^{2}(d v \mid \beta)\left[d u|\omega| \mathcal{T}_{2}^{\mathcal{T}}(d v \mid \beta)\right] \mid \sqrt{\mathcal{P}} d s_{4}^{2}, \\
& e^{2 \phi}=\frac{Z_{1}^{2}}{\mathcal{P}}, \\
& B--\frac{Z_{4}}{\mathcal{P}}(d u+w) \wedge(d v+\beta)+a_{4} \wedge(d v+\beta)+\delta_{2}, \\
& C_{0}-\frac{Z_{4}}{Z_{1}}, \\
& C_{2}={ }_{\gamma}^{Z_{2}}(d u \mid w) \wedge(d v \mid \beta)\left|a_{1} \wedge(d v \mid \beta)\right| \gamma_{2}, \\
& C_{1}=\frac{Z_{4}}{Z_{2}} \widehat{\operatorname{vol}}_{4}-\frac{Z_{4}}{p} \gamma_{2} \wedge(d u+\omega) \wedge(d v+\beta)+r_{3} \wedge(d v+\beta)+C, \\
& C_{6}=\widehat{v o l}_{1} \wedge\left[-\frac{Z_{1}}{p}(d n+\omega) \wedge(d v+\beta)+n_{2} \wedge(d n+\beta)+\gamma_{1}\right] \\
& -\frac{Z_{4}}{\mu} C \wedge(d n+\omega) \wedge(d n+\beta),
\end{aligned}
$$

NonExtremal - first progress in 10 years

- Heidmann:

Non-BPS Floating Branes and Bubbling Geometries, 2112.03279

First bubbling geometry for non-extremal BH !

Does this have any consequence?

Ideal world: construct 4D Kerr non-extremal microstate geometries, compare to data

Real world: 3 options

1. Charged microstates \rightarrow universal features
2. Some non-extremal microstates

Heidmann solutions
3. Compare uncharged Kerr BH's with charged microstates

Bianchi, Consoli, Grillo, Morales, Pani
apples and oranges?
better toy model than using boson stars?

Some properties I believe to be universal

Multipole moments - the big idea

- Kerr BH with vacuum at horizon
- spinning ball of dust
- spinning ball of liquid
- spinning solid shell
- boson star
- other cockamamie BH replacements
Different
gravitational multipoles

What about spinning STRUCTURE@horizon?

Gravity waves from Extreme Mass-Ratio Inspiral (EMRI) with non-aligned spins can measure multipoles
Need 3 moments to rule out Kerr, 4 to rule out spinning boson star (Ryan '95)

Gravitational multipoles

Reminder: multipoles in electrodynamics

$$
V=\sum_{l \geq 0} \frac{1}{r^{l+1}} M_{l} P_{l}(\cos \theta)=\frac{M_{0}}{r}+\frac{M_{1}}{r^{2}} \cos \theta+\frac{M_{2}}{r^{3}} P_{2}(\cos \theta)+\frac{M_{3}}{r^{4}} P_{3}(\cos \theta)+\ldots
$$

GR - coordinate transformations: naive multipoles not well defined Geroch-Hansen formalism (conformal compactification) \leftrightarrow Thorne formalism (ACMC-N coordinates)

Thorne formalism: ACMC-N coordinates

asymptotically Cartesian and mass-centered to order N

Similar: $g_{t \phi} \sim S_{l}$ (current multipoles) constrained expansion of space-space components

4d Kerr BH

- Solution depends on M, a
- Multipoles: $M_{\ell}+i S_{\ell}=M(i a)^{\ell}$

$$
\begin{aligned}
& \text { or } M_{2 n}=M\left(-a^{2}\right)^{n}, \quad S_{2 n+1}=M a\left(-a^{2}\right)^{n} \\
& M_{2 n+1}=S_{2 n}=0!!!
\end{aligned}
$$

- Mass: $M_{0}=M$
- Angular momentum: $J \equiv S_{1}=M a$
- Kerr-Newman the same (independent of Q)

4d Kerr BH - multipole ratios

- Remember Kerr: $M_{2 n+1}=S_{2 n}=0$
- Ratio of vanishing multipoles $=\frac{0}{0}$
- Embed it in String Theory + deform it to big fat STU black hole 10 parameters: 4 electric + 4 magnetic, mass, angular momentum
- Multipoles: functions of 4 parameters: $\mathscr{M}(M, J, a, D)$
- Compute ratios. Take back Kerr limit.

