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MEAN FIELD

◮ H =
∑

i hi +
∑

i<j Vij

◮ h → harmonic oscillator +spin orbit

◮ V → residual interaction

◮ “0~ω” calculations.

CORE

PERTURBATION THEORY

◮ Full Hilbert space −→ Valence space

◮ HΨ = EΨ −→ Heff Ψeff = EΨeff

◮ 〈Ψ|O|Ψ〉 −→ 〈Ψeff |Oeff |Ψeff 〉
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α Lines
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IN PRINCIPLE, possibility to describe SIMULTANEOUSLY

ALL the spectroscopic properties of

ALL the nuclei of the valence space.

◮ Energies.
◮ Electric and magnetic transitions.
◮ β decay, ββ decay.
◮ .....

BUT
◮ Intruder states.

◮ Validity of the valence space for specific spectroscopic
properties ?
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B(E2)’s in Tin isotopes
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◮ 1) Define a valence space

◮ 2) Derive an effective interaction

◮ 3) Build and diagonalize the Hamiltonian matrix.

Point 3) is a strong technical constraint on the choice of the
valence space.
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Valence Spaces:
◮

4He →16 O p shell Dim ∼ 102

◮
16O →40 Ca sd shell Dim ∼ 105

◮
40Ca →80 Zr pf shell Dim ∼ 109

No Shell closure for N = Z = 40 −→ 80Zr is a deformed
nucleus.
Shell closure at N=Z=50 −→ 100Sn

After 56Ni the 0g 9
2

shell becomes less and less negligible.

Transition of the valence space :
pf= 0f 7

2
, 0f 5

2
, 1p 3

2
, 1p 1

2
−→r3g = 0f 5

2
, 1p 3

2
, 1p 1

2
, 0g 9

2

r3g space: nuclei with 28 < N, Z < 50 : Dim ∼ 1010

Description of deformed nuclei around N = Z = 40 needs the
introduction of the 1d 5

2
shell to get a prolate solution.but now

the dimension of the space is ∼ 1014
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For Heavy nuclei spin-orbit closure N=50,82,126
Dimensions of the matrices limit strongly the domain of
applicability of standard SM calculations

r4h space: nuclei with 50 < N, Z < 82 :
◮

112Xe (4p+8n active particles) Dim ∼ 9.3 ∗ 109

◮
114Xe (4p+10n active particles) Dim ∼ 5.5 ∗ 1010

◮
124Ba (6p+12n active particles) Dim ∼ 1.1 ∗ 1013

◮ Few active particles (holes)
◮ around semi-magic nuclei

All these nuclei are spherical : seniority truncation .
238U is out of reach but 218U has been done. (semi-magic
nucleus).
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50 ≤ Z , N ≤ 82 region
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Standard valence space ”0~ω” space.
Intruder states : introduction of some N~ω states in the valence
space.
Deformed and super-deformed band in 40Ca:
excitations of 4 (8) particles from the sd to the pf shells .
Dimensions increase and problem of spurious states (center of
mass excitaion)

in NOCORE SHELL MODEL FULL N~ω space −→ exact
removal of the spurious center of mass states.
Convergence with N at the exact solution (comparison with
GFMC results)
Limitation to light nuclei (p shell nuclei).
N~ω = 16 (A=6) N~ω = 8 (A=12,16) N~ω = 4 (A=22)
A=4 N~ω = 24 small dimension ∼ 1.2 ∗ 108 but
325 nlj shells and 5650 nljm states
A = 48 Dim(N~ω = 2) ∼ 2.1 ∗ 108 (N~ω = 4) ∼ 2.2 ∗ 1011
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Diagonalization (Lanczos method)
We have a starting vector |1〉, First iteration :

H|1〉 = E11|1〉 + E12|2〉

Second iteration :

H|2〉 = E21|1〉 + E22|2〉 + E23|3〉

Third iteration :

H|3〉 = E32|2〉 + E33|3〉 + E34|4〉

|1〉 does nor appear since E31 = E13 = 0
At rank N, we will get :

H|N〉 = EN,N−1|N − 1〉 + EN,N |N〉 + EN,N+1|N + 1〉

A new basis (Lanczos vectors) is built in which H is
TRIDIAGONAL
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Diagonalization (Lanczos method)
CPU time is proportional to the number of Lanczos iterations,
which is itself proportional to the number of eigenvectors that
we need.
It has a small dependance with the dimension of the matrix.
(with standard method for diagonalization CPU time ∼ N3)

