Inflationary Correlators Beyond Weak Coupling: a Numerical Approach

$$\mathcal{L}(\delta X^a)$$
 \longrightarrow

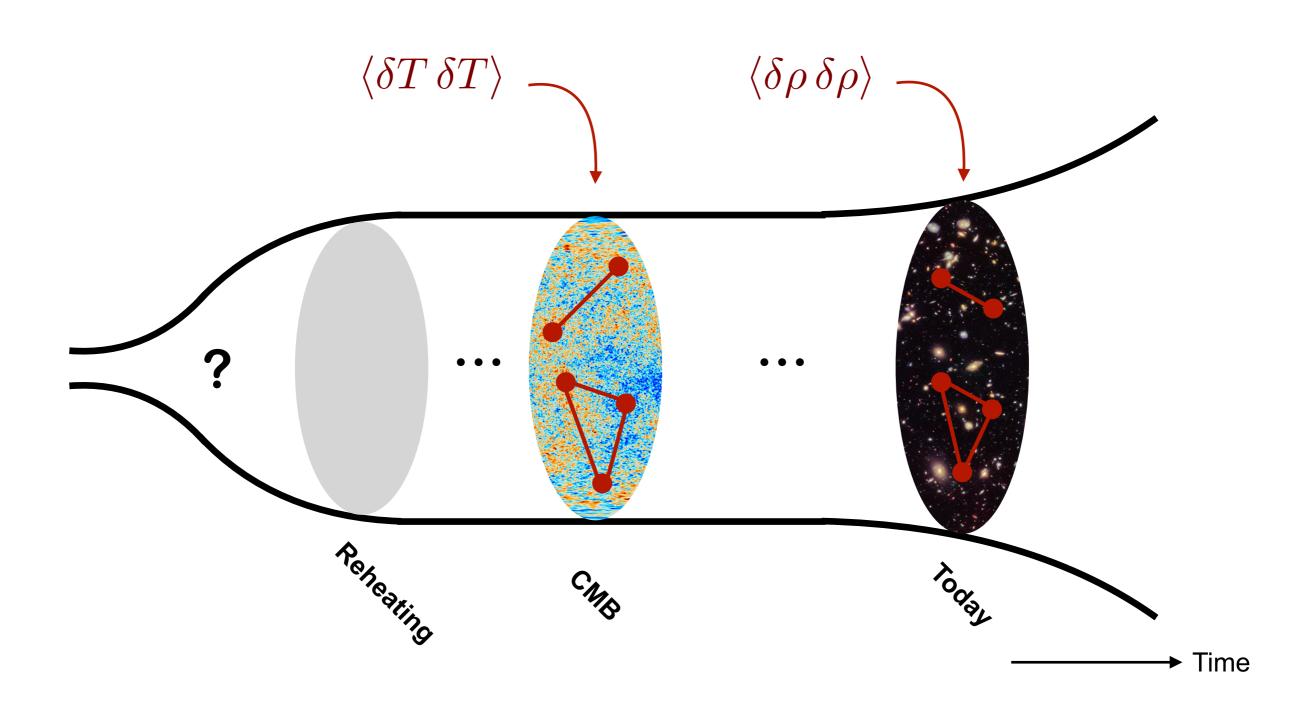
Denis Werth

Based on work with

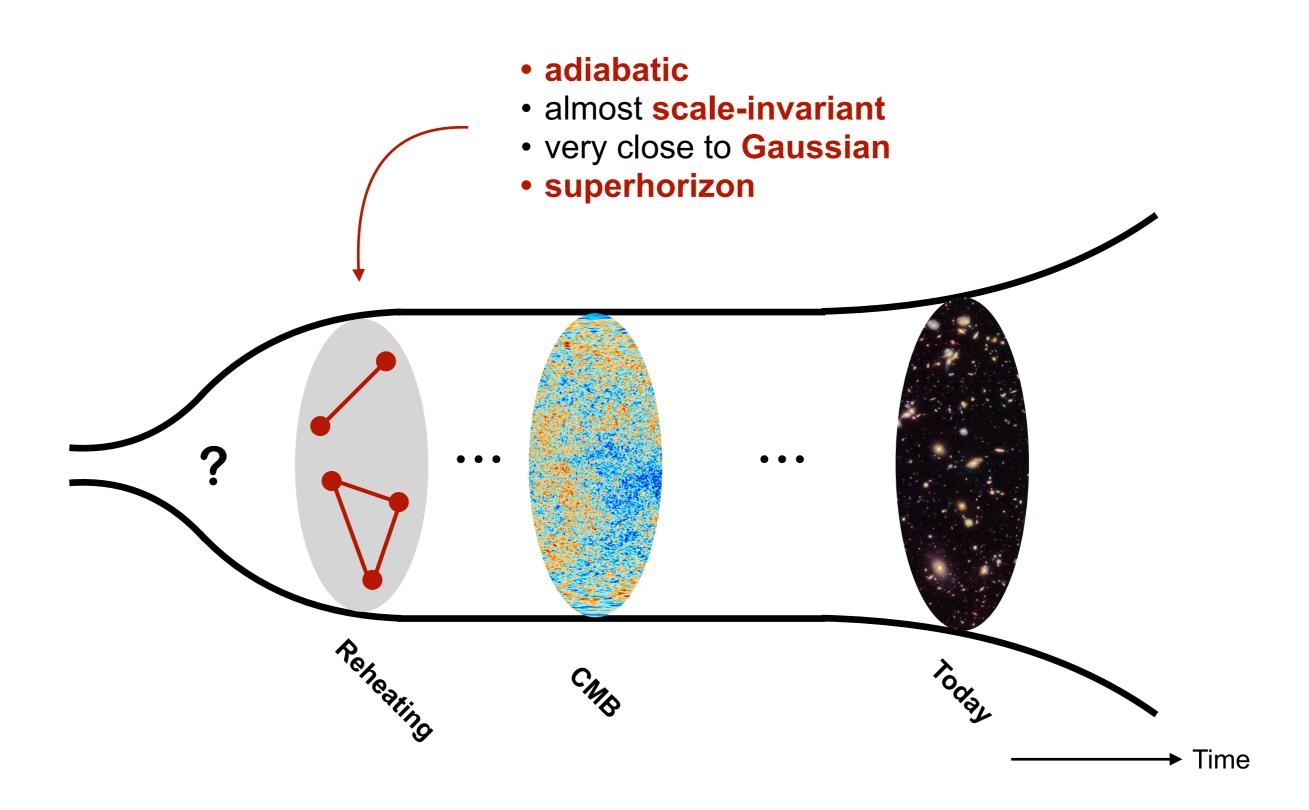
Sébastien Renaux-Petel Lucas Pinol

