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MEAN FIELD
> H=>3%h+>5Vj
» h — harmonic oscillator +spin orbit

» V — residual interaction

» “Ohw” calculations.

PERTURBATION THEORY
» Full Hilbert space — Valence space
» HV =EV — Hg Ve = EWes

> (VIO|W) — (Wert|Oeft | Weit )
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IN PRINCIPLE, possibility to describe SIMULTANEOUSLY
ALL the spectroscopic properties of

ALL the nuclei of the valence space.

» Energies.
» Electric and magnetic transitions.

» ( decay, 86 decay.

BUT
» Intruder states.

» Validity of the valence space for specific spectroscopic
properties ?



B(E2)’s in Tin isotopes
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» 1) Define a valence space
» 2) Derive an effective interaction

» 3) Build and diagonalize the Hamiltonian matrix.

Point 3) is a strong technical constraint on the choice of the
valence space.



vaivlivt IpyalLto.

» ‘He —16 0 p shell Dim ~ 107

» 160 40 Ca sd shell Dim ~ 10°

» 40Ca -8 zr pf shell Dim ~ 10°
No Shell closure for N = Z = 40 — 89Zr is a deformed
nucleus.

Shell closure at N=Z=50 — 1005

After °6Ni the 0gs shell becomes less and less negligible.
2

Transition of the valence space :

rsg space: nuclei with 28 < N,Z < 50 : Dim ~ 10%°

Description of deformed nuclei around N = Z = 40 needs the
introduction of the 1ds shell to get a prolate solution.but now
2

the dimension of the space is ~ 104



For Heavy nuclei spin-orbit closure N=50,82,126
Dimensions of the matrices limit strongly the domain of
applicability of standard SM calculations

r,h space: nuclei with 50 < N,Z < 82:
» 112Xe (4p+8n active particles) Dim ~ 9.3 x 10°
» 114Xe (4p+10n active particles) Dim ~ 5.5 % 1010
» 124Ba (6p+12n active particles) Dim ~ 1.1 * 1013

» Few active particles (holes)
» around semi-magic nuclei
All these nuclei are spherical : seniority truncation .

238 is out of reach but 218U has been done. (semi-magic
nucleus).



50 < Z,N < 82 region
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Standard valence space "0hw” space.

Intruder states : introduction of some NAw states in the valence
space.

Deformed and super-deformed band in *°Ca:

excitations of 4 (8) particles from the sd to the pf shells .
Dimensions increase and problem of spurious states (center of
mass excitaion)

in NOCORE SHELL MODEL FULL N#w space — exact
removal of the spurious center of mass states.

Convergence with N at the exact solution (comparison with
GFMC results)

Limitation to light nuclei (p shell nuclei).

Nhw = 16 (A=6) Nhw = 8 (A=12,16) Nhw = 4 (A=22)
A=4 Nhw = 24 small dimension ~ 1.2 x 108 but

325 nlj shells and 5650 nljm states

A =48 Dim(Niw=2)~21%10® (Nhw=4)~ 2210



Diagonalization (Lanczos method)

We have a starting vector |1), First iteration :
HI1) = E11|1) + Eq2(2)
Second iteration :
H|2) = E21|1) + Ex|2) + E23|3)
Third iteration :
H|3) = Es2[2) + Ez3|3) + E34l4)

|1) does nor appear since E3; = E;3 =0
At rank N, we will get :

HIN) = Enn—1/N — 1) + EnnIN) + Ennga|N 4+ 1)

A new basis (Lanczos vectors) is built in which H is
TRIDIAGONAL



Diagonalization (Lanczos method)
CPU time is proportional to the number of Lanczos iterations,

which is itself proportional to the number of eigenvectors that
we need.

It has a small dependance with the dimension of the matrix.
(with standard method for diagonalization CPU time ~ N?3)

Choice of the starting vector is crucial to reduce the number of
iterations: eigenvector in a smaller space.
Problems :

» storage of all the Lanczos vectors (Disk capacity)

» numerical errors can appear when the number of iterations
becomes large. (orhogonality between the Lanczos
vectors, quantum numbers)

note: Lanczos with J? operator allows to project out on states
of good angular momentum.



Lanczos Strength Function

Transition matrix elements (V¢ |Q|V;) for many final states |W¢)
(6 decay, pn reactions, spectroscopic factors ...

Qi) = So|®o)
S¢ is the total strength and ®q is the sum rule state.

Taking this ®q vector to start a Lanczos calculation we get:

|Po) = > S¢|Vs)
f
So xSt = (W|Q|¥;)

Convergence of the strength function S ?



