New exact cylindrically symmetric solutions of GR

Marie-Noëlle Célérier

Laboratoire Univers et Théories (LUTH)
Observatoire de Paris

Atelier « Théorie, Univers et Gravitation »
13 December 2021

INSU
observer S comprendre

Outline

1. Introduction

2. General framework
3. Fluids with purely axial pressure
4. Fluids with purely azimuthal pressure
5. Conclusions

Introduction

Cylindrical analytic solutions: the pioneers

Cylindrically symmetric vacuum (exterior)

- 1919 Levi-Civita: vacuum static cylindrical spacetimes
- 1932 Lewis: vacuum exterior gravitationally sourced by an infinite cylinder of stationary matter rotating around its symmetry axis
- 1937 Einstein-Rosen: time-dependent vacuum exterior

Cylindrically symmetric source (interior)

- 1924 Lanczos (1937 van Stockum): stationary rigidly rotating infinite dust cylinder with (Lanczos) and without (Lanczos and van Stockum) a cosmological constant
- and more: static, stationary, (non) rigidly rotating, dust, isotropic perfect fluid, thin shells, etc. But no known exact solution for anisotropic fluid

Stationary sources: a new approach

Continuation of a couple of previous works:

- Preliminary study of rigidly rotating stationary cylindrical anisotropic fluids Debbasch, Herrera, Pereira, Santos (2006) GRG 38, 1825
- Generalization to non-rigid rotation and deeper analysis of rigid rotation with an emphasis on gravito-electromagnetic properties MNC, Santos (2020) PRD 102, 044026

New results: Exact interior solutions for a rigidly rotating fluid with anisotropic pressure bounded by a cylindrical hypersurface and matched to an exterior LewisWeyl vacuum:

- Purely axial pressure MNC (2021) PRD 104, 064040
- Purely azimuthal pressure MNC (2021) arXiv 2111.13938

General framework

Cylindrical spacetime inside the source

The general stress-energy tensor

$$
\begin{gathered}
T_{\alpha \beta}=\left(\rho+P_{r}\right) V_{\alpha} V_{\beta}+P_{r} g_{\alpha \beta}+\left(P_{\phi}-P_{r}\right) K_{\alpha} K_{\beta}+\left(P_{z}-P_{r}\right) S_{\alpha} S_{\beta} \\
V^{\alpha} V_{\alpha}=-1, \quad K^{\alpha} K_{\alpha}=S^{\alpha} S_{\alpha}=1, \quad V^{\alpha} K_{\alpha}=V^{\alpha} S_{\alpha}=K^{\alpha} S_{\alpha}=0
\end{gathered}
$$

The stationary cylindrically symmetric line element

$$
\begin{aligned}
& \mathrm{d} s^{2}=-f \mathrm{~d} t^{2}+2 k \mathrm{~d} t \mathrm{~d} \phi+\mathrm{e}^{\mu}\left(\mathrm{d} r^{2}+\mathrm{d} z^{2}\right)+l \mathrm{~d} \phi^{2}: \\
& -\infty \leq t \leq+\infty, \quad 0 \leq r, \quad-\infty \leq z \leq+\infty, \quad 0 \leq \phi \leq 2 \pi
\end{aligned}
$$

Stationarity + cylindrical symmetry = metric coefficients functions of the radial coordinate only

Purely axial pressure solution

Equation of state and 4-velocity of the fluid

Equation of state

$$
P_{r}=P_{\phi}=0 \quad \frac{P_{z}}{\rho}=h(r)
$$

Corotating frame

$$
\begin{array}{ll}
V^{\alpha}=v \delta_{0}^{\alpha} & f v^{2}=1 \\
S^{\alpha}=\mathrm{e}^{-\mu / 2} \delta_{2}^{\alpha} &
\end{array}
$$

