What to do with structure@horizon ?

IOSIF Bena IPhT, CEA Université Paris-Saclay

BPS Multipoles (w/ Daniel Mayerson)

- Short paper 2006.10750, accepted in PRL
- Long paper 2007.09152

Almost-BPS multipoles (w/ Ibou Bah, Pierre Heidmann, Yixuan Li, and Daniel Mayerson)

• 2104.10686

Tidal Love Numbers (w/ Pierre Heidmann and Daniel Mayerson)

• 22XX.XXXXX

JOHN TEMPLETON

Quantum Mechanics vs General Relativity *Hawking's Information Paradox* \rightarrow *conflict*

Biggest unexplained number of physics !

The resolution: There must exist structure@horizon

Mathur 2009, Almheiri, Marolf, Polchinski, Sully 2012

Only other viable alternative: ER=EPR, Islands ⇒ wormholes over megaparsec distances

Here Be Microstructure

Structure@horizon in vogue these days (ECO)

- Gravastars
- Quark-stars
- Boson-stars
- -Gas of wormholes (ER=EPR)
- Quantum Black Boxes
- -BMS / Soft hair & horizon
- Mirrors floating on Pixie Dust
- Modified gravity
- Bose-Einstein condensate of gravitons
- Infinite density firewall hovering just above horizon

1. Growth with G_N \leftrightarrow BH size for all masses

Horowitz

- Normal objects shrink; BH horizon grows
- microstate geometries have BH size for all masses
- D-branes = solitons, $m \sim 1/g_s$ lighter as $G_N = g_s^2$ increases

To build structure@horizon, non-perturbative degrees of freedom you must use !

- Boson stars need scalar fields of different masses to replace various BH's: One field for M_€, another for 30 M_€, etc.
- String theory non-perturbative d.o.f. → fields whose mass decreases for larger BH

toy models at most

2. Mechanism not to fall into BH

Very difficult !!!

GR Dogma: Thou shalt not put anything at the horizon !!!

- Null → speed of light.
- If massive: ∞ boost $\rightarrow \infty$ energy
- If massless: dilutes with time
- Nothing can live there ! (or carry degrees of freedom)
- No membrane, no spins, no "quantum stuff"
- No (fire)wall

If support mechanism have you not, go home and find one

"Quantum Coyote principle"

Quantum Coyote Principle

GRAVITY DOES NOT WORK TILL YOU LOOK DOWN

Such is the fate of *Firewalls, quantum black boxes, Mirrors & their brothers*

3. Avoid forming a horizon

- Collapsing shell forms horizon @ low curvature
 Oppenheimer and Snyder (1939)
- By the time shell becomes curved-enough for quantum effects to become important, horizon in causal past (180 hours for TON618 BH)

Only e^s horizon-sized microstates can do it !

Black hole entropy the structure must have

Rules out gravastars & almost everything else

Microstate (Fuzzball) Geometries:

- Only construction with all three properties
- Top-down
- Largest family of solutions known to mankind

Arbitrary fns. of **3** variables: $\infty X \propto X \propto x$ parameters ! Cohomogeneity-5 ! Bena, Giusto, Russo, Shigemori, Warner, 2015

$$\begin{split} ds_{10}^2 &= \frac{1}{\sqrt{\alpha}} \, ds_6^2 + \sqrt{\frac{Z_1}{Z_2}} \, d\hat{s}_4^2, \\ ds_6^2 &= -\frac{2}{\sqrt{\mathcal{P}}} \left(dv + \beta \right) \left[du + \omega + \frac{\mathcal{T}}{2} (dv + \beta) \right] + \sqrt{\mathcal{P}} \, ds_4^2, \\ e^{2\Phi} &= \frac{Z_1^2}{\mathcal{P}}, \\ B &= -\frac{Z_4}{\mathcal{P}} \left(du + \omega \right) \wedge \left(dv + \beta \right) + a_4 \wedge \left(dv + \beta \right) + \delta_2, \\ C_0 &= \frac{Z_4}{\mathcal{P}}, \\ C_2 &= -\frac{Z_2}{\mathcal{P}} \left(du + \omega \right) \wedge \left(dv + \beta \right) + a_1 \wedge \left(dv + \beta \right) + \gamma_2, \\ C_4 &= \frac{Z_4}{Z_2} \, \widehat{\text{vol}}_4 - \frac{Z_4}{\mathcal{P}} \, \gamma_2 \wedge \left(du + \omega \right) \wedge \left(dv + \beta \right) + x_3 \wedge \left(dv + \beta \right) + \mathcal{C}, \\ C_6 &= \, \widehat{\text{vol}}_4 \wedge \left[-\frac{Z_1}{\mathcal{P}} \left(du + \omega \right) \wedge \left(dv + \beta \right) + a_2 \wedge \left(dv + \beta \right) + \gamma_1 \right] \\ &= -\frac{Z_4}{\mathcal{P}} \, \mathcal{C} \wedge \left(du + \omega \right) \wedge \left(dv + \beta \right), \end{split}$$

