# Les Matrices Géantes dans le cadre du Modèle en Couches

#### E. Caurier

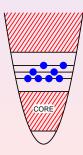




Journées Thématiques d'Orsay, IPNO, 11 Décembre 2009

#### **MEAN FIELD**

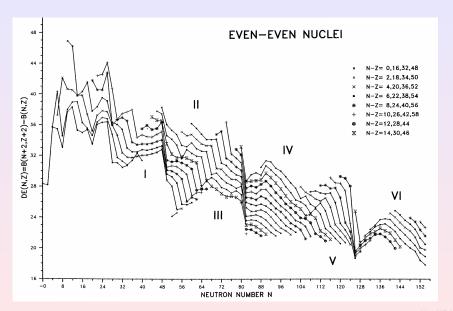
- $\blacktriangleright \ H = \sum_i h_i + \sum_{i < j} V_{ij}$
- h → harmonic oscillator +spin orbit
- V → residual interaction
- " $0\hbar\omega$ " calculations.



#### PERTURBATION THEORY

- ► Full Hilbert space Valence space
- ►  $HΨ = EΨ \longrightarrow H_{eff}Ψ_{eff} = EΨ_{eff}$
- $\blacktriangleright \ \langle \Psi | O | \Psi \rangle \longrightarrow \langle \Psi_{eff} | O_{eff} | \Psi_{eff} \rangle$

#### $\alpha$ Lines



#### IN PRINCIPLE, possibility to describe SIMULTANEOUSLY

ALL the spectroscopic properties of

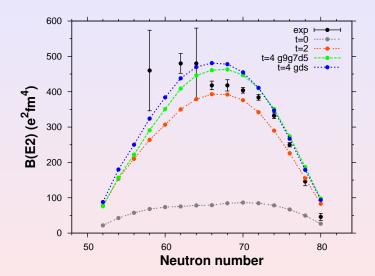
ALL the nuclei of the valence space.

- Energies.
- Electric and magnetic transitions.
- $\triangleright$   $\beta$  decay,  $\beta\beta$  decay.
- .....

#### **BUT**

- Intruder states.
- Validity of the valence space for specific spectroscopic properties?

# B(E2)'s in Tin isotopes



- 1) Define a valence space
- 2) Derive an effective interaction
- 3) Build and diagonalize the Hamiltonian matrix.

Point 3) is a strong technical constraint on the choice of the valence space.

valence Spaces.

► 
$${}^{4}\text{He} \rightarrow {}^{16}\text{O}$$
 p shell

$$\mathit{Dim} \sim 10^2$$

► 
$$^{16}O \rightarrow ^{40} Ca$$

$$Dim \sim 10^5$$

▶ 
$$^{40}$$
Ca  $\rightarrow ^{80}$  Zr

$$Dim \sim 10^9$$

No Shell closure for  $N=Z=40\longrightarrow{}^{80}Zr$  is a deformed nucleus.

Shell closure at N=Z=50  $\longrightarrow$  <sup>100</sup>Sn

After  ${}^{56}Ni$  the  $0g_{\frac{9}{2}}$  shell becomes less and less negligible.

Transition of the valence space :

$$pf = 0f_{\frac{7}{2}}, 0f_{\frac{5}{2}}, 1p_{\frac{3}{2}}, 1p_{\frac{1}{2}} \longrightarrow r_{3}g = 0f_{\frac{5}{2}}, 1p_{\frac{3}{2}}, 1p_{\frac{1}{2}}, 0g_{\frac{9}{2}}$$

 $r_3g$  space: nuclei with 28 < N,Z < 50 :  $Dim \sim 10^{10}$ 

Description of deformed nuclei around N=Z=40 needs the introduction of the  $1d_{\frac{5}{2}}$  shell to get a prolate solution.but now the dimension of the space is  $\sim 10^{14}$ 