Intermediate function: $\quad D^{2}=f l+k^{2}$

Field equations

$$
\begin{gathered}
-f \mu^{\prime \prime}-2 f \frac{D^{\prime \prime}}{D}+f^{\prime \prime}-f^{\prime} \frac{D^{\prime}}{D}+\frac{3 f\left(f^{\prime} l^{\prime}+k^{\prime 2}\right)}{2 D^{2}}=2 \kappa \rho f \mathrm{e}^{\mu} \\
k \mu^{\prime \prime}+2 k \frac{D^{\prime \prime}}{D}-k^{\prime \prime}+k^{\prime} \frac{D^{\prime}}{D}-\frac{3 k\left(f^{\prime} l^{\prime}+k^{\prime 2}\right)}{2 D^{2}}=-2 \kappa \rho k \mathrm{e}^{\mu} \\
\frac{\mu^{\prime} D^{\prime}}{2 D}+\frac{f^{\prime} l^{\prime}+k^{\prime 2}}{4 D^{2}}=0 \\
\frac{D^{\prime \prime}}{D}-\frac{\mu^{\prime} D^{\prime}}{2 D}-\frac{f^{\prime} l^{\prime}+k^{\prime 2}}{4 D^{2}}=\kappa P_{z} \mathrm{e}^{\mu} \\
l \mu^{\prime \prime}+2 l \frac{D^{\prime \prime}}{D}-l^{\prime \prime}+l^{\prime} \frac{D^{\prime}}{D}-\frac{3 l\left(f^{\prime} l^{\prime}+k^{\prime 2}\right)}{2 D^{2}}=2 \kappa \rho \frac{k^{2} \mathrm{e}^{\mu}}{f}
\end{gathered}
$$

Bianchi identity

$$
\begin{gathered}
T_{1 ; \beta}^{\beta}=\frac{1}{2} \rho \frac{f^{\prime}}{f}-\frac{1}{2} P_{z} \mu^{\prime}=0 \\
\frac{f^{\prime}}{f}-h \mu^{\prime}=0
\end{gathered}
$$

Solving the field equations

Particular choice of coordinates issuing from the degree of gauge freedom

$$
\mu^{\prime}=\frac{2 h^{\prime}}{1-h}+\frac{2 h^{\prime}}{h} \quad \mathrm{e}^{\mu}=c_{\mu} \frac{h^{2}}{(1-h)^{2}}
$$

Inserted into Bianchi

$$
\frac{f^{\prime}}{f}=\frac{2 h^{\prime}}{1-h} \quad f=\frac{c_{f}}{(1-h)^{2}}
$$

G_{00} combined with $G_{03} \quad k f^{\prime}-f k^{\prime}=2 c D$;

$$
k=\frac{c_{f}}{(1-h)^{2}}\left[c_{0}-\frac{2 c}{c_{f}^{2}} \int_{r_{0}}^{r}(1-h(v))^{4} D(v) \mathrm{d} v\right]
$$

Interim results

$$
\begin{gathered}
D^{2}=c_{f}^{2} c_{k}^{2} \frac{\left(-2 \ln h+4 h-h^{2}+c_{\beta}\right)}{(1-h)(1+h)} \\
k=\frac{c_{f}}{(1-h)^{2}}\left[c_{0}+c_{k}\left(-2 \ln h+4 h-h^{2}+c_{\beta}\right)\right] \\
-\frac{c_{f}}{(1-h)^{2}}\left[c_{0}+c_{k}\left(-2 \ln h+4 h-h^{2}+c_{\beta}\right)\right]^{2}
\end{gathered}
$$

Axisymmetry and regularity conditions

From axisymmetry and to ensure elementary flatness in the vicinity of the axis of rotation

$$
\begin{gathered}
l \stackrel{0}{=} 0, \quad f \stackrel{0}{=} \mathrm{e}^{\mu \stackrel{0}{=} 1, \quad} \quad k \stackrel{0}{=} 0, \quad D \stackrel{0}{=} 0, \quad l^{\prime} \stackrel{0}{=} 0 \\
f^{\prime} \stackrel{0}{=} k^{\prime} \stackrel{0}{=} k^{\prime \prime}-k^{\prime} \frac{D^{\prime}}{D} \stackrel{0}{=} 0
\end{gathered}
$$

Implying
$c_{f} \stackrel{0}{=}(1-h)^{2}, \quad c_{\mu} \stackrel{0}{=} \frac{c_{f}}{h^{2}}, \quad c_{0}=0, \quad c_{\beta} \stackrel{0}{=} 2 \ln h-4 h+h^{2}$.