Heidmann, Mayerson, Walker, Warner, 2019

$$\begin{split} \omega_{r}^{(2)} &= -\frac{R\,r}{\sqrt{2}\,k_{2}(m_{1}^{2}-1)} \frac{m_{1}(k_{2}+m_{1}+1)\Delta_{k_{2}+m_{1}-1,m_{1}-1}+(k_{2}+m_{1}-1)\Delta_{k_{2}+m_{1}-3,m_{1}-1}}{(r^{2}+a^{2})^{2}}, \\ \omega_{\theta}^{(2)} &= \frac{R}{\sqrt{2}\,k_{2}(m_{1}^{2}-1)a^{2}\sin\theta\cos\theta} \left[2(m_{1}-1)\Delta_{k_{2}+m_{1}-3,m_{1}-1}\right. \\ &+ (m_{1}-1)(m_{1}-2)\Delta_{k_{2}+m_{1}-1,m_{1}-1}+m_{1}(k_{2}-2)\Delta_{k_{2}+m_{1}-1,m_{1}+1}\right], \\ &- m_{1}(m_{1}-1)\Delta_{k_{2}+m_{1}+1,m_{1}-1}+(m_{1}^{2}(k_{2}-1)+1)\Delta_{k_{2}+m_{1}+1,m_{1}+1}\right], \\ \omega_{\phi}^{(2)} &= -\frac{R}{\sqrt{2}}\frac{\Delta_{k_{2}+m_{1}+1,m_{1}+1}}{\Sigma}\sin^{2}\theta - \frac{R}{\sqrt{2}\,k_{2}(m_{1}^{2}-1)a^{2}}\left[2(m_{1}-1)\Delta_{k_{2}+m_{1}-3,m_{1}-1}\right. \\ &+ (m_{1}^{2}-2m_{1}+k_{2}-1)\Delta_{k_{2}+m_{1}-1,m_{1}-1}+m_{1}(k_{2}-2)\Delta_{k_{2}+m_{1}-1,m_{1}+1}\right. \\ &+ m_{1}(k_{2}-m_{1}-1)\Delta_{k_{2}+m_{1}+1,m_{1}-1}+(k_{2}(m_{1}^{2}+m_{1}-1)-m_{1}(m_{1}+1))\Delta_{k_{2}+m_{1}+1,m_{1}+3}\right. \\ \omega_{\psi}^{(2)} &= \frac{R}{\sqrt{2}}\frac{\Delta_{k_{2}+m_{1}+1,m_{1}+1}}{\Sigma}\cos^{2}\theta \frac{R}{\sqrt{2}\,k_{2}(m_{1}^{2}-1)a^{2}}\left[(k_{2}-1)(m_{1}-1)\Delta_{k_{2}+m_{1}+1,m_{1}+3}\right. \\ &- 2(m_{1}-1)\Delta_{k_{2}+m_{1}-3,m_{1}-1}-(m_{1}-1)(m_{1}-2)\Delta_{k_{2}+m_{1}-1,m_{1}-1}\right. \\ &- (m_{1}-1)(m_{1}(k_{2}-1)+1)\Delta_{k_{2}+m_{1}+1,m_{1}+1}\right]. \end{split}$$

Issue: only for SUSY and extremal black holes

NonExtremal - first progress in 10 years

• Heidmann:

Non-BPS Floating Branes and Bubbling Geometries, 2112.03279

First bubbling geometry for non-extremal BH !

