A Monte-Carlo code for simulating subhalos signals for indirect dark matter searches: CLUMPY

(on behalf of the CLUMPY team)

1) γ-rays from DM: brief reminder

2) What is CLUMPY?

3) A few results: focus on subhalos

4) Conclusions

CLUMPY past and present developers V. Bonnivard, A. Charbonnier, C. Combet, M. Hütten & E. Nezri

N.B.: Many slides borrowed from M. Hütten and C. Combet!

David Maurin (LPSC) dmaurin@lpsc.in2p3.fr

News from the Dark 6 Annecy, 23 Nov. 2021

1) Intro: from DM to γ -rays

1) Intro: best targets?

Massive & dense (M^2/V) vs. close ($1/d^2$) vs. little astrophysical background

+ single galaxy clusters (d > Mpc)

+ ensemble average of extragalactic DM (d > Gpc)

CLUMPY calculates J-factors/fluxes for all the various targets

Aquarius simulation - Springel et al. (Nature, 2008)

1) Intro: γ -ray flux from local source

N.B.: velocity-dependant annihilations not discussed here, not (yet?) in CLUMPY

Prompt γ-ray/v flux for single source & DM **annihilation**:

$$\frac{d\Phi^{ann}}{dE_{obs}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{\delta m_{\chi}^{2}} \times \frac{dN}{dE}(E) \times \left[\int_{\Delta\Omega} \int_{l.o.s.} \rho_{DM}^{2} dl d\Omega \right]$$

Flux = Particle physics $\times J$: Astrophysical factor $\approx \frac{1}{d^{2}} \frac{M}{dE}$

(CLUMPY can also do all calculations for DM decay)

J-factor main uncertainty in indirect DM searches

1) Intro: γ -ray flux from source at redshift z

 \rightarrow Redshifting of the γ-rays/ neutrino energy loss \rightarrow absorption by pair-production with extragalactic background light (EBL)

LEXI, University of Hamburg

1) Intro: γ -ray flux from source at redshift z

 \rightarrow Redshifting of the γ-rays/ neutrino energy loss \rightarrow absorption by pair-production with extragalactic background light (EBL)

1) γ -rays from DM: brief reminder

2) What is CLUMPY?

3) A few results: focus on subhalos

4) Conclusions

2) CLUMPY: public code (https://lpsc.in2p3.fr/clumpy)

- Open-source code, written in C/C++
- Public development on GitLab
- Depends on:
 - gsl
 - Heasarc's cfitsio
 - HEALPix (shipped with the code)
 - CERN's ROOT (optional)
 - GreAT (lpsc.in2p3.fr/great, optional)
 - CLASS (optional)
- Runs on Linux and MacOS X
- Extensive web documentation

Provide the community reproducible models for J-factors and prompt γ -ray/v fluxes

Bridge between heavy numerical simulations and experiments:

- Fast emulator to calculate J-factors/fluxes from simulation end-products down to smallest mass scales
- Explore varying simulation results in a parametric way: fast, flexible, user-friendly
- Jeans-analysis module to reconstruct dSph DM density profiles from kinematic data

$$J = \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \frac{1}{l^{2}} \left(\rho_{\rm sm} + \sum_{i} \rho_{\rm cl}^{i} \right)^{2} l^{2} dl d\Omega$$

$$J_{\rm sm} \equiv \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \rho_{\rm sm}^{2} dl d\Omega$$

$$J_{\rm cross-prod} \equiv 2 \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \rho_{\rm sm} \sum_{i} \rho_{\rm cl}^{i} dl d\Omega$$

$$J_{\rm subs} \equiv \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \left(\sum_{i} \rho_{\rm cl}^{i} \right)^{2} dl d\Omega$$

$$J = \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \frac{1}{l^{2}} \left(\rho_{sm} + \sum_{i} \rho_{cl}^{i} \right)^{2} l^{2} dl d\Omega$$