Junction conditions through Σ

Stationary system = the Weyl class of the Lewis metric used to represent the exterior vacuum spacetime

$$
\begin{array}{lr}
\mathrm{d} s^{2}=-F \mathrm{~d} t^{2}+2 K \mathrm{~d} t \mathrm{~d} \phi+\mathrm{e}^{M}\left(\mathrm{~d} R^{2}+\mathrm{d} z^{2}\right)+L \mathrm{~d} \phi^{2} \\
F=a R^{1-n}-a \delta^{2} R^{1+n}, \\
K=-(1-a b \delta) \delta R^{1+n}-a b R^{1-n}, & \\
\mathrm{e}^{M}=R^{\left(n^{2}-1\right) / 2}, & \\
L=\frac{(1-a b \delta)^{2}}{a} R^{1+n}-a b^{2} R^{1-n}, & \text { Darmois'junction conditions imply } \\
\delta=\frac{c}{a n}, & P_{r} \stackrel{\Sigma}{=} 0
\end{array}
$$

Final form of the solution

$$
\begin{aligned}
& f=\left(\frac{1-h_{0}}{1-h}\right)^{2}, \quad \mathrm{e}^{\mu}=\left(\frac{1-h_{0}}{h_{0}}\right)^{2}\left(\frac{h}{1-h}\right)^{2}, \\
& k=\left(1-h_{0}\right)^{2} \frac{\left[2 \ln \frac{h_{0}}{h}+4\left(h-h_{0}\right)-\left(h^{2}-h_{0}^{2}\right)\right]}{(1-h)^{2}} \\
& l=\left(1-h_{0}\right)^{2}\left[2 \ln \frac{h_{0}}{h}+4\left(h-h_{0}\right)-\left(h^{2}-h_{0}^{2}\right)\right]\left\{\frac{1-h}{1+h}-\frac{\left[2 \ln \frac{h_{0}}{h}+4\left(h-h_{0}\right)-\left(h^{2}-h_{0}^{2}\right)\right]}{(1-h)^{2}}\right\} \\
& r=\frac{\left(1-h_{0}\right)^{2}}{c} \int_{h_{0}}^{h}\left\{\frac{1+u}{u^{2}(1-u)^{3}\left[2 \ln \frac{h_{0}}{u}+4\left(u-h_{0}\right)-\left(u^{2}-h_{0}^{2}\right)\right]}\right\}^{\frac{1}{2}} \mathrm{~d} u \\
& \rho=\frac{2 c^{2} h_{0}^{2}}{\kappa\left(1-h_{0}\right)^{4}} \frac{(1-h)^{4}}{h^{2}(1+h)^{2}}\left\{\frac{h\left[2 \ln \frac{h_{0}}{h}+4\left(h-h_{0}\right)-\left(h^{2}-h_{0}^{2}\right)\right]}{(1+h)}+2(1-h)^{2}\right\}
\end{aligned}
$$

Hydrodynamical scalars

Acceleration vector modulus

$$
\dot{V}^{\alpha} \dot{V}_{\alpha}=\frac{c^{2} h_{0}^{2}}{\left(1-h_{0}\right)^{6}} \frac{(1-h)^{3}}{(1+h)}\left[2 \ln \frac{h_{0}}{h}+4\left(h-h_{0}\right)-\left(h^{2}-h_{0}^{2}\right)\right]
$$

Rotation scalar

$\omega^{2}=\frac{c^{2}}{f^{2} \mathrm{e}^{\mu}}$ with $f \stackrel{0}{=} \mathrm{e}^{\mu} \stackrel{0}{=} 1 \Rightarrow \omega^{2} \stackrel{0}{=} c^{2} \Rightarrow c=$ the amplitude of the vorticity on the axis

Shear and expansion

The shear and expansion vanish owing to rigid and stationary rotation

Singularities

First singularity $\quad h=+1$
The whole metric set diverges. The density ρ vanishes and does not change sign = coordinate singularity.

Second singularity $\quad h=-1$
The density ρ diverges and changes sign. Curvature singularity.
Third singularity $\quad h=0$
The density diverges and is no more defined for sign $h \neq \operatorname{sign} h_{0}$. Curvature singularity.