Cosmology: Observing Fluctuations

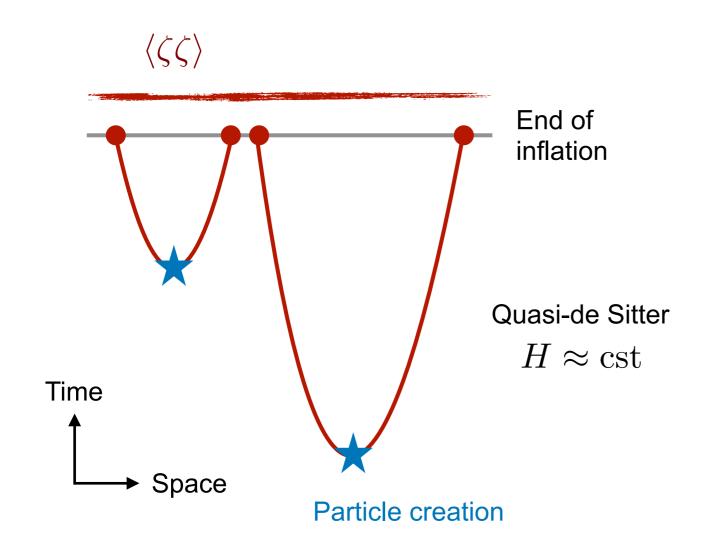
Cosmological structures are correlated on large scales



Cosmology: Observing Fluctuations



Inflationary Paradigm: the Big Picture



 At least one scalar mode in every inflationary model:

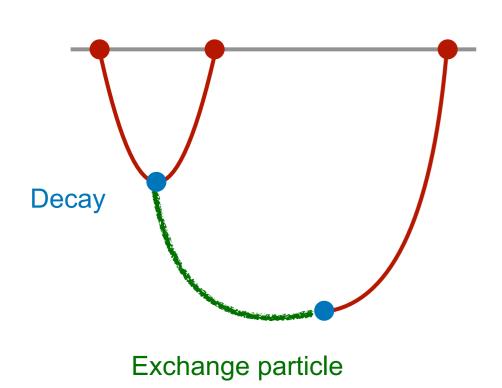
$$\zeta$$
 : scalar ($\sim \gamma_{ii}$)

- Spontaneous particle production (vacuum fluctuation) leads to nontrivial correlations of ζ
- Observables of interest are correlation functions of fields at the end of inflation

Energy [GeV]
$$E_{\rm LHC} \sim 10^4 \qquad m_\phi \ll H \qquad H \lesssim 10^{14} \qquad M_{\rm pl} \sim 10^{19}$$

Inflation as a Cosmological Collider

During inflation, very massive particles ($\sim 10^{14}$ GeV) can be produced whose decays lead to correlations of curvature perturbation



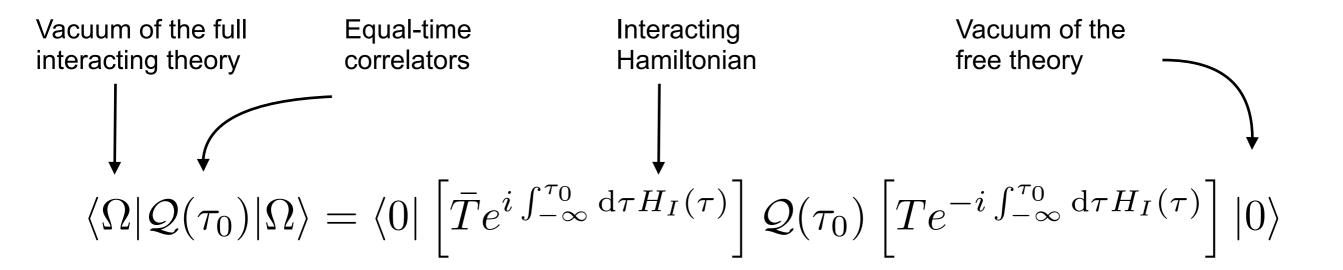
We want to know the physics of inflation:

- Particle content of inflation (number of fields, mass spectra, spins, etc)
- Interactions?
- Build a complete theory of the bulk (like SM)

Boundary correlators:

- Time evolution of correlators is not observable
- Observables should emerge from a consistent time evolution in the bulk

In-In Formula



Simple analytical treatment:

- Weak coupling expansion
- Use of uncoupled mode functions
- Diagrammatic expansion

Weinberg [2005]

Difficulties

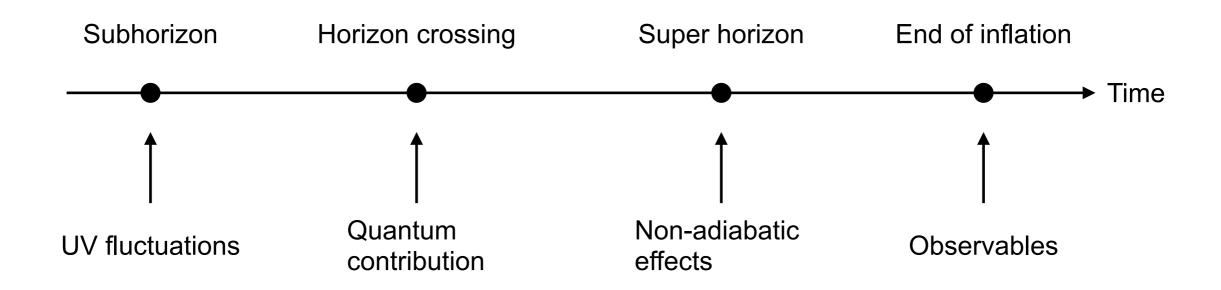
Conceptual difficulties:

 Background is time-dependent (Lorentz invariance is broken)

Practical difficulties:

- Algebraic complexity
- Hard to accurately include all necessary masses and rates

Correlators receive contributions from all times



A Useful Method: Transport Approach

A useful method to tackle all these issues is to switch to numerics

Collider Phenomenology

- Extract observational predictions from QFT
- Feynman diagram generators (LanHEP, FeynRules, ...)
- Automatic computation of collision events (CompHEP, MadGraph, ...)

