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Einstein-Maxwell System
Reissner-Nordström-(Anti-)de Sitter (RN(A)dS) Solution

Einstein-Maxwell coupled system:

Coupled equations:{
Gab + Λgab = 8π

(
1
4
gabF

cdFcd − FacFbc
)

;

∇aFab = 0 ; ∇[aFbc] = 0

A family of spherically symmetric solutions: RN(A)dS black hole
spacetime,M = Rt×]0,+∞[r×S2

θ,ϕ

g = f(r)dt2 − 1

f(r)
dr2 − r2dω2 ,

f(r) = 1− 2M

r
+
Q2

r2
− Λr2 ; .
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The General model

M

H L
r− H R

r−

H L
r+

H R
r+

bc bci+

Sr+

i+

Sr−

Σ0

Σt

x
=

cs
tv
=
cst u

=
cs
t

uv

t
x

t =
cs
t

b

b

The interior between the Cauchy and the event horizons.
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Scattering

General Idea:

Past Pro�le
Scattering Operator←−−−−−−−−−−−→ Future Pro�le
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Approaches for Scattering
Stationary, Dynamic, and Geometric

1st Approach � Stationary: Via the transmission and re�ection
coe�cients that gives the scattering matrix.

Dynamic in time
Fourier−−−−→ Stationary: �xed frequency

2nd Approach � Dynamic: Via the wave operators.

W± = s− lim
t→±∞

U(0, t)U0(t, 0) ; Ω± = s− lim
t→±∞

U0(0, t)U(t, 0) .

Scattering Operator S = Ω+W−.
3rd Approach � Geometric: Via the trace operators. Rescale and
compactify, then take �traces�.
Scattering operator S = T+(T−)−1
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Historical Context of Scattering Inside BHs
and the motivation by the cosmic censorship conjecture

R. Penrose and M. Simpson (1973): numerical observation of blue
shift inside RN black hole at the Cauchy horizon.

S. Chandrasekhar and J.B. Hartle (1982): investigated a blow-up
for perturbations of linearized gravity in RN using �stationary�
scattering.
C. Kehle and Y. Shlapentokh-Rothman (2019): scattering for Lin-
ear waves inside a RN directly between the two horizons with �sta-
tionary� scattering.
D. Häfner, J.P. Nicolas, and M.M. (2020): scattering for charged
and massive Dirac �elds inside RN(A)dS.
M.M. (2021): conformal approach for Dirac inside RN(A)dS using
the waves re-interpretation method.
M.M. and R. Nasser (2021): scattering breakdown for linear waves
between the horizons and an intermediate hypersurface inside RN(A)dS.
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Dirac Equation

Charged and massive Dirac equations:{(
∇AA′ − iqAAA′

)
φA = m√

2
χA′ ,(

∇AA′ − iqAAA′
)
χA′ = − m√

2
φA ,

Describes the behaviour of:

Massive (mass m)

Charged (charge q)

Spin- 1
2 particle (a bi-spinor (φ, χ))

In an ambient electrostatic �eld with potential A.

Dirac Current:

Current: Causal vector �eld Ja = φAφ̄A
′
+ χ̄AχA′ .

J is divergence-free: Dirac equations =⇒ ∇aJa = 0.

A Hilbert space of initial data H with a conserved L2-norm.

Unitary evolution.
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Scattering Theory for Dirac Fields

Theorem (D.Häfner , J.-P. Nicolas , M.M. � 2020)

The future and past direct wave operators W± and inverse wave
operators Ω± are well-de�ned on H as the strong limits:

W± = s− lim
t→±∞

U(0, t)eitH
±
0 ,

Ω± = s− lim
t→±∞

e−itH
±
0 U(t, 0) .

They are unitary operators on H. Moreover,

W±Ω± = Ω±W± = IdH .

The scattering operator S = Ω+W− is a unitary operator on H.

Theorem (M.M. � 2021)

The equivalent geometric (conformal) Scattering theory via trace
operators using the waves re-interpretation method.
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Wave Equation

The geometric wave equation:

�gφ = 0.

In (t, x, θ, ϕ) coordinates:

�g = ∇a∇a =
1

f
(∂2

x − ∂2
t )− 2

r
∂t −

1

r2
∆S2

The energy-momentum tensor

Tab := ∇aφ∇bφ−
1

2
gab∇cφ∇cφ .

It satis�es:

Divergence-free: ∇aTab = ∇bφ�φ so, �gφ =⇒ ∇aTab = 0.

Dominant Energy Cond. : X and Y causal =⇒ TabX
aY b ≥ 0.
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Wave Equation
Energies

For X a vector �eld (observer) and S a hypersurface, we can de�ne
the �Energy� of a wave φ:
Let Ja = TabXb,

EX [φ](S) :=

∫
S

iJdVolg,

If X is timelike and S is spacelike, E is de�nite positive (by
D.O.E.), and can be used as a norm on φ.

If X is Killing, E is conserved (by Stokes' theorem).

However, no timelike Killing vector �eld inside the black hole!
Therefore, no energy norm is conserved...
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Wave Equation
Energies

Choose X to be T := ∂t.

E [φ](t) : = ET [φ](Σt) =

∫
Σt

T00r
2dx ∧ dω2

=
1

2

∫
Rx×{t}×S2

ω

(
(∂tφ)2 + (∂xφ)2 − f

r2
|∇S2φ|2

)
r2dxd2ω

T extends smoothly and becomes normal to the horizons:

ET [φ](H R
r−

) =

∫
H R

r−

T00r
2du ∧ dω2 =

∫
Ru×{r−}×S2

(∂uφ)2r2
−dud2ω,

ET [φ](H L
r−

) =

∫
H L

r−

T00r
2dv ∧ dω2 =

∫
Rv×{r−}×S2

(∂vφ)2r2
−dvd2ω,
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Scattering of waves directly between the two horizons

Theorem (C. Kehle, Y. Shlapentokh-Rothman � 2019)

For data Φ− on Hr+ , let be φ the corresponding solution to the wave
equation. The scattering map S : H− → H+ given by S(Φ−) = φ|Hr−
is a Hilbert space isomorphism.
In more traditional language, the Theorem yields existence,
uniqueness, and asymptotic completeness of scattering states.
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Breakdown of Scattering
of waves between the horizons and an Cauchy hypersurface Σt

Theorem (M.M. , R. Nasser � 2021)

For data Φ0 on Σ0, let be φ the corresponding solution to the wave
equation. The trace maps T± : H(0)→ H± given by T±(Φ0) = φ|Hr±
are linear bounded operators but have unbounded inverses since:
there exists a sequence (φ±n )n of solutions to the wave equation such
that φ±n |Σ0

∈ C∞c (Σ0) and E [φ±n ](0) = 1 for all n, and

lim
n→∞

lim
t→±∞

E [φ±n ](t) = 0.

The breakdown happens only at high angular momentum

and zero spatial frequency!
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Questions for physicists!

How come there is scattering for scalar waves between the
horizons but not between the horizons and an intermediate
hypersurface?!

What could be the physical mechanism causing such a
breakdown?

Can this breakdown be related to blue-shift e�ects even though it
is on both horizons?

Is the zero spatial frequency a �resonance� ? And how to de�ne
resonances inside black holes?
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Thank you
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