Does this have any consequence ?

- Ideal world: construct 4D Kerr non-extremal
- microstate geometries, compare to data
- **Real world: 3 options**
- **1. Charged** microstates → universal features
- 2. Some non-extremal microstates

Heidmann solutions

3. Compare uncharged Kerr BH's with charged microstates Bianchi, Consoli, Grillo, Morales, Pani

apples and oranges ? better toy model than using boson stars ?

Some properties I believe to be universal

Multipole moments - the big idea

- Kerr BH with vacuum at horizon
- spinning ball of dust
- spinning ball of liquid
- spinning solid shell
- boson star
- other cockamamie BH replacements

What about spinning STRUCTURE@horizon ?

Gravity waves from Extreme Mass-Ratio Inspiral (EMRI) with non-aligned spins can measure multipoles Need 3 moments to rule out Kerr, 4 to rule out spinning boson star (Ryan '95)

Gravitational multipoles

Reminder: multipoles in electrodynamics

GR - coordinate transformations: naive multipoles not well defined
 Geroch-Hansen formalism (conformal compactification) ↔
 Thorne formalism (ACMC-N coordinates)

Thorne formalism: ACMC-N coordinates

asymptotically Cartesian and mass-centered to order N

Similar: $g_{t\phi} \sim S_l$ (current multipoles) constrained expansion of space-space components

4d Kerr BH

- Solution depends on *M*, *a*
- Multipoles: $M_{\ell} + iS_{\ell} = M(ia)^{\ell}$

or
$$M_{2n} = M(-a^2)^n$$
, $S_{2n+1} = Ma(-a^2)^n$

$$M_{2n+1} = S_{2n} = 0 !!!$$

- Mass: $M_0 = M$
- Angular momentum: $J \equiv S_1 = Ma$
- Kerr-Newman the same (independent of Q)

4d Kerr BH - multipole ratios

- Remember Kerr: $M_{2n+1} = S_{2n} = 0$
- Ratio of vanishing multipoles = $\frac{0}{0}$
- Embed it in String Theory + deform it to big fat STU black hole 10 parameters: 4 electric + 4 magnetic, mass, angular momentum
- Multipoles: functions of 4 parameters: $\mathcal{M}(M, J, a, D)$
- Compute ratios. Take back Kerr limit.

Constraining small deviations from Kerr

Small deviations: $M_l = (M_l)_{\text{Kerr}} + m_l \epsilon$, $S_l = (S_l)_{\text{Kerr}} + s_l \epsilon$

Use Ratios: $\frac{M_2 S_{2n}}{M_{2n+1} S_1} = 1 = -a \frac{S_{2n}}{m_{2n+1}} + \mathcal{O}(\epsilon)$

Constrains all perturbative deviations away from Kerr !

$$S_{2n} = -nM(-a^2)^n \epsilon,$$

$$M_{2n+1} = nMa(-a^2)^n \epsilon,$$

$$M_{2n} - (M_{2n})_{\text{Kerr}} = -n^2M(-a^2)^n \left(\frac{2n-3}{4n}\right)\epsilon^2,$$

 $\delta(\text{Kerr}) \sim \epsilon$

Calculated from String-Theory embedding Prediction of String Theory ! ? !

Homework:

Calculate ratios in **modified-gravity Kerr** ! Same results ?