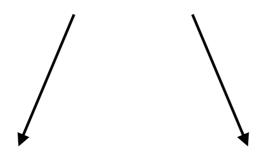
We want to apply the same philosophy in cosmology

Numerically follow the time evolution of cosmological correlators including all effects

Feynman-type Integrals: a Simple Illustrative Example

$$\langle \zeta^3 \rangle(\tau) \sim \int_{-\infty}^{\tau} d\tau' \, \tau'^n g(\tau') e^{iK(\tau' - \tau)} \quad \text{with} \quad K = k_1 + k_2 + k_3$$

$$\mathcal{L}^{(3)}/a^3 \supset -\frac{g(t)}{3!}\dot{\zeta}^3$$



Direct Calculation

$$\langle \zeta^3 \rangle = \frac{g}{iK}$$

Indirect Calculation

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\langle\zeta^3\rangle = g - iK\langle\zeta^3\rangle$$

Change of perspective

- Translate the problem of computing Feynman-type integrals to solving differential equations
- Enables one to follow the time evolution of correlators in different regimes

Transport Approach Formalism

At the level of the fluctuations:

Mulryne, Seery et al. [2016]

General theory

$$H = \frac{1}{2!} H_{\alpha\beta} \delta X^{\alpha} \delta X^{\beta} + \frac{1}{3!} H_{\alpha\beta\gamma} \delta X^{\alpha} \delta X^{\beta} \delta X^{\gamma}$$

Write the transport equations

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \langle \delta X^{\alpha} \delta X^{\beta} \rangle = u_{\rho}^{\alpha} \langle \delta X^{\rho} \delta X^{\beta} \rangle + u_{\rho}^{\beta} \langle \delta X^{\alpha} \delta X^{\rho} \rangle$$

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \langle \delta X^{\alpha} \delta X^{\beta} \delta X^{\gamma} \rangle = u_{\rho}^{\alpha} \langle \delta X^{\rho} \delta X^{\beta} \delta X^{\gamma} \rangle + u_{\rho\sigma}^{\alpha} \langle \delta X^{\rho} \delta X^{\beta} \rangle \langle \delta X^{\sigma} \delta X^{\gamma} \rangle + \text{perms}$$

Model dependence:

- Various theories are encoded in u^{α}_{β} and $u^{\alpha}_{\beta\gamma}$
- Time-dependent coupling constants

Initial conditions:

- In the far past, modes do not feel the effect of spacetime curvature
- Set of uncoupled dofs
- Analytical approximations become both tractable and accurate

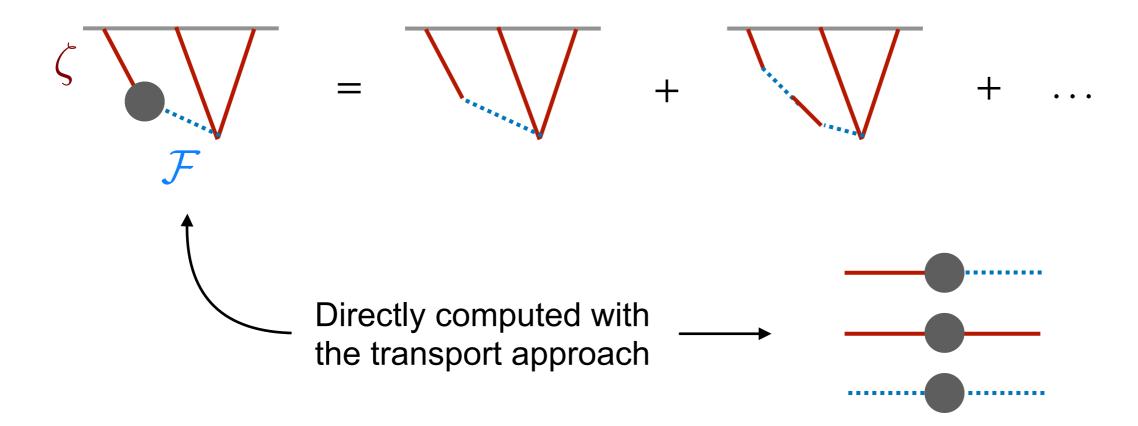
Resummed Diagrams: Beyond Weak Coupling

Numerical approach enables us to use the **full propagators**, effectively resumming an infinite number of diagrams

