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Idealised scenario

• Tidal shock at pericentric passage: instantaneous mass removal

• Relaxation during the rest of the orbit, to a new equilibrium



3

Model for mass removal
• Which fraction of the cluster is 

removed at the tidal shock? Cut in 
energy .E
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Model for relaxation
     Hypotheses:

• Surviving particles initially unaffected by 

the tidal shock: they remain on the same 
orbits.


• The orbits are later perturbed by the 
absence of the tidally stripped fraction: 
relaxation to a new equilibrium.
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Recent work based on similar hypotheses: 
Amorisco 2021. Relaxation is performed 
using isolated -body simulations.N
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How does a stellar system respond to an external perturbation?

Linear Response Theory

S.
 C
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ψ0 → ψ0 + ψ eExternal perturber 

F → F + fPerturbed DF

System's response ψ0 → ψ0 + ψ e + ψs[ f ]

Linearised collisionless Boltzmann equation
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How does a stellar system respond to an external perturbation?

ψs

Linear Response Theory

∂f
∂t

+ Ω(J) ⋅
∂f
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−
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⋅
∂(ψ e + ψ s)

∂θ
= 0

Linearised CBE

Δψs = 4πGρs

Poisson

Amplifier
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How does a stellar system respond to an external perturbation?

ψs

Linear Response Theory

∂f
∂t

+ Ω(J) ⋅
∂f
∂θ

−
∂F
∂J

⋅
∂(ψ e + ψ s)

∂θ
= 0

Linearised CBE

Δψs = 4πGρs

Poisson

Easier in (θ, J)

Easier in (x, v)

Problem:

choice of variablesAmplifier
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Projection on a basis Kalnajs 1976

The basis solves the Poisson equation

b(t)

Response matrixM(t)

Galaxies are self-gravitating

• Self-gravitating amplification

Collective e↵ects
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Secular Evolution
===================)

(or linear instability)

• Matrix method - (Kalnajs (1976))

=) Representative basis ( (p)
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to solve Poisson once for all.
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ψe(x, t)
ψs(x, t) a(t)

Basis elements

Linear Responsea(t) = ∫
t

0
dτ M(t − τ) ⋅ (a(τ) + b(τ))

Mpq(t) = − i (2π)3 ∑
n

∫ dJ n ⋅
∂F
∂J

ψ(p)*
n (J) ψ(q)

n (J) e−i n⋅Ω t
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Application to our model

• Background potential : classical 
Hernquist sphere


• Relaxing system : surviving fraction 
(once the stripped fraction is removed) 


• External perturber : stripped fraction 
(negative density)

ψ0

F(E)

ψ e

• Perturber : projection onto the basis.

The quality of the reconstruction depends 
on the number of basis elements, especially 
at the centre.
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Response of the surviving halo

• Response : the surviving halo quickly 
reaches a relaxed state. Mass is transferred 
from the centre to the outskirts.

ψ s
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• The evolution of the  curve is mostly 
due to the tidal shock. But not only.

vcirc
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Rotation curves VS stripped fraction
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 evolution during relaxationrmx − vmx
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Tidal tracks
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An issue: central density
Errani+ 2021a

Amorisco 2021
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But: resolution issues
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SIMPLE MODEL

seems to do a good job at reproducing tidal stripping.


MATRIX METHOD 

seems to do a good job at computing relaxation at lower numerical cost.


STRONG TIDAL SHOCK REGIME

makes the linear method fail.


CENTRAL BEHAVIOUR

requires more resolution.

Conclusions
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Thanks for your attention
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