Non-susy but extremal

Ibou Bah, I.B., Pierre Heidmann, Yixuan Li, and Daniel Mayerson

- Much more general BH \Rightarrow lots of nontrivial multipoles
- Build almost-BPS microstates

(method by Heidmann '15)

• Compute multipoles of microstates

$$\begin{split} 4\tilde{M}_{l} &= l_{\infty}^{1} l_{\infty}^{2} l_{\infty}^{3} Q_{0} z_{0}^{l} + v_{\infty} \frac{|\varepsilon_{IJK}|}{2} l_{\infty}^{l} l_{\infty}^{J} \sum_{j=0}^{n} l_{j}^{K} z_{j}^{l} + v_{\infty} Q_{0} \frac{l_{\infty}^{J} l_{\infty}^{K}}{2} \sum_{j,k=1}^{n} k_{j}^{J} k_{k}^{K} \frac{q_{l}^{(2)}(z_{i}, z_{j})}{z_{j} z_{k}} \\ &- 2m_{\infty} \sum_{j=0}^{n} m_{j} z_{j}^{l} - 2m_{\infty} \sum_{j=0}^{n} \alpha_{j} l z_{j}^{l-1} - m_{\infty} v_{\infty} l_{\infty}^{J} \sum_{j=1}^{n} k_{j}^{J} z_{j}^{l} \\ &- m_{\infty} Q_{0} \sum_{j=1}^{n} l_{j}^{l} k_{j}^{J} \frac{4^{l-1}}{\binom{2l-1}{l-1}} \frac{l}{2l-1} z_{j}^{l-2} \\ &- 2m_{\infty} Q_{0} \sum_{1\leq i\neq j\leq n} l_{i}^{l} k_{j}^{I} \left(\frac{q_{l}^{(2)}(z_{i}, z_{j})}{2z_{j}(z_{i}-z_{j})} - \frac{l}{2l-1} \frac{q_{l-1}^{(2)}(z_{i}, z_{j})}{z_{i}-z_{j}} \right) \\ &- 6m_{\infty} Q_{0}^{2} \sum_{1\leq i, j, k\leq n} k_{i}^{1} k_{j}^{2} k_{k}^{3} \frac{l}{2l-1} \frac{q_{l-1}^{(3)}(z_{i}, z_{j}, z_{k})}{z_{i}z_{j}z_{k}} . \end{split}$$

$$\begin{split} \tilde{S}_{l} &= \frac{h_{\infty}}{2} \sum_{j=1}^{n} l_{\infty}^{I} k_{j}^{I} z_{j}^{l} - \frac{q}{2} \sum_{j=1}^{n} l_{j}^{I} k_{j}^{I} \frac{l}{2l-1} \frac{4^{l-1}}{\binom{2(l-1)}{l-1}} z_{j}^{l-2} - q \sum_{1 \le i \ne j \le n} l_{i}^{I} k_{j}^{I} \left(\frac{l}{2l-1} \frac{q_{l-1}^{(2)}(z_{i}, z_{j})}{z_{j} - z_{i}} - \frac{q_{l}^{(2)}(z_{i}, z_{j})}{2z_{j}(z_{j} - z_{i})} \right) \\ &- 3q^{2} \sum_{1 \le i, j, k \le n} k_{i}^{1} k_{j}^{2} k_{k}^{3} \frac{l}{2l-1} \frac{q_{l-1}^{(3)}(z_{i}, z_{j}, z_{k})}{z_{i} z_{j} z_{k}} - \sum_{j=0}^{n} m_{j} z_{j}^{l} - \sum_{j=0}^{n} \alpha_{j} l z_{j}^{l-1} \,. \end{split}$$

Punchline

- Microstate multipoles different from BH multipoles
- Approach BH multipoles as structure gets closer and closer to the horizon
- Is this **obvious** of **highly nontrivial**?
- Geometry looks the same as the BH geometry in the scaling limit
- Structure@horizon could have given different multipoles
- maybe extremal microstates have same multipoles as BH, but non-extremal microstates do not ?!?
- or maybe spinning structure@horizon always gives same result as BH ?!?

Exactly the same story with Tidal Love Numbers

Conclusions

- We can build self-supporting **structure@horizon**
 - Topology and fluxes. Non-perturbative d.o.f.
- Only kosher construction of ECO. Susy, extremal, and since a few days ago also non-extremal.
- Ratios of vanishing multipoles = new window in BH
 - String Theory prediction (other theories different ?)
 - Kerr multipole ratios: constrain small deformations !
- Multipoles and Tidal Love Numbers different from BH.
- They approach **BH values** as structure approaches BH
- Average may differ from BH value. Nontrivial signature.