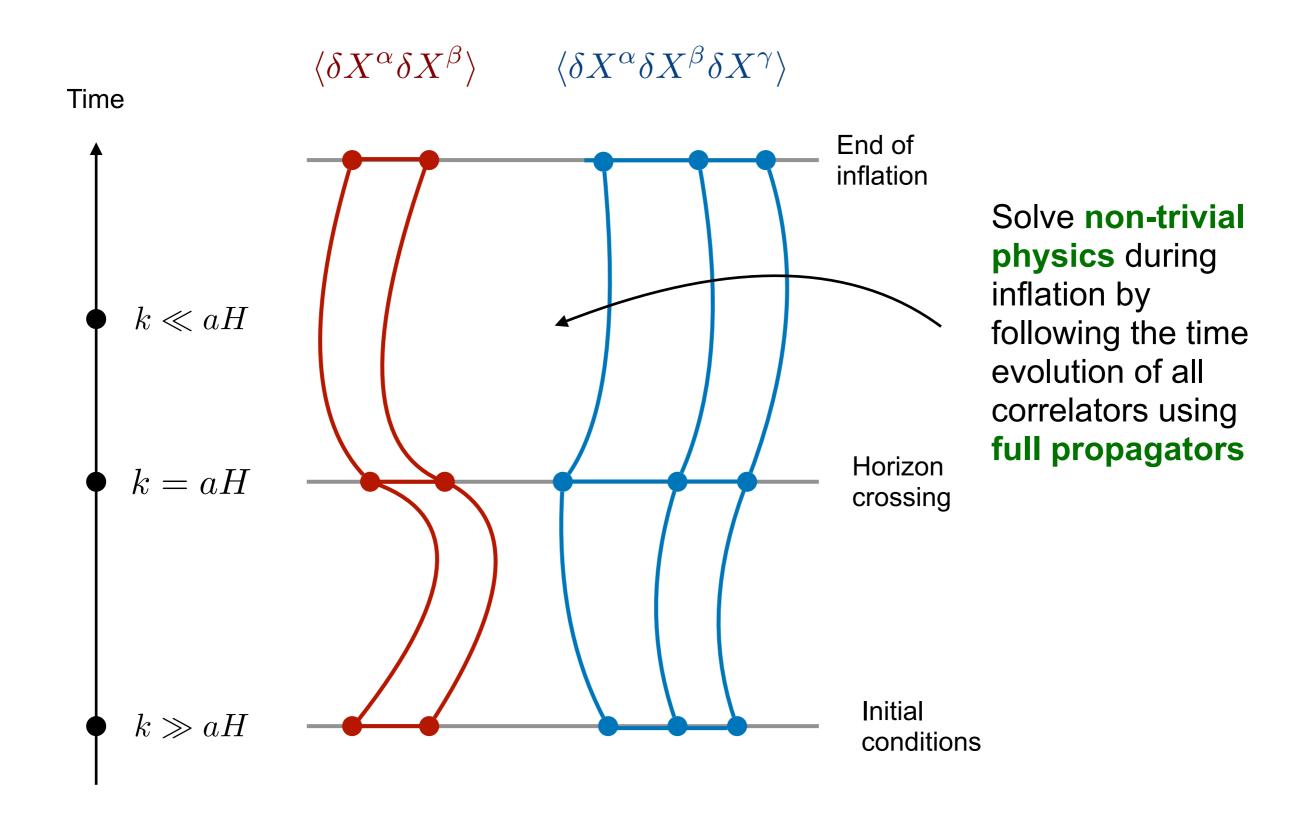
Ever-present quadratic interaction

$$\mathcal{L}^{(2)} = \mathcal{L}^{(2),\text{free}}(\zeta) + g(\tau)\dot{\zeta}\mathcal{F} + \mathcal{L}^{(2),\text{free}}(\mathcal{F})$$

