Inflationary Correlators Beyond
Weak Coupling: a Numerical Approach

0X"“

Denis Werth

Based on work with

Sébastien Renaux-Pete
Lucas Pinol

SORBONNE
UNIVERSITE



Cosmology: Observing Fluctuations

Cosmological structures are correlated on large scales
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Cosmology: Observing Fluctuations

e adiabatic

almost scale-invariant
very close to Gaussian
e superhorizon

» Time




Inflationary Paradigm: the Big Picture
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Inflation as a Cosmological Collider

During inflation, very massive particles ( ~ 104 GeV) can be
produced whose decays lead to correlations of curvature perturbation

Exchange particle

We want to know the physics of inflation:

* Particle content of inflation (hnumber of
fields, mass spectra, spins, etc)

* Interactions?

 Build a complete theory of the bulk (like
SM)

Boundary correlators:

* Time evolution of correlators is not
observable

* Observables should emerge from a
consistent time evolution in the bulk




In-In Formula

Vacuum of the full Equal-time Interacting Vacuum of the

interacting theory correlators Hamiltonian free theory w

(91Q(70)|9) = (0] | Te! /7o A1) | Q(g) T/ (D] o)

Simple analytical treatment: Weinberg [2005]

» Weak coupling expansion
» Use of uncoupled mode functions

« Diagrammatic expansion
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Difficulties

Conceptual difficulties:

« Background is time-dependent
(Lorentz invariance is broken)

Practical difficulties:

 Algebraic complexity
* Hard to accurately include all
necessary masses and rates

Correlators receive contributions from all times

Subhorizon Horizon crossing Super horizon End of inflation
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Quantum

UV fluctuations 0
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Non-adiabatic
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A Useful Method: Transport Approach

A useful method to tackle all these issues is to switch to numerics

Collider Phenomenology

» Extract observational predictions We want to apply the
from QFT > same philosophy in
» Feynman diagram generators cosmology
(LanHEP, FeynRules, ...) t

« Automatic computation of collision
events (CompHEP, MadGraph, ...)

Numerically follow the time
evolution of cosmological
correlators including all effects




Feynman-type Integrals: a Simple lllustrative Example
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Direct Calculation Indirect Calculation
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Change of perspective

 Translate the problem of computing Feynman-type integrals to solving
differential equations
« Enables one to follow the time evolution of correlators in different regimes




Transport Approach Formalism

At the level of the fluctuations: Mulryne, Seery et al. [2016]

» General theory
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* Write the transport equations
d
dr
d

d_<5Xa5X55XV> = uS (6 XP6XP6XT) + ul, (6XP6XP)(6X 6X7) + perms
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Initial conditions:

Model dependence:
* In the far past, modes do not feel the

. Vanous theories are encoded in U3 3 effect of spacetime curvature
and uﬁv » Set of uncoupled dofs
* Time-dependent coupling constants * Analytical approximations become both

tractable and accurate




Resummed Diagrams: Beyond Weak Coupling

Numerical approach enables us to use the full propagators,
effectively resumming an infinite number of diagrams

» Ever-present quadratic interaction
£(2) _ £(2),free(<=) —|—g(T)éF—|—L(2)’free(F)

» Usually treated as a perturbation
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Transport Approach: Summary
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correlators using
full propagators



Time Evolution of Various Correlators

We take as a benchmark example a two-field model with a
turn in field space 30 folds before the end of inflation
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Scale-dependence of Various Correlators

Pc(k)/P;

Features in the

bispectrum
—1 —1
k [Mpc™ ] k [Mpc™ ]
10~ 10° 107 101 101 1019 1071 103 107 10 101° 1017
10V 1 u
E CMB and LSS 010
VR
» <2 0.08 -
107" 5 N—
] —
5z
= 0.06-
10*2-:
0.04 -
1073 4
_ 0.02 -
- 60 50 40 30 20 10 60 50 —40 ~30 20 10
Number of efolds between horizon crossing Number of efolds between horizon crossing
and the end of inflation (scale) and the end of inflation (scale)

Two-stage inflation



Bispectrum Shape

Equilateral configuration:

Squeezed limit: y E;obe f{:_ontact (self-)
« Multi-field inflation Interactions
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Prospects

Cosmological collider physics:
kr\ /2 M, (k] oo g

» Spectroscopy by probing the (Gks G Ghs) (ks) COS[ Og( )] s{cosf)
squeezed limit of the 3pt
correlation function

« Extend the results to non scale-
invariant theories

* Add spinning fields
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ggﬁrr#av:r?,ngr[ggg %011] Study EFT-driven theories for fluctuations:
Arkani-Hamed, Maldacena [2015]
Baumann, Lee, Pimentel [2016] » Speed of sound breaking dS boosts

cheung, Creminelli, Senatore [2007] - Additional Planck suppressed operators
Senatore, Zaldarriaga [2010] PP P

Renaux-Petel, Turzynski [2015]  Beyond two fields
Garcia-Saenz, Pinol, Renaux-Petel [2020]  Study resonant/sharp features
Pinol [2020] .




Conclusion and Take-home Message

Inflation is fascinating as it allows us
to probe the laws of physics at the
highest reachable energies

Present a complete formalism to
numerically follow the time evolution
evolution of all 2- and 3-pf
correlation functions

Develop a code that automatically
computes observables from an EFT
for fluctuations

This method is powerful because

* Include all effects

 Full propagators (resummed
diagrams)

Future work is exciting !




Some Missions

« SphereX : infrared space telescope (NASA), observe LLS
and constrain NGs

« Simons Observatory : ground based (Chile), measure CMB
polarisation, gravitational lensing of the CMB, primordial
bispectrum, measure tensor-to-scalar ratio

 Euclid : near-infrared space telescope (ESA), dark energy,
measure galaxy resifts (<2), 3D galaxy distribution

« DESI : ground based (Arizona), construct 3D map of galaxy
distribution, test models of dark energy

 LiteBIRD : space satellite (JAXA), measure B-mode
polarisation in the CMB




Measuring non-Gaussianities

Probed by
future missions

Single-field inflation

Ruled out by Planck
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Codes Available for Inflationary Calculations

Two-point function solvers: Three-point function solvers:
* FieldInf » BINGO (single-field inflation)
* ModeCode & MultiModeCode

* PyFlation

Transport approach:

Our code: * CppTransport
* PyTransport

» Decouple from a specific
background
 EFT at the level of the fluctuations
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