$$J_{sm} = \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \rho_{sm}^{2} dl d\Omega$$

$$J_{cross-prod} = 2 \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \rho_{sm} \sum_{i} \rho_{cl}^{i} dl d\Omega$$

$$J_{aubs} = \int_{0}^{\Delta\Omega} \int_{l_{\min}}^{l_{\max}} \left(\sum_{i} \rho_{cl}^{i} \right)^{2} dl d\Omega$$

$$= vact realisation (mass and position) of DM substructures not needed$$

$$(J_{cross-prod}) = 2 \int_{0}^{d\Omega} \int_{l_{\min}}^{l_{\max}} dl d\Omega \rho_{sm} (\rho_{subs})$$

$$(\rho_{subs}) = f_{subs} M_{hado} \frac{d\mathcal{P}_{V}}{dV}(r)$$

$$(J_{subs}) = \int_{0}^{d\Omega} \int_{l_{\min}}^{l_{\max}} \int_{m_{\max}}^{m_{\max}} \int_{c_{\min}}^{c_{\max}} dl d\Omega dM dc \frac{d^{2}N}{dV (M dc_{e}} \mathcal{L}(M, c) = \int_{V_{d}} dV (\rho_{cl})^{2}$$

 $\rho_{\rm sm} = \rho_{\rm tot} - \langle \rho_{\rm subs} \rangle$

Do not resolve trillions of subhalos

 \rightarrow Calculate average signal for most masses \rightarrow Draw subhalos in mass range and distance whose contribution fluctuates above user-defined selection

 \rightarrow Draw subhalos in mass range and distance whose contribution fluctuates above user-defined selection

 \rightarrow In each mass decade, draw subhalos whose fluctuations (above average) > RE

 \rightarrow Draw subhalos in [0, l_crit] only

Do not resolve trillions of subhalos

 \rightarrow Calculate average signal for most masses \rightarrow Draw subhalos in mass range and distance whose contribution fluctuates above user-defined selection

 \rightarrow In each mass decade, draw subhalos whose fluctuations (above average) > RE

Do not resolve trillions of subhalos

 \rightarrow Calculate average signal for most masses \rightarrow Draw subhalos in mass range and distance whose contribution fluctuates above user-defined selection

2) CLUMPY: more on average of subhalos

3

• $d\mathcal{P}_V/dV$: Probability to fin clump at some radial position in the host halo: usually flatter than total DM density

• $d\mathcal{P}_M/dM \sim M^{-\alpha_M}$: probability density of substructure mass: independent of position in halo

•
$$N_{\text{subs}} = f_{\text{subs}} M_{\text{halo}} / \int_{M_{\text{min}}}^{M_{\text{max}}} dM M \frac{d\mathcal{P}_M}{dM}$$
: total number of substructures in halo

• $d\mathcal{P}_c/dc$: Log-normal distribution around mean $\overline{c}(M, r)$

In worst/naive case, 5^{N sub-levels} dimensional integral to calculate (slow...)

2) CLUMPY: boost from sub-subhalos

So far, we considered one level of substructure within the parent halo. But hierarchical formation: haloes in haloes in haloes, etc...

Considering "point-like" subhalos, show that the 'boosted' luminosity for *n* levels of substructures can be recursively computed as

$$\begin{split} \mathscr{L}_{n}(M) &= \mathscr{L}_{\rm sm}(M) + \mathscr{L}_{\rm crossprod}(M) \\ &+ N_{\rm tot}(M) \int_{M_{\rm min}}^{M_{\rm max}(M)} \mathscr{L}_{n-1}(M') \frac{d\mathscr{P}_{M}}{dM'}(M') \ dM' \\ \end{split}$$
 with $\qquad \mathscr{L}_{0}(M,c) \equiv \int_{V_{\rm cl}} \left[\rho_{\rm cl}^{\rm tot}(M,c) \right]^{2} dV$

2) CLUMPY: boost from sub-subhalos

So far, we considered one level of substructure within the parent halo. But hierarchical formation: haloes in haloes in haloes, etc...