Evolution of Strength Distribution

GT Strength on #8Sc
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Evolution of Strength Distribution
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Evolution of Strength Distribution
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Evolution of Strength Distribution

GT Strength on #8Sc
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Evolution of Strength Distribution
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Evolution of Strength Distribution
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Evolution of Strength Distribution
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Evolution of Strength Distribution
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Giant matrices

Exponential increase of the dimension with :
» N : number of individual states in the valence space.
» n: number of active particles (hole)

Number of H,; # 0 is not quadratic but ~ LINEAR with the
dimensions of the matrices.
However we must deal with:

GIANT MATRICES

Number of H,; # 0 too large to be precalculated AND STORED

They must be recalculated in the diagonalization process
(Lanczos).



pf valence space

Dimensions and non—zero terms




Shell Model Codes

M-scheme :

The basis is composed of Slater determinants (SD)

K)= [ aflo) = a;..a},/0)
i=nljmr
The drawback is that only J, and T, are good quantum
numbers.
As a consequence the dimensions of the matrices are maximal:
dr d,
D~ (%) (%)
» The N-body matrix elements (NBME) are very easy to
calculate.
Hi; = £Vjju (2-body matrix elements in the decoupled
basis).
» The matrix is very sparse.



Shell Model Codes

Coupled-scheme :

The wave function is written as successive coupling of one shell
wave functions (c. f. p. ’s) defined by |(j;)"viviX;) :

[ TG0 vywa) 12)v2rzxe) 17 - 1) venoxe)]

> ¢ = Mg +

> V; = seniority i. e. number of particles non coupled by pairs
toJ=0

» smaller dimension (especially J=0 states)

» allows truncations with seniority : heavy spherical nuclei .

> less sparse



Limitations

M-scheme: size of the basis.

Coupled scheme: number of non-zero.

8cr
S2Fe
56Ni
GOZn

108Xe
110Xe
112Xe

M=0

1.9 10°
1.1108
1.110°
2.310°

3.7 107
8.510°
9.310°

Dimensions

(M=0)
(J=0)
48.
61.9
70.4
733

97.
118.
135.

13.
15.
17.

0.8 10°
7.4 10%
9.6 10!
2.2 10%

1.6 10%°
5.2 101!
2.210%

0.6

11
3.5
8.7




M scheme
WHITEHEAD method (1977)

At each Slater Determinant K is associated an integer number
W(K).

At each individual state i=nljmr is associated a bit of this
number.

This bit will be put at 1 or O following that the state is occupied
or not.

These integer numbers W(K) are ordered .

Th Hamiltonian is written in the decoupled basis Vi aiTajTaka|
At each Lanczos iteration the code works as it follows

1) Loop on K

2) Loop on the operators aiTajTaka|

3) Check bit(k)=bit(l)=1 and bit(i)=bit(j)=0 If not continue 2)
4) Wy = W (K) — bit(k) — bit(l) + bit(i) + bit(j)

5) By the bisection method identify Wy = W (J)

6) Calculate the phase ( permution of the operators) and
get Hky = £Vij

VVvVvVvVvyYyvyy



M scheme

ANTOINE SM code (1988-20..) (available on the web).
Each state of the basis is now the product of 2 Slater
Determinants:

K) = lic)

i — SD for protons
« — SD for neutrons
dim(i),dim(a) < dim(K)

S6Ni dim(K)=10° dim(i,)=1.25 % 10°
Precalculations (storage) done apart for each subspace i and «

using the Whitehead Method.
The pn NBME are generated with 3 integer additions.



M scheme basis

ll+ll
m n

MMM+2

liy [1]2]3[4]s][e][7]s] [ 9]10[11]12]13[14] 5] T[] R

\'\\\ ”n
W %0
AW D0
VN A
\ sy

1

1

1

1

;

a i
VA 1
5

@) [s[e[7[efofso] [ [T TTTT] - Jan
M -M-1 -M-2



Limitations

» Disk Capacity: storage of Lanczos vectors
» RAM Memory : must contain 2 Lanczos vectors

splitting of the initial and final vectors
Vit = U v
\U(m) Z H(m n)w(n)

It solves the problem of the RAM memory but increases
the CPU time:

» time acess to the disk
» H(l,J) and H(J,1) must be generated separately.

It is a natural way for parallelization .



Coupled code

same separation of p and n subspaces |I) = |ia)
We have now J instead of M.

Hnn and Hpp always
<| |pr|\]> = <iOé|pr|i,O/> = hii/ 6010/
<”Hnn|\]> = <i0[|Hnn|i/a/> = 5“/ hOtO/
for Hpn we have now generalized CFP coefficients

<||Hpn|J> = <iOé|Hpn|i/O/> = Gjjs Caa/V(K)

Non-zero are generated with 3 integer additions (idem M
scheme) + 2 floating multiplications.



Coupled code

small dimensions but huge number of NBME.
natural way for parallelization : splitting of H

H :ZH(k)
K

Each processor has the initial and calculate a final vector:
k

v =y,

Final vectors are added :

v = ; lIJ]Ek)



Conclusions

Progress in Computers and in Codes have allowed a strong
increase of the domain of applicability of Shell Model .

Nuclei Ov 33 emetters :
4804 76Ge. 825e 967p 100\ 116Cq 130T 136xe 150N

10 years ago, only “8Ca could be studied with SM.
Now all of them except °°Nd have been calculated .

Future goal :

» Not to reach dimensions 101112 phut reduce the CPU time
with Massive Parallelization .
Calculation of 112Xe : 15 hours (minutes !) instead of 15
days .

» 3-body forces
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