Usually treated as a perturbation

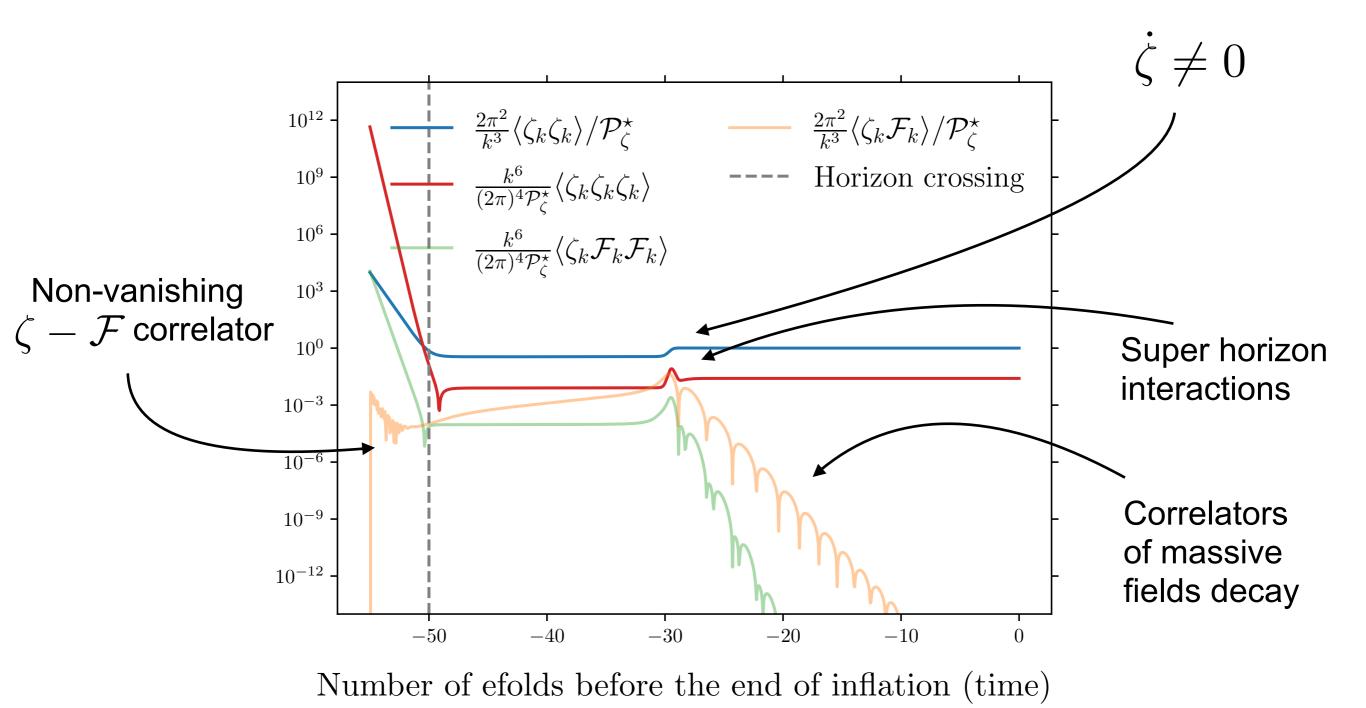


Transport Approach: Summary

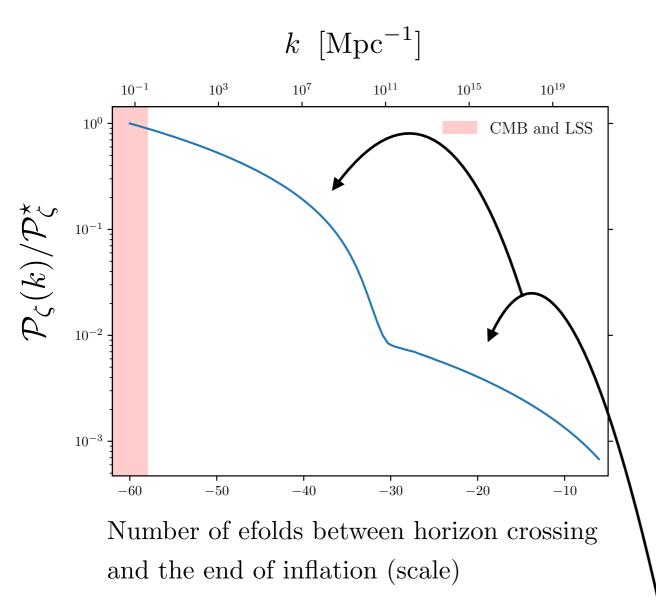


Time Evolution of Various Correlators

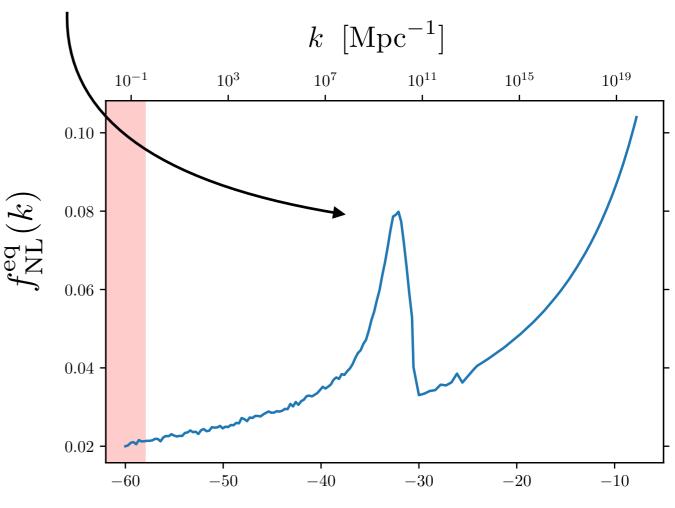
We take as a benchmark example a **two-field model** with a **turn** in field space 30 folds before the end of inflation



Scale-dependence of Various Correlators



Features in the bispectrum



Number of efolds between horizon crossing and the end of inflation (scale)

Two-stage inflation

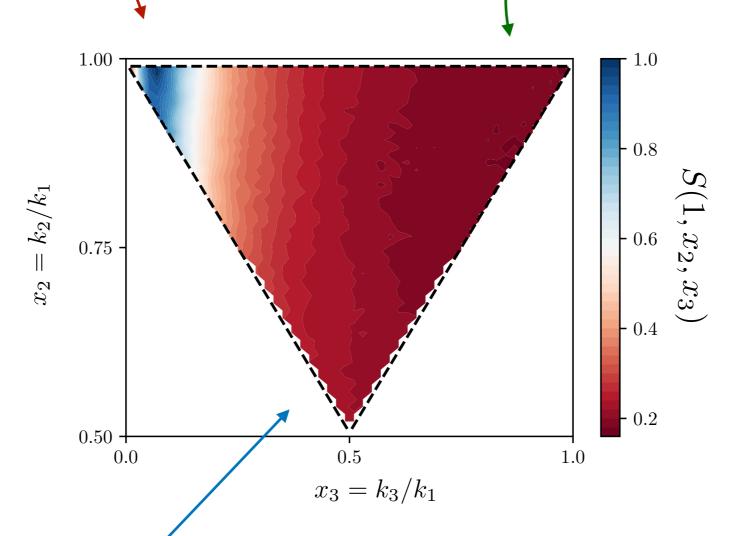
Bispectrum Shape

Squeezed limit:

- Multi-field inflation
- Cosmological collider signal

Equilateral configuration:

 Probe contact (self-) interactions



Folded configuration:

Excited states

Prospects

Cosmological collider physics:

- Spectroscopy by probing the squeezed limit of the 3pt correlation function
- Extend the results to non scaleinvariant theories
- Add spinning fields

• ...

$$\langle \zeta_{k_L} \zeta_{k_S} \zeta_{k_S} \rangle \sim \left(\frac{k_L}{k_S}\right)^{3/2} \cos \left[\frac{M}{H} \log \left(\frac{k_L}{k_S}\right)\right] \mathbb{P}_S(\cos \theta)$$

$$(M, S)$$

Chen, Wang [2009]
Baumann, Green [2011]
Arkani-Hamed, Maldacena [2015]
Baumann, Lee, Pimentel [2016]
Cheung, Creminelli, Senatore [2007]
Senatore, Zaldarriaga [2010]
Renaux-Petel, Turzynski [2015]
Garcia-Saenz, Pinol, Renaux-Petel [2020]
Pinol [2020]

Study EFT-driven theories for fluctuations:

- Speed of sound breaking dS boosts
- Additional Planck suppressed operators
- Beyond two fields
- Study resonant/sharp features

• . . .