Considering "point-like" subhalos, show that the 'boosted' luminosity for *n* levels of substructures can be recursively computed as

$$\begin{split} \mathscr{L}_{n}(M) &= \mathscr{L}_{\rm sm}(M) + \mathscr{L}_{\rm crossprod}(M) \\ &+ N_{\rm tot}(M) \int_{M_{\rm min}}^{M_{\rm max}(M)} \mathscr{L}_{n-1}(M') \frac{d\mathscr{P}_{M}}{dM'}(M') \ dM' \\ \text{with} \qquad \mathscr{L}_{0}(M,c) &\equiv \int_{V_{\rm cl}} \left[\rho_{\rm cl}^{\rm tot}(M,c) \right]^{2} dV \end{split}$$

γ-rays from DM: brief reminder
 What is CLUMPY?

3) A few results: focus on subhalos

4) Conclusions

Charbonnier et al. (2011), Nezri et al. (2012), Bonnivard et al. (2015a,b,c)

\rightarrow dSphs or galaxy clusters?

Charbonnier et al. (2011), Nezri et al. (2012), Bonnivard et al. (2015a,b,c)

\rightarrow dSphs better targets than galaxy clusters

What is the best observation strategy?

Charbonnier et al. (2011), Nezri et al. (2012), Bonnivard et al. (2015a,b,c)

\rightarrow dSphs better targets than galaxy clusters

What is the best observation strategy?

Charbonnier et al. (2011), Nezri et al. (2012), Bonnivard et al. (2015a,b,c)

3) Results: extragalactic

Hütten et al. (2018)