Constraints from mathematical structure

Coming from: the signature of the metric the definition domain of the logarithm function $\Rightarrow \frac{h_{0}}{h}>0$

Imply two classes of solutions:

- $0<h_{0}<1 \quad \Rightarrow \quad 0<h_{1}<h<h_{2}<1$
- $-1<h_{0}<0 \quad \Rightarrow \quad-1<h<h_{3}<0$
with h_{1}, h_{2}, h_{3} depending on h_{0} according to the relations:

$$
\begin{gathered}
\left(1-h_{1}\right)^{3}-\left(1+h_{1}\right)\left[2 \ln \frac{h_{0}}{h_{1}}+4\left(h_{1}-h_{0}\right)-\left(h_{1}^{2}-h_{0}^{2}\right)\right]=0 \quad 2 \ln \frac{h_{0}}{h_{2}}+4\left(h_{2}-h_{0}\right)-\left(h_{2}^{2}-h_{0}^{2}\right)=0 \\
\left(1-h_{3}\right)^{3}-\left(1+h_{3}\right)\left[2 \ln \frac{h_{0}}{h_{3}}+4\left(h_{3}-h_{0}\right)-\left(h_{3}^{2}-h_{0}^{2}\right)\right]=0
\end{gathered}
$$

Parameters and constraints, a summary

The solution exhibits two independent constant parameters: h_{0} and c

- h_{0} is the value of $h(r) \equiv P_{z}(r) / \rho(r)$ on the axis of symmetry
$h_{0}=1$ implying the vanishing of all the metric functions is forbidden
- c measures the amplitude of the rotation scalar on the axis

Admissible ranges and singularities

The three singularities which are the limits of the ranges for h and h_{0}
$0<h_{0}<1 \Rightarrow 0<h_{1}<h<h_{2}<1$ and $-1<h_{0}<0 \quad \Rightarrow \quad-1<h<h_{3}<0$ can thus be ignored.

Purely azimuthal pressure solution

Equation of state and 4-velocity of the fluid

Equation of state

$$
P_{r}=P_{z}=0 \quad \frac{P_{\phi}}{\rho}=h(r)
$$

Corotating frame

$$
\begin{array}{ll}
V^{\alpha}=v \delta_{0}^{\alpha} & f v^{2}=1 \\
K^{\alpha}=-\frac{k v}{D} \delta_{0}^{\alpha}-\frac{f v}{D} \delta_{3}^{\alpha} &
\end{array}
$$

Intermediate function

$$
D^{2}=f l+k^{2}
$$

Field equations

$$
\begin{gathered}
-f \mu^{\prime \prime}-2 f \frac{D^{\prime \prime}}{D}+f^{\prime \prime}-f^{\prime} \frac{D^{\prime}}{D}+\frac{3 f\left(f^{\prime} l^{\prime}+k^{2}\right)}{2 D^{2}}=2 \kappa \rho f \mathrm{e}^{\mu} \\
k \mu^{\prime \prime}+2 k \frac{D^{\prime \prime}}{D}-k^{\prime \prime}+k^{\prime} \frac{D^{\prime}}{D}-\frac{3 k\left(f^{\prime} l^{\prime}+k^{\prime 2}\right)}{2 D^{2}}=-2 \kappa \rho k \mathrm{e}^{\mu} \\
\frac{\mu^{\prime} D^{\prime}}{2 D}+\frac{f^{\prime} l^{\prime}+k^{\prime 2}}{4 D^{2}}=0 \\
\frac{D^{\prime \prime}}{D}-\frac{\mu^{\prime} D^{\prime}}{2 D}-\frac{f^{\prime} l^{\prime}+k^{\prime 2}}{4 D^{2}}=0 \\
l \mu^{\prime \prime}+2 l \frac{D^{\prime \prime}}{D}-l^{\prime \prime}+l^{\prime} \frac{D^{\prime}}{D}-\frac{3 l\left(f^{\prime} l^{\prime}+k^{\prime 2}\right)}{2 D^{2}}=2 \frac{\kappa}{f}\left(\rho k^{2}+P_{\phi} D^{2}\right) \mathrm{e}^{\mu}
\end{gathered}
$$

Bianchi identity

$$
\begin{gathered}
T_{1 ; \beta}^{\beta}=\frac{1}{2}\left(\rho+P_{\phi}\right) \frac{f^{\prime}}{f}-P_{\phi} \frac{D^{\prime}}{D}=0 \\
\frac{1}{2}(1+h) \frac{f^{\prime}}{f}-h \frac{D^{\prime}}{D}=0
\end{gathered}
$$