$$
\left.\begin{array}{c}
\text { For example: } \mathscr{R}_{\text {Kerr }}= \\
\frac{M_{l+1} M_{l+2}}{M_{l} M_{l+3}}=\frac{S_{l} S_{l+1}}{S_{l-1} S_{l+2}}=\frac{M_{l+2} S_{l}}{M_{l} S_{l+2}}=1-\frac{1}{3+(-1)^{l}(2 l+1)} \\
\frac{S_{l+1} S_{l+2}}{M_{l} M_{l+3}}=-\frac{1+(-1)^{l}(2 l+3)}{3+(-1)^{l}(2 l+1)}, \\
\frac{M_{l+1} M_{l+2}}{S_{l} S_{l+3}}=-\frac{1-(-1)^{l}(2 l+1)}{3-(-1)^{l}(2 l+3)} .
\end{array} \quad \begin{array}{l}
\text { (2atio naively undefined } \\
\text { (vanish for Kerr) }
\end{array}\right)
$$

Constraining small deviations from Kerr

Small deviations: $M_{l}=\left(M_{l}\right)_{\text {Kerr }}+m_{l} \epsilon$,

$$
S_{l}=\left(S_{l}\right)_{\text {Kerr }}+s_{l} \epsilon
$$

Use Ratios: $\frac{M_{2} S_{2 n}}{M_{2 n+1} S_{1}}=1=-a \frac{s_{2 n}}{m_{2 n+1}}+\mathcal{O}(\epsilon)$

Constrains all perturbative deviations away from Kerr !
$\delta($ Kerr $) \sim \epsilon$

$$
\begin{aligned}
S_{2 n} & =-n M\left(-a^{2}\right)^{n} \Theta, \\
M_{2 n+1} & =n M a\left(-a^{2}\right)^{n} \Theta, \\
M_{2 n}-\left(M_{2 n}\right)_{\mathrm{Kerr}} & =-n^{2} M\left(-a^{2}\right)^{n}\left(\frac{2 n-3}{4 n}\right) \epsilon_{\epsilon}^{2},
\end{aligned}
$$

Calculated from String-Theory embedding Prediction of String Theory ! ? !

Homework:
Calculate ratios in modified-gravity Kerr ! Same results?

Structure@horizon multipoles Big deviation from BH

$$
d s^{2}=-(\mathcal{Q}(H))^{-1 / 2}(d t+\omega)^{2}+(\mathcal{Q}(H))^{1 / 2}\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right)
$$

$\mathcal{Q}\left(V, K^{I}, L_{I}, M\right)$ $I=1, \cdots, 3$ \mathbb{R}^{3} Harmonic functions: $H=h+\sum_{i=1}^{N} \frac{\Gamma^{i}}{r_{i}} \longleftarrow$ Charge of center i

Distance from center i

- Different from BPS BH
- Approach BH multipoles as structure gets closer and closer to the horizon

Non-susy but extremal

Ibou Bah, I.B., Pierre Heidmann, Yixuan Li, and Daniel Mayerson

- Much more general $\mathrm{BH} \Rightarrow$ lots of nontrivial multipoles
- Build almost-BPS microstates
(method by Heidmann '15)
- Compute multipoles of microstates

$$
4 \tilde{M}_{l}=l_{\infty}^{1} l_{\infty}^{2} l_{\infty}^{3} Q_{0} z_{0}^{l}+v_{\infty} \frac{\left|E_{I J K}\right|}{2} l_{\infty}^{l} l_{\infty}^{J} \sum_{j=0}^{n} l_{j}^{K} z_{j}^{l}+v_{\infty} Q_{0} \frac{l_{\infty}^{J}}{2} l_{\infty}^{K} \sum_{j, k=1}^{n} k_{j}^{J} k_{k}^{K} \frac{q_{i}^{(2)}\left(z_{i}, z_{j}\right)}{z_{j} z_{k}}
$$