3) Results: extragalactic

Hütten et al. (2018)										
Ι	$(E_{\gamma}) = \left\langle \frac{\mathrm{d}q}{\mathrm{d}E_{\gamma}} \right\rangle$	$\left \frac{\Phi}{\mathrm{d}\Omega} \right\rangle_{\mathrm{sky}} = \frac{\overline{\varrho}_{\mathrm{DM,0}}^2 \langle \sigma v \rangle}{8\pi m_\chi^2} \left \frac{z}{0} \right _{0}^2$	$\int_{0}^{\max} c \mathrm{d}z \frac{(1+z)}{H(z)}$	$\left. rac{\partial^3}{\partial dt} \left< \delta^2(z) \right> \left. rac{\mathrm{d} N_\mathrm{source}^\gamma}{\mathrm{d} E_\mathrm{e}} ight _{E_\mathrm{e} = (1+z) E_\gamma} \!$						
→ Thoro (v	ugh analysis arying critica	of main uncertainties al ingredients)	Intensity Multiplier $\langle \delta^2(z) \rangle = \frac{1}{2} \int dM \frac{dn}{dm} (M, z) \times \mathcal{L}(M, z)$							
	Reference $(M > 10^{10} \text{ M})$	intensity: I_0 I_{∞} , no subhalos)		$\overline{\varrho}_{\mathrm{m},0}^2 \int \mathrm{d}M \mathrm{d}M$						
Physics properties	Reference I_0	Variations $I_{0, var}$	$ I_0-I_{0,\mathrm{var}} /I_0$							
Halo mass function [†] Density profile ρ_{halo} $c_{\Delta}(M_{\Delta})$ relation [‡] Cosmology $(h, \Omega_i, P_k)^{\S}$ Overdensity definition	$\begin{array}{l} {\rm R16} [28] \\ \alpha_{\rm E} = 0.17 \\ {\rm C15} [29] \\ {\it Planck-R16} [28] \\ \Delta_{\rm vir} (3.3) \end{array}$	T08 [32], B16 [55] $\alpha_{\rm E} = 0.15, \alpha_{\rm E} = 0.22, \text{ NFW}$ L16 [30], C15- σ_c =0.2, (S14) WMAP7 [56], (WMAP-T08) $\Delta_{\rm c}$ (3.1) or $\Delta_{\rm m}$ (3.2)=200	$egin{array}{l} \lesssim 40\% \ \lesssim 20\% \ \lesssim 10\% \ \lesssim 10\% \ \lesssim 5\% \end{array}$							
$\operatorname{EBL}\operatorname{model}^\star$	I13 [57]	F08 [58], D11 [59], G12 [60]	$\lesssim 5-40\%$							
Total CDM	$\begin{array}{l} \textbf{Contribution:} \ I_l\\ (M \ge M_{\min} \end{array}$	(extrapolation to low mas	ses)							
Field halo properties	Values (default in	a bold)	$I_l/I_0 ~(\simeq 5)$							
Slope of dn/dM , α_M Minimal mass M_{\min} Density profile ρ_{halo} $c_{\Delta}(M_{\Delta})$ relation [‡]	1.85, 1.9 , 1.95 10^{-12} , 10 ⁻⁶ , 10 ⁻⁶ $\alpha_{\rm E} = 0.15$, 0.17 , C15 [29], L16 [30]	${}^{3}{ m M}_{\odot}$ 0.22, NFW, Ishiyama [61]], (S14 [33])	$\sim 4 - 14 \ \sim 4 - 8 \ \sim 4 - 8 \ \sim 3 - 8$							
	including boos	st from subhalos: $I_{\rm b}$								
	$(m \ge m_{\min} \text{ wi})$	th $m_{\min} \equiv M_{\min}$)								
(Sub-)halo properties Mass fraction f_{subs} Minimal mass m_{min} $c_{\Delta}(M_{\Delta})$ relation [‡] Density profile $\rho_{subhalo}$ Slope of dP/dm , α_m dP/dV profile	Values (default in 10%, 20% , 40% 10 ⁻¹² , 10⁻⁶ , 10 ⁻¹² C15 [29], L16 [30 $\alpha_{\rm E} = 0.15$, 0.17 , 1.85, 1.9 , 1.95 Acutarius [62]	³ M_{\odot}], (S14 [33]) 0.22, NFW, Ishiyama [61] theonix [63] $\propto c_{1}$	$I_{\rm b}/I_l ~(\simeq 1.5)$ $\sim 1.2 - 2.2$ $\sim 1.3 - 1.8$ $\sim 1.3 - 1.7$ $\sim 1.3 - 1.7$ $\sim 1.4 - 1.7$ $\sim 1.4 - 1.7$							

[†] T08 (Tinker et al., 2008), B16 (Bocquet et al., 2016), R16 (Rodrýuez-Puebla et al., 2016)

[‡] S14 (Sánchez-Conde & Prada, 2014, [33]), C15 (Correa et al., 2015), L16 (Ludlow et al., 2016)

§ Planck-R16 (MultiDark-Planck simulations used in Rodríguez-Puebla et al., 2016), WMAP-T08 (Cosmology used in T08, [32]) * F08 (Franceschini et al., 2008), D11 (Domínguez et al., 2011), Gilmore et al. (2012), and I13 (Inoue et al., 2013)

3) Results: extragalactic

[†] T08 (Tinker et al., 2008), B16 (Bocquet et al., 2016), R16 (Rodrýuez-Puebla et al., 2016)

[‡] S14 (Sánchez-Conde & Prada, 2014, [33]), C15 (Correa et al., 2015), L16 (Ludlow et al., 2016) [§] Planck-R16 (MultiDark-Planck simulations used in Rodríguez-Puebla et al., 2016), WMAP-T08 (Cosmology used in T08, [32])

⁴ Planck-R16 (MultiDark-Planck simulations used in Rodriguez-Puebla et al., 2016), WMAP-T08 (Cosmology used in T08, [32 * F08 (Franceschini et al., 2008), D11 (Domínguez et al., 2011), Gilmore et al. (2012), and I13 (Inoue et al., 2013)