Junction conditions

$$
P_{r} \stackrel{\Sigma}{=} 0
$$

Solving the field equations

$$
G_{11}+G_{22} \Rightarrow D^{\prime \prime}=0 \quad D=c_{1} r+c_{2}=r+c_{2}
$$

Particular choice of coordinates similar to that for the axial case

$$
\frac{f^{\prime}}{f}=\frac{2 h^{\prime}}{1-h} \Leftrightarrow f=\frac{c_{f}}{(1-h)^{2}}
$$

Inserted into Bianchi

$$
\frac{1+h}{h(1-h)} h^{\prime}=\frac{D^{\prime}}{D} \Leftrightarrow D=\frac{h}{c_{5}(1-h)^{2}}
$$

G_{00} combined with G_{03}

$$
k f^{\prime}-f k^{\prime}=2 c D
$$

$$
k=f\left(c_{4}-2 c \int_{0}^{r} \frac{D(v)}{f(v)^{2}} \mathrm{~d} v\right)-\frac{c_{4}}{f_{0}}
$$

Interim results

$$
\begin{gathered}
k=\frac{c_{f}}{(1-h)^{2}}\left\{c_{4}-\frac{2 c}{c_{f}^{2}}\left[\frac{h_{0}^{2}-h^{2}}{2}+2\left(h_{0}-h\right)+2 \ln \left(\frac{1-h_{0}}{1-h}\right)\right]\right\}-\frac{c_{4}}{f_{0}} \\
l=\frac{h^{2}}{c_{f}(1-h)^{2}}-\frac{(1-h)^{2}}{c_{f}}\left\{\frac { c _ { f } } { (1 - h) ^ { 2 } } \left[c_{4}\right.\right. \\
\left.\left.-\frac{2 c}{c_{f}^{2}}\left(\frac{h_{0}^{2}-h^{2}}{2}+2\left(h_{0}-h\right)+2 \ln \left(\frac{1-h_{0}}{1-h}\right)\right)\right]-\frac{c_{4}}{f_{0}}\right\}^{2} \\
\mathrm{e}^{\mu}=c_{\mu} \frac{(1-h)^{1+\frac{c^{2}}{c_{f}^{2}}}}{(1+h)} \exp \left[\frac{c^{2}}{c_{f}^{2}} h(4+h)\right] \\
\frac{h}{(1-h)^{2}}=r+c_{2} c_{5}
\end{gathered}
$$

Regularity conditions

To ensure

- axisymmetry

$$
l \stackrel{0}{=} 0
$$

- elementary flatness in the vicinity of the axis of rotation, add

$$
f \stackrel{0}{=} \mathrm{e}^{\mu} \stackrel{0}{=} 1, \quad k \stackrel{0}{=} 0, \quad l^{\prime} \stackrel{0}{=} 0
$$

Implying

$$
c_{4}=h_{0}=0 \Leftrightarrow P_{\phi} \stackrel{0}{=} 0, \quad c_{f}=c_{\mu}=1, \quad c_{2}=0 .
$$

The energy density

After rescaling the r coordinate from a factor $c_{1} c_{5}$

$$
r=D=\frac{h}{(1-h)^{2}} \quad h=1+\frac{1}{2 r}+\epsilon \sqrt{\frac{1}{r}+\frac{1}{4 r^{2}}} \quad \text { with } \quad \epsilon= \pm 1 \quad \text { and } \quad r \neq 0
$$

Using them, together with the other intermediate results, into the field equations gives the energy density

$$
\rho=\frac{2}{\kappa}(1-h)^{3-4 c^{2}}\left[2 c^{2}+\frac{(1-h)}{h(1+h)^{3}}\right] \exp \left[-c^{2} h(4+h)\right]
$$

Behaviour of $h(r)$

First derivative of h wrt r

$$
h^{\prime}=-\frac{1}{2 r^{2}}\left[1+\epsilon \frac{1+2 r}{\sqrt{1+4 r}}\right]
$$

$\epsilon>0 \Rightarrow h<0 \Rightarrow P_{\phi}<0$ ruled out
$\epsilon<0$ valid and implies $h>0 \Rightarrow P_{\phi}>0$
and h monotonically increasing from the axis to the boundary Σ