$$
\begin{array}{rr}
-2 m_{\infty} \sum_{j=0}^{n} m_{j} z_{j}^{l}-2 m_{\infty} \sum_{j=0}^{n} \alpha_{j} l z_{j}^{l-1}-m_{\infty} v_{\infty} l_{\infty}^{I} \sum_{j=1}^{n} k_{j}^{I} z_{j}^{l} & \text { Bivariate Li polynomial } \\
-m_{\infty} Q_{0} \sum_{j=1}^{n} l_{j}^{I} k_{j}^{I} \frac{4^{l-1}}{\binom{2(l-1)}{l-1}} \frac{l}{2 l-1} z_{j}^{l-2} & q_{n}^{(2)}\left(z_{i}, z_{j}\right)-\frac{1}{\binom{2 n}{n}} \sum_{p+q=n}\binom{2 p}{p}\binom{2 q}{q} z_{i}^{p} z_{j}^{q}
\end{array}
$$

$$
-2 m_{\infty} Q_{0} \sum_{1 \leq i \neq j \leq n} l_{i}^{I} k_{j}^{I}\left(\frac{q_{l}^{(2)}\left(z_{i}, z_{j}\right)}{2 z_{j}\left(z_{i}-z_{j}\right)}-\frac{l}{2 l-1} \frac{q_{l-1}^{(2)}\left(z_{i}, z_{j}\right)}{z_{i}-z_{j}}\right)
$$

Trivariate Li polynomial

$$
-6 m_{\infty} Q_{0}^{2} \sum_{1 \leq i, j, k \leq n} k_{i}^{1} k_{j}^{2} k_{k}^{3} \frac{l}{2 l-1} \frac{q_{l-1}^{(3)}\left(z_{i}, z_{j}, z_{k}\right)}{z_{i} z_{j} z_{k}}
$$

$$
q_{n}^{(3)}\left(z_{i}, z_{j}, z_{k}\right)=\frac{1}{\binom{2 n}{n}} \sum_{p+q+s=n}\binom{2 p}{p}\binom{2 q}{q}\binom{2 s}{s} z_{i}^{p} z_{j}^{q} z_{k}^{s}
$$

$$
\begin{aligned}
\tilde{S}_{l}= & \frac{h_{\infty}}{2} \sum_{j=1}^{n} l_{\infty}^{I} k_{j}^{I} z_{j}^{l}-\frac{q}{2} \sum_{j=1}^{n} l_{j}^{I} k_{j}^{I} \frac{l}{2 l-1} \frac{4^{l-1}}{\binom{2(l-1)}{l-1}} z_{j}^{l-2}-q \sum_{1 \leq i \neq j \leq n} l_{i}^{I} k_{j}^{I}\left(\frac{l}{2 l-1} \frac{q_{l-1}^{(2)}\left(z_{i}, z_{j}\right)}{z_{j}-z_{i}}-\frac{q_{l}^{(2)}\left(z_{i}, z_{j}\right)}{2 z_{j}\left(z_{j}-z_{i}\right)}\right) \\
& -3 q^{2} \sum_{1 \leq i, j, k \leq n} k_{i}^{1} k_{j}^{2} k_{k}^{3} \frac{l}{2 l-1} \frac{q_{l-1}^{(3)}\left(z_{i}, z_{j}, z_{k}\right)}{z_{i} z_{j} z_{k}}-\sum_{j=0}^{n} m_{j} z_{j}^{l}-\sum_{j=0}^{n} \alpha_{j} l z_{j}^{l-1}
\end{aligned}
$$

Punchline

- Microstate multipoles different from BH multipoles
- Approach BH multipoles as structure gets closer and closer to the horizon
- Is this obvious of highly nontrivial ?
- Geometry looks the same as the BH geometry in the scaling limit
- Structure@horizon could have given different multipoles
- maybe extremal microstates have same multipoles as BH , but non-extremal microstates do not ?!?
- or maybe spinning structure@horizon always gives same result as BH ?!?

Exactly the same story with Tidal Love Numbers

Conclusions

- We can build self-supporting structure@horizon
- Topology and fluxes. Non-perturbative d.o.f.
- Only kosher construction of ECO. Susy, extremal, and since a few days ago also non-extremal.
- Ratios of vanishing multipoles = new window in BH
- String Theory prediction (other theories different ?)
- Kerr multipole ratios: constrain small deformations !
- Multipoles and Tidal Love Numbers different from BH.
- They approach BH values as structure approaches BH
- Average may differ from BH value. Nontrivial signature.