 $\frac{\mathrm{d}^{3}\mathcal{P}}{\mathrm{d}V\mathrm{d}m\,\mathrm{d}c} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}c}(c,m).$

Hütten et al. (2016)

\rightarrow Varying parameter in allowed range

	Model	VAR0	LOW	VAR1	VAR2	VAR3	VAR4	VAR5	VAR6a	VAR6b	HIGH
	inner profile	NFW	E	E	E	E	E	E	E	E	E
s	α_m	1.9	1.9	2.0	1.9	1.9	1.9	1.9	1.9	1.9	1.9
aried	σ_c	0.14	0.14	0.14	0.24	0.14	0.14	0.14	0.14	0.14	0.14
	$\overline{\varrho}_{subs}$	E-AQ	E-AQ	E-AQ	E-AQ	M-VLII	E-AQ	E-AQ	E-AQ	E-AQ	M-VLII
V	$N_{\rm calib}$	150	150	150	150	150	300	150	150	150	300
1	sub-subhalos?	no	no	no	no	no	no	yes	no	no	no
	c(m)	SP	SP	SP	SP	SP	SP	SP	Moliné	P-VLII	P-VLII

 $\frac{\mathrm{d}^{3}\mathcal{P}}{\mathrm{d}V\mathrm{d}m\,\mathrm{d}c} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}c}(c,m).$

Hütten et al. (2016)

\rightarrow Varying parameter in allowed range

	Model	VAR0	LOW	VAR1	VAR2	VAR3	VAR4	VAR5	VAR6a	VAR6b	HIGH
	inner profile	NFW	E	E	E	E	E	E	E	E	E
Varied parameters	α_m	1.9	1.9	2.0	1.9	1.9	1.9	1.9	1.9	1.9	1.9
	σ_c	0.14	0.14	0.14	0.24	0.14	0.14	0.14	0.14	0.14	0.14
	$\overline{\varrho}_{subs}$	E-AQ	E-AQ	E-AQ	E-AQ	M-VLII	E-AQ	E-AQ	E-AQ	E-AQ	M-VLII
	$N_{\rm calib}$	150	150	150	150	150	300	150	150	150	300
	sub-subhalos?	no	no	no	no	no	no	yes	no	no	no
	c(m)	SP	SP	SP	SP	SP	SP	SP	Moliné	P-VLII	P-VLII

 \rightarrow Largest differences: c-M relation

 $\frac{\mathrm{d}^{3}\mathcal{P}}{\mathrm{d}V\mathrm{d}m\,\mathrm{d}c} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}c}(c,m).$

Hütten et al. (2016)

no

SP

yes

SP

no

Moliné

VAR6b

E

1.9

0.14

E-AQ

150

no

P-VLII

HIGH

E

1.9

0.14

M-VLII

300

no

P-VLII

Model LOW VAR1 VAR6a VAR0 VAR2 VAR3 VAR4 VAR5 NFW E E inner profile E E E E E 1.9 1.9 2.0 1.9 1.9 1.9 1.9 1.9 Varied parameters α_m 0.14 0.14 0.14 0.24 0.14 0.14 0.14 0.14 σ_c E-AQ M-VLII E-AQ E-AQ E-AQ E-AQ E-AQ E-AQ $\overline{\varrho}_{subs}$ Ncalib 150 150 150 150 150 300 150 150

no

SP

no

SP

no

SP

\rightarrow Varying parameter in allowed range

no

SP

\rightarrow Comparison to other results

sub-subhalos?

c(m)

no

SP

 \rightarrow Probability to observe a "flux" (non-gaussian tail) determines sensitivity \rightarrow In practice, search (e.g., in Fermi-LAT catalog) for unassociated sources