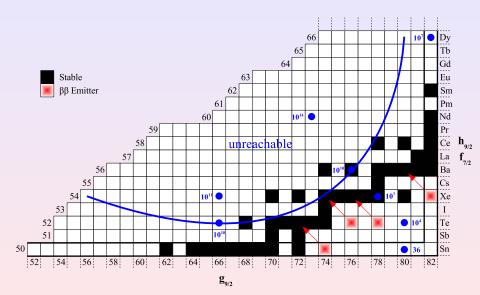
For Heavy nuclei spin-orbit closure N=50,82,126 Dimensions of the matrices limit strongly the domain of applicability of standard SM calculations

 $r_4h$  space: nuclei with 50 < N, Z < 82:

- ▶  $^{112}$ Xe (4p+8n active particles)  $Dim \sim 9.3 * 10^9$
- ▶  $^{114}$ Xe (4p+10n active particles)  $Dim \sim 5.5 * 10^{10}$
- ▶  $^{124}Ba$  (6p+12n active particles)  $Dim \sim 1.1 * 10^{13}$
- Few active particles (holes)
- around semi-magic nuclei

All these nuclei are spherical: seniority truncation. <sup>238</sup>U is out of reach but <sup>218</sup>U has been done. (semi-magic nucleus).

# $50 \le Z, N \le 82$ region



Standard valence space " $0\hbar\omega$ " space.

Intruder states : introduction of some  $N\hbar\omega$  states in the valence space.

Deformed and super-deformed band in <sup>40</sup>Ca:

excitations of 4 (8) particles from the sd to the pf shells.

Dimensions increase and problem of spurious states (center of mass excitaion)

in NOCORE SHELL MODEL FULL  $N\hbar\omega$  space  $\longrightarrow$  exact removal of the spurious center of mass states.

Convergence with N at the exact solution (comparison with GFMC results)

Limitation to light nuclei (p shell nuclei).

$$N\hbar\omega=$$
 16 (A=6)  $N\hbar\omega=$  8 (A=12,16)  $N\hbar\omega=$  4 (A=22)

A=4  $N\hbar\omega=24$  small dimension  $\sim 1.2*10^8$  but

325 nlj shells and 5650 nljm states

$$A = 48$$
  $Dim(N\hbar\omega = 2) \sim 2.1 * 10^8$   $(N\hbar\omega = 4) \sim 2.2 * 10^{11}$ 

# Diagonalization (Lanczos method)

We have a starting vector  $|1\rangle$ , First iteration :

$$H|\mathbf{1}\rangle=E_{11}|\mathbf{1}\rangle+E_{12}|\mathbf{2}\rangle$$

Second iteration:

$$H|\mathbf{2}\rangle = E_{21}|\mathbf{1}\rangle + E_{22}|\mathbf{2}\rangle + E_{23}|\mathbf{3}\rangle$$

Third iteration:

$$H|\mathbf{3}\rangle = E_{32}|\mathbf{2}\rangle + E_{33}|\mathbf{3}\rangle + E_{34}|\mathbf{4}\rangle$$

 $|1\rangle$  does not appear since  $E_{31} = E_{13} = 0$ At rank N, we will get:

$$H|\mathbf{N}\rangle = E_{N,N-1}|\mathbf{N}-\mathbf{1}\rangle + E_{N,N}|\mathbf{N}\rangle + E_{N,N+1}|\mathbf{N}+\mathbf{1}\rangle$$

A new basis (Lanczos vectors) is built in which H is TRIDIAGONAL

# **Diagonalization (Lanczos method)**

CPU time is proportional to the number of Lanczos iterations, which is itself proportional to the number of eigenvectors that we need.

It has a small dependance with the dimension of the matrix. (with standard method for diagonalization CPU time  $\sim N^3$ )

Choice of the starting vector is crucial to reduce the number of iterations: eigenvector in a smaller space.

#### Problems:

- storage of all the Lanczos vectors (Disk capacity)
- numerical errors can appear when the number of iterations becomes large. (orhogonality between the Lanczos vectors, quantum numbers)

note: Lanczos with  $J^2$  operator allows to project out on states of good angular momentum.

# **Lanczos Strength Function**

Transition matrix elements  $\langle \Psi_f | \Omega | \Psi_i \rangle$  for many final states  $| \Psi_f \rangle$  $\beta$  decay, pn reactions, spectroscopic factors ...