Final form of the solution

$$
\begin{gathered}
f=\frac{1}{(1-h)^{2}} \quad \mathrm{e}^{\mu}=\frac{(1-h)^{1+4 c^{2}}}{(1+h)} \exp \left[c^{2} h(4+h)\right] \\
k=\frac{c}{(1-h)^{2}}\left[h^{2}+4 h+4 \ln (1-h)\right] \\
l=\frac{1}{(1-h)^{2}}\left\{h^{2}-c^{2}\left[h^{2}+4 h+4 \ln (1-h)\right]^{2}\right\} \\
\rho=\frac{2}{\kappa}(1-h)^{3-4 c^{2}}\left[2 c^{2}+\frac{(1-h)}{h(1+h)^{3}}\right] \exp \left[-c^{2} h(4+h)\right] \\
D=\frac{h}{(1-h)^{2}}=r \quad h=1+\frac{1}{2 r}-\sqrt{\frac{1}{r}+\frac{1}{4 r^{2}}} \quad r \neq 0
\end{gathered}
$$

Hydrodynamical scalars of the fluid

- Acceleration vector modulus

$$
\dot{V}^{\alpha} \dot{V}_{\alpha}=\frac{(1-h)^{3-4 c^{2}}}{1+h} \exp \left(-c^{2} h(4+h)\right)
$$

- Rotation scalar

$$
\omega^{2}=c^{2}(1-h)^{3-4 c^{2}}(1+h) \exp \left(-c^{2} h(4+h)\right)
$$

- $h=h_{0}=0 \Rightarrow \omega^{2} \stackrel{0}{=} c^{2} \Rightarrow c=$ the amplitude of the vorticity on the axis
- Shear and expansion

The shear and expansion vanish owing to rigid and stationary rotation

Sign constraints and metric signature

These constraints arise from:

- the presence of $\ln (1-h)$ in the metric functions
- the weak energy condition $\rho>0$
- the signature of the metric $(-+++)$

Table 1. Sign constraints			
h	0	$h>0$	+1
c	$c \rightarrow \infty$	$c>0$	$c \rightarrow 0$
		$c^{2}<\frac{h^{2}}{\left[h^{2}+4 h+4 \ln (1-h)\right]^{2}}$	

Singularities

Two possible singular loci:

- $h=+1$ where r diverges \Rightarrow not reached inside the bounded cylinder
- $h=0$ mere coordinate singularity

Comparison of both cases, axial and azimuthal

- Three over five field equations are strictly the same.
- Same gauge choice = same f metric function.
- However, we end up with very different other metric functions.
- P_{ϕ} vanishes on the axis, not P_{z}.
- The modulus of the acceleration vector vanishes on the axis for axial pressure, it is unity for azimuthal one.
- The amplitude of the rotation scalar is the absolute value of c.
- The pressure can be negative for axial, only positive for azimuthal.
- Three possible singular loci for axial, only two for azimuthal. But different nature and relevance.
- No dust limit in any case since $h=$ const., hence $h=0$, is excluded.

Applications to astrophysical systems

Purely axial pressure alone:

- In rigidly rotating stationary cylindrical dust, confinement of test particles occurs in the radial direction, while motion in the axial direction is free. Proposal: relevance to extragalactic jet formation Opher, Santos, Wang (1996) in the axis direction.

Anisotropic pressure in any direction - axial or azimuthal:

- Rotation can halt cylindrical relativistic gravitational collapse Apostolatos, Thorne (1992) Pressure with vanishing radial component = negligible influence on radial collapse. Conjecture: such spacetimes = final stage of collapsing cylindrical fluids.
- The finding of these new solutions is a first step towards exploring fluid anisotropy in cylindrical symmetry, e.g., starting point for perturbative or numerical approaches.

Conclusions

Gravitational sources: Stationary rigidly rotating cylindrical anisotropic fluids with pressure directed along the axis of symmetry or azimuthally

New exact solutions of the GR field equations: Interior source matched to an exterior stationary Lewis vacuum of the Weyl (real) class

Analysed physical properties:

- Hydrodynamical tensors, vectors, scalars
- Singularities and definition intervals
- Interpretation of the constant parameters and discussion of the solutions as a whole
- Applications to astrophysical systems

Future works: find other exact solutions for, e.g., purely radiative pressure and/or non rigidly rotating fluids