 $\frac{\mathrm{d}^{3}\mathcal{P}}{\mathrm{d}V\mathrm{d}m\,\mathrm{d}c} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}c}(c,m).$

Hütten et al. (2016)

				-							
	Model	VAR0	LOW	VAR1	VAR2	VAR3	VAR4	VAR5	VAR6a	VAR6b	HIGH
	inner profile	NFW	E	E	E	E	E	E	E	E	E
S	α_m	1.9	1.9	2.0	1.9	1.9	1.9	1.9	1.9	1.9	1.9
d	σ_c	0.14	0.14	0.14	0.24	0.14	0.14	0.14	0.14	0.14	0.14
arie	$\overline{\varrho}_{subs}$	E-AQ	E-AQ	E-AQ	E-AQ	M-VLII	E-AQ	E-AQ	E-AQ	E-AQ	M-VLI
V	N _{calib}	150	150	150	150	150	300	150	150	150	300
L 1	sub-subhalos?	no	no	no	no	no	no	yes	no	no	no
	c(m)	SP	SP	SP	SP	SP	SP	SP	Moliné	P-VLII	P-VLII

\rightarrow Varying parameter in allowed range

\rightarrow Comparison to other results

\rightarrow Prospects for CTA + complementary limits to dSphs

 $\frac{\mathrm{d}^{3}\mathcal{P}}{\mathrm{d}V\mathrm{d}m\,\mathrm{d}c} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}c}(c,m).$

Hütten et al. (2016)

\rightarrow Varying parameter in allowed range

	Model	VAR0	LOW	VAR1	VAR2	VAR3	VAR4	VAR5	VAR6a	VAR6b	HIGH
	inner profile	NFW	E	E	E	E	E	E	E	E	E
s	α_m	1.9	1.9	2.0	1.9	1.9	1.9	1.9	1.9	1.9	1.9
Varied parameter	σ_c	0.14	0.14	0.14	0.24	0.14	0.14	0.14	0.14	0.14	0.14
	\overline{Q}_{subs}	E-AQ	E-AQ	E-AQ	E-AQ	M-VLII	E-AQ	E-AQ	E-AQ	E-AQ	M-VLII
	$N_{\rm calib}$	150	150	150	150	150	300	150	150	150	300
	sub-subhalos?	no	no	no	no	no	no	yes	no	no	no
	c(m)	SP	SP	SP	SP	SP	SP	SP	Moliné	P-VLII	P-VLII

 \rightarrow Angular power spectrum (APS)

 $\frac{\mathrm{d}^{3}\mathcal{P}}{\mathrm{d}V\mathrm{d}m\,\mathrm{d}c} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}c}(c,m).$

Hütten et al. (2016)

 $\frac{\mathrm{d}^{3}\mathcal{P}}{\mathrm{d}V\mathrm{d}m\,\mathrm{d}c} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}c}(c,m).$

Hütten et al. (2019)

Subhalos disrupted by Milky Way baryonic potential

 $\frac{\mathrm{d}^{3}\mathcal{P}}{\mathrm{d}V\mathrm{d}m\,\mathrm{d}c} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}c}(c,m).$

Hütten et al. (2019)

Subhalos disrupted by Milky Way baryonic potential

 $\frac{\mathrm{d}^{3}\mathcal{P}}{\mathrm{d}V\mathrm{d}m\,\mathrm{d}c} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}c}(c,m).$

Hütten et al. (2019)