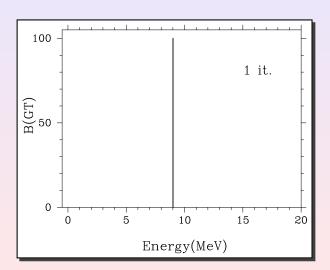
$$\Omega |\Psi_i\rangle = S_0 |\Phi_0\rangle$$

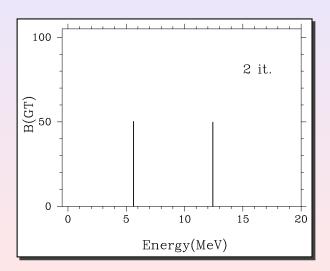
 $S_0^2$  is the total strength and  $\Phi_0$  is the sum rule state.

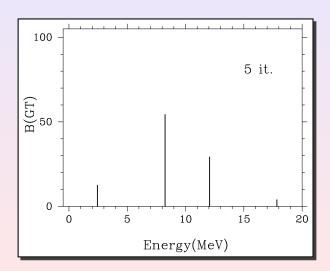
Taking this  $\Phi_0$  vector to start a Lanczos calculation we get:

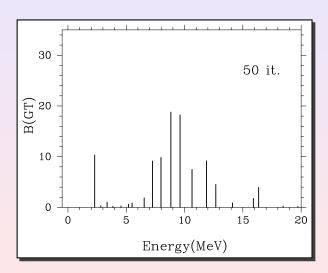
$$\begin{aligned} |\Phi_0\rangle &= \sum_f S_f |\Psi_f\rangle \\ S_0 * S_f &= \langle \Psi_f |\Omega| \Psi_i \rangle \end{aligned}$$

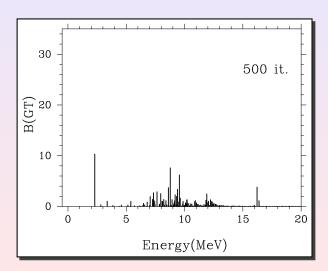
Convergence of the strength function  $S_f$ ?

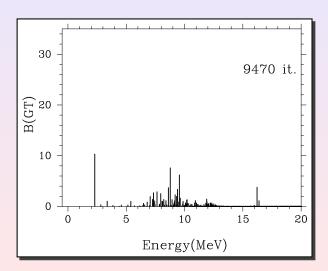


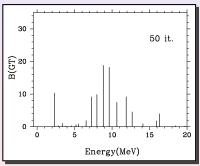


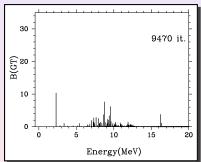


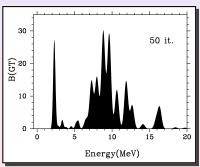


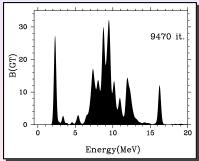












#### **Giant matrices**

Exponential increase of the dimension with:

- N: number of individual states in the valence space.
- n : number of active particles (hole)

Number of  $H_{IJ} \neq 0$  is not quadratic but  $\sim$  LINEAR with the dimensions of the matrices.

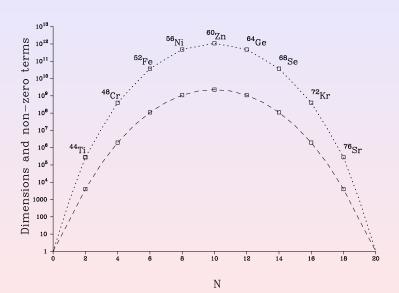
However we must deal with:

#### **GIANT MATRICES**

Number of  $H_{IJ} \neq 0$  too large to be precalculated AND STORED .

They must be recalculated in the diagonalization process (Lanczos).

# pf valence space



#### **Shell Model Codes**

M-scheme:

The basis is composed of Slater determinants (SD)

$$|\mathcal{K}
angle = \prod_{i=n l j m au} a_i^\dagger |0
angle \ = \ a_{i1}^\dagger ... a_{iA}^\dagger |0
angle$$

The drawback is that only  $J_z$  and  $T_z$  are good quantum numbers.