. . .

Conclusion and Take-home Message

Inflation is fascinating as it allows us to probe the laws of physics at the highest reachable energies

Present a complete formalism to numerically follow the time evolution evolution of all 2- and 3-pf correlation functions

Develop a code that automatically computes observables from an **EFT for fluctuations**

This method is **powerful** because

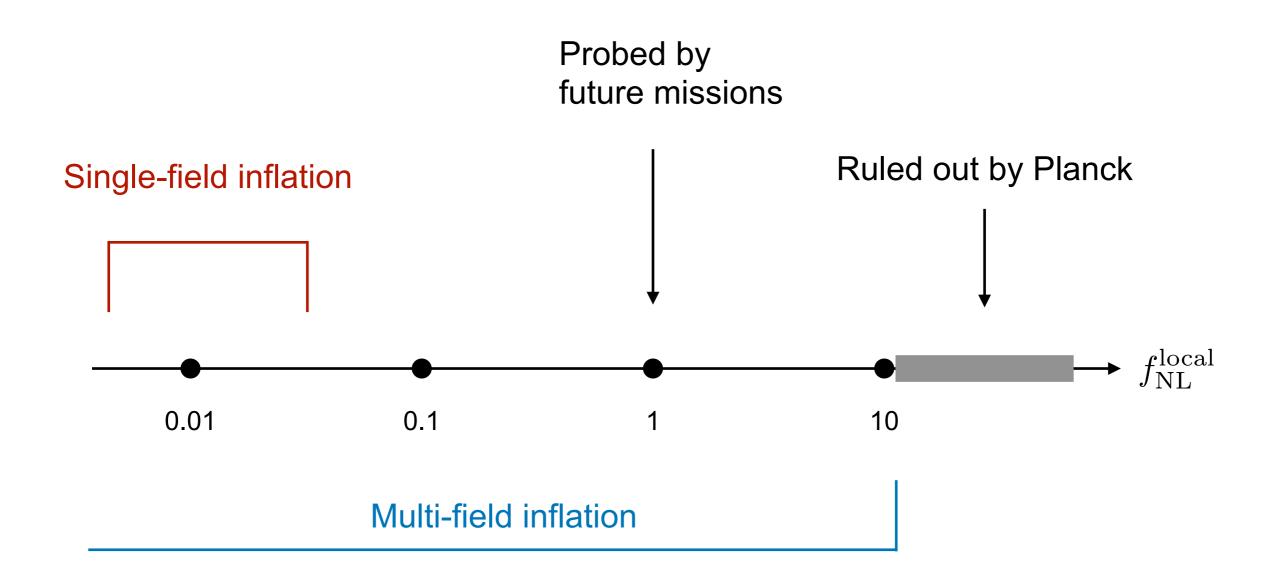
- Include all effects
- Full propagators (resummed diagrams)

Future work is exciting!

Some Missions

- SphereX: infrared space telescope (NASA), observe LLS and constrain NGs
- Simons Observatory: ground based (Chile), measure CMB polarisation, gravitational lensing of the CMB, primordial bispectrum, measure tensor-to-scalar ratio
- Euclid: near-infrared space telescope (ESA), dark energy, measure galaxy resifts (<2), 3D galaxy distribution
- DESI: ground based (Arizona), construct 3D map of galaxy distribution, test models of dark energy
- LiteBIRD: space satellite (JAXA), measure B-mode polarisation in the CMB

Measuring non-Gaussianities



Weakly broken dS boosts (Slow-roll suppression)

Strongly broken dS boosts (Non-trivial speed of sound)

Codes Available for Inflationary Calculations

Two-point function solvers:

- FieldInf
- ModeCode & MultiModeCode
- PyFlation

Our code:

- Decouple from a specific background
- EFT at the level of the fluctuations

Three-point function solvers:

BINGO (single-field inflation)

Transport approach:

- CppTransport
- PyTransport

Ringeval, Brax, van de Bruck, Davis, Martin [2006] Price, Frazer, Xu, Peiris, Easther [2015] Huston, Malik [2009][2011] Hazra, Sriramkumar, Martin [2013] Dias, Fazer, Seery [2015] Mulryne [2016]