Subhalos disrupted by Milky Way baryonic potential

Annihilation DM only Decay DM only 2.0Phat-ELVIS Phat-ELVIS SL17, $\epsilon_t = 10^{-2}$ SL17, $\epsilon_t = 10^{-2}$ $d\mathcal{P}/d(\log l^*)$ 1.5SL17, $\epsilon_t = 1$ SL17, $\epsilon_t = 1$ Jas 6 50 1.0 J_{full} J_{full} 0.50.00 10^{-1} 10^{2} 10^{2} 10^{0} 10^{1} 10^{-} 100 10^{1} Distance from Earth, l* [kpc] Distance from Earth, l* [kpc] 3 $d\mathcal{P}/d(\log R^*)$ 2 1 0 10⁰ 10^{0} 10^{1} 10^{2} 10^{1} 10^{2} Galactocentric radius, R* [kpc] Galactocentric radius, R* [kpc] 0.81.0 $(\underset{*}{\overset{0.6}{\operatorname{m gol}}}){\overset{0.6}{\operatorname{p}}} dp$ 0.50.0 0.0 10^{10} 10^{10} 10^{6} 10^{7} 10^{8} 10^{9} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} 10^{4} 10^{5} Mass, m^* [M_{\odot}] Mass, m^* [M_{\odot}]

 \rightarrow Allows to study statistical properties (here of brightest sub-halos)

 $\frac{\mathrm{d}^{3}\mathcal{P}}{\mathrm{d}V\mathrm{d}m\,\mathrm{d}c} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}c}(c,m).$

Annihilation Decay DM only DM only 2.0 Phat-ELVIS Phat-ELVIS SL17, $\epsilon_t = 10^{-2}$ SL17. $\epsilon_t = 10^{-2}$ $d\mathcal{P}/d(\log l^*)$ 1.5SL17, $\epsilon_t = 1$ L17, $\epsilon_t = 1$ Jas 1.0 J_{full} 0.50.00 10^{-1} 10^{2} 10^{2} 10^{0} 10^{1} 10^{-} 100 10^{1} Distance from Earth, l* [kpc] Distance from Earth, l* [kpc] $\alpha_{\rm int} = 0.5^{\circ}$ $\alpha_{\rm int}=0.5^\circ$ 1.00 1.00 $d\mathcal{D}/d(\cos\theta^{\star})$ 0.750.500.250.250.00 0.00 45 90 135 180 45 135 90 180 Angular distance θ^* from Galactic Center [deg] Angular distance θ^* from Galactic Center [deg] 2.0 $dP/d(\log J^* \text{ or } D^*)$ 3 1.5 2 1.0 0.5 0.0 10^{21} 10^{22} 10^{19} 10^{20} 10^{18} 10^{19} 10^{20} 10^{21} J-factor, J^{\star} [GeV² cm⁻⁵] D-factor, D^* [GeV cm⁻²]

 \rightarrow Allows to study statistical properties (here of brightest sub-halos)

 $\frac{\mathrm{d}^{3}\mathcal{P}}{\mathrm{d}V\mathrm{d}m\,\mathrm{d}c} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}c}(c,m).$

→ Useful to test detectability by Fermi-LAT (e.g., Di Mauro, Stref & Calore 2020)

1) γ-rays from DM: brief reminder

2) What is CLUMPY?

3) A few results: focus on subhalos

4) Conclusions

Conclusions

Status of CLUMPY

- 3 public releases (on git, full documentation)
- From dark clumps to extragalactic
 - \rightarrow Impact of tidal disruption implemented for dark halos in v3.1 (released last year)
- Growing use in community
 - \rightarrow Used in DM analyses by Antares, Fermi-LAT, CTA, HAWC

Desired developments

1) Synthetic skymaps for extragalactic: average + nearby known/relevant (as for dark clumps)
 → 1-point statistics, direct calculation of higher-order statistics, full skymap simulation

- 2) Include calculation of generalised J-factors (velocity-dependent cross-sections)
 - → Stay tune for Lacroix et al. (see M. Stref's talk)... that would be nice to implement in CLUMPY
- 3) More exotic or more technical issues
 - \rightarrow Python interface, simple parallelisation, etc.

Unfortunately, workforce of the CLUMPY team asymptotically goes to N < **1 with time!** (contact us if you are interested: clumpy@lpsc.in2p3.fr)