As a consequence the dimensions of the matrices are maximal:

$$\mathsf{D} \sim \left(egin{matrix} d_\pi \ p \end{matrix}
ight) \,.\, \left(egin{matrix} d_
u \ n \end{matrix}
ight)$$

The N-body matrix elements (NBME) are very easy to calculate.

 $H_{IJ} = \pm V_{ijkl}$  (2-body matrix elements in the decoupled basis).

► The matrix is very sparse.

#### Shell Model Codes

#### Coupled-scheme:

The wave function is written as successive coupling of one shell wave functions (c. f. p. 's) defined by  $|(j_i)^{n_i}v_i\gamma_ix_i\rangle$ :

$$\left[ \left[ \left. | (j_1)^{n_1} v_1 \gamma_1 x_1 \right\rangle \right. | (j_2)^{n_2} v_2 \gamma_2 x_2 \rangle \left. \right]^{\Gamma_2} \dots \left. | (j_k)^{n_k} v_k \gamma_k x_k \right\rangle \right]^{\Gamma_k}$$

- $\vec{\Gamma}_{\nu} = \vec{\Gamma}_{\nu} + \vec{\gamma}_{\nu}$
- $v_i \equiv$  seniority i. e. number of particles non coupled by pairs to J=0
- smaller dimension (especially J=0 states)
- allows truncations with seniority: heavy spherical nuclei.
- less sparse

#### Limitations

M-scheme: size of the basis.

Coupled scheme: number of non-zero.

|                   | D                   | imension              | S                     | $\mathcal{H}_{IJ}  eq 0$ |                       |                       |
|-------------------|---------------------|-----------------------|-----------------------|--------------------------|-----------------------|-----------------------|
|                   | M=0                 | $\frac{(M=0)}{(J=0)}$ | $\frac{(M=0)}{(J=4)}$ | M=0                      | $\frac{(J=0)}{(M=0)}$ | $\frac{(J=4)}{(M=0)}$ |
| <sup>48</sup> Cr  | $1.9 \ 10^6$        | 48.                   | 8.                    | $0.8 \ 10^9$             | 0.6                   | 17.                   |
| <sup>52</sup> Fe  | 1.1 10 <sup>8</sup> | 61.9                  | 9.                    | 7.4 10 <sup>10</sup>     | 2.4                   | 83.                   |
| <sup>56</sup> Ni  | 1.1 10 <sup>9</sup> | 70.4                  | 10.                   | 9.6 10 <sup>11</sup>     | 5.                    | 194                   |
| <sup>60</sup> Zn  | $2.3 \ 10^9$        | 73.3                  | 10.                   | 2.2 10 <sup>12</sup>     | 7.                    | 254.                  |
|                   |                     |                       |                       |                          |                       |                       |
| <sup>108</sup> Xe | $3.7  10^7$         | 97.                   | 13.                   | 1.6 10 <sup>10</sup>     | 1.1                   | 50.                   |
| <sup>110</sup> Xe | 8.5 10 <sup>8</sup> | 118.                  | 15.                   | 5.2 10 <sup>11</sup>     | 3.5                   | 171.                  |
| <sup>112</sup> Xe | 9.3 10 <sup>9</sup> | 135.                  | 17.                   | 2.2 10 <sup>12</sup>     | 8.7                   | 436.                  |

#### **M** scheme

WHITEHEAD method (1977)

At each Slater Determinant K is associated an integer number W(K).

At each individual state  $i=nljm\tau$  is associated a bit of this number.

This bit will be put at 1 or 0 following that the state is occupied or not.

These integer numbers W(K) are ordered.

Th Hamiltonian is written in the decoupled basis  $V_{ijkl}a_i^{\dagger}a_j^{\dagger}a_ka_l$ At each Lanczos iteration the code works as it follows

- 1) Loop on K
- ▶ 2) Loop on the operators  $a_i^{\dagger} a_j^{\dagger} a_k a_l$
- ➤ 3) Check bit(k)=bit(l)=1 and bit(i)=bit(j)=0 If not continue 2)
- ▶ 4)  $W_0 = W(K) bit(k) bit(l) + bit(l) + bit(l)$
- ▶ 5) By the bisection method identify  $W_0 = W(J)$
- ▶ 6) Calculate the phase ( permution of the operators) and get  $H_{KJ}=\pm V_{ijkl}$

#### M scheme

ANTOINE SM code (1988-20...) (available on the web). Each state of the basis is now the product of 2 Slater Determinants:

$$|K\rangle = |i\alpha\rangle$$
 $i \longrightarrow \text{SD for protons}$ 
 $\alpha \longrightarrow \text{SD for neutrons}$ 
 $\dim(i),\dim(\alpha) \ll \dim(K)$ 

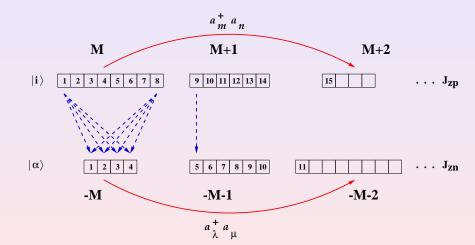
<sup>56</sup>Ni dim(K)=10<sup>9</sup> dim(i,
$$\alpha$$
)=1.25 \* 10<sup>5</sup>

Precalculations (storage) done apart for each subspace i and  $\alpha$ using the Whitehead Method.

The pn NBME are generated with 3 integer additions.



#### M scheme basis



#### **Limitations**

- Disk Capacity: storage of Lanczos vectors
- RAM Memory: must contain 2 Lanczos vectors

splitting of the initial and final vectors

$$\Psi_{i,f} = \bigcup_{m} \Psi_{i,f}^{m}$$

$$\Psi_{f}^{(m)} = \sum_{n} \mathcal{H}^{(m,n)} \Psi_{i}^{(n)}$$

It solves the problem of the RAM memory but increases the CPU time:

- time acess to the disk
- ightharpoonup H(I,J) and H(J,I) must be generated separately.

It is a natural way for parallelization.

# **Coupled code**

same separation of p and n subspaces  $|I\rangle \equiv |i\alpha\rangle$  We have now J instead of M.

 $H_{nn}$  and  $H_{pp}$  always

$$\langle I|\mathcal{H}_{pp}|J\rangle = \langle i\alpha|\mathcal{H}_{pp}|i'\alpha'\rangle = h_{ii'} \delta_{\alpha\alpha'}$$

$$\langle I|\mathcal{H}_{nn}|J\rangle = \langle i\alpha|\mathcal{H}_{nn}|i'\alpha'\rangle = \delta_{ii'} h_{\alpha\alpha'}$$

for  $H_{pn}$  we have now generalized CFP coefficients

$$\langle I|\mathcal{H}_{pn}|J\rangle = \langle i\alpha|\mathcal{H}_{pn}|i'\alpha'\rangle = c_{ii'} c_{\alpha\alpha'}V(K)$$

Non-zero are generated with 3 integer additions (idem M scheme) + 2 floating multiplications.

# Coupled code

small dimensions but huge number of NBME.

natural way for parallelization: splitting of H

$$H = \sum_{k} H^{(k)}$$

Each processor has the initial and calculate a final vector:

$$\Psi_f^{(k)} = \mathcal{H}^{(k)} \Psi_i$$

Final vectors are added:

$$\Psi_f = \sum_k \Psi_f^{(k)}$$

#### **Conclusions**

Progress in Computers and in Codes have allowed a strong increase of the domain of applicability of Shell Model .

Nuclei  $0\nu\beta\beta$  emetters :

$$^{48}$$
 Ca,  $^{76}$  Ge,  $^{82}$  Se,  $^{96}$  Zr,  $^{100}$  Mo,  $^{116}$  Cd,  $^{130}$  Te,  $^{136}$  Xe,  $^{150}$  Nd

10 years ago, only <sup>48</sup> Ca could be studied with SM. Now all of them except <sup>150</sup> Nd have been calculated.

#### Future goal:

- Not to reach dimensions 10<sup>11,12</sup> but reduce the CPU time with Massive Parallelization . Calculation of <sup>112</sup>Xe: 15 hours (minutes !!) instead of 15 days .
- 3-body forces