Choice of the starting vector is crucial to reduce the number of
iterations: eigenvector in a smaller space.
Problems :

◮ storage of all the Lanczos vectors (Disk capacity)
◮ numerical errors can appear when the number of iterations

becomes large. (orhogonality between the Lanczos
vectors, quantum numbers)

note: Lanczos with J2 operator allows to project out on states
of good angular momentum.



powered by LATEX

Lanczos Strength Function

Transition matrix elements 〈Ψf |Ω|Ψi〉 for many final states |Ψf 〉
β decay, pn reactions, spectroscopic factors ...

Ω|Ψi〉 = S0|Φ0〉

S2
0 is the total strength and Φ0 is the sum rule state.

Taking this Φ0 vector to start a Lanczos calculation we get:

|Φ0〉 =
∑

f
Sf |Ψf 〉

S0 ∗ Sf = 〈Ψf |Ω|Ψi〉

Convergence of the strength function Sf ?
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Evolution of Strength Distribution

GT Strength on 48Sc
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Giant matrices

Exponential increase of the dimension with :
◮ N : number of individual states in the valence space.
◮ n : number of active particles (hole)

Number of HIJ 6= 0 is not quadratic but ∼ LINEAR with the
dimensions of the matrices.
However we must deal with:

GIANT MATRICES

Number of HIJ 6= 0 too large to be precalculated AND STORED
.

They must be recalculated in the diagonalization process
(Lanczos).
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pf valence space
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Shell Model Codes
M-scheme :

The basis is composed of Slater determinants (SD)

|K 〉 =
∏

i=nljmτ

a†
i |0〉 = a†

i1...a
†
iA|0〉

The drawback is that only Jz and Tz are good quantum
numbers.
As a consequence the dimensions of the matrices are maximal:

D ∼
(dπ

p

)

.
(dν

n

)

◮ The N-body matrix elements (NBME) are very easy to
calculate.
HIJ = ±Vijkl (2-body matrix elements in the decoupled
basis).

◮ The matrix is very sparse.
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Shell Model Codes
Coupled-scheme :

The wave function is written as successive coupling of one shell
wave functions (c. f. p. ’s) defined by |(ji )ni viγixi〉 :

[

[

|(j1)
n1v1γ1x1〉 |(j2)

n2v2γ2x2〉
]Γ2 ... |(jk )nk vkγkxk 〉

]Γk

◮ ~Γk = ~Γk−1 + ~γk

◮ vi ≡ seniority i. e. number of particles non coupled by pairs
to J = 0

◮ smaller dimension (especially J=0 states)
◮ allows truncations with seniority : heavy spherical nuclei .
◮ less sparse
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Limitations

M-scheme: size of the basis.

Coupled scheme: number of non-zero.

Dimensions HIJ 6= 0

M=0 (M=0)
(J=0)

(M=0)
(J=4) M=0 (J=0)

(M=0)
(J=4)
(M=0)

48Cr 1.9 106 48. 8. 0.8 109 0.6 17.
52Fe 1.1 108 61.9 9. 7.4 1010 2.4 83.
56Ni 1.1 109 70.4 10. 9.6 1011 5. 194
60Zn 2.3 109 73.3 10. 2.2 1012 7. 254.

108Xe 3.7 107 97. 13. 1.6 1010 1.1 50.
110Xe 8.5 108 118. 15. 5.2 1011 3.5 171.
112Xe 9.3 109 135. 17. 2.2 1012 8.7 436.
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M scheme
WHITEHEAD method (1977)

At each Slater Determinant K is associated an integer number
W(K).
At each individual state i=nljmτ is associated a bit of this
number.
This bit will be put at 1 or 0 following that the state is occupied
or not.
These integer numbers W(K) are ordered .
Th Hamiltonian is written in the decoupled basis Vijkla

†
i a

†
j akal

At each Lanczos iteration the code works as it follows
◮ 1) Loop on K
◮ 2) Loop on the operators a†

i a
†
j akal

◮ 3) Check bit(k)=bit(l)=1 and bit(i)=bit(j)=0 If not continue 2)
◮ 4) W0 = W (K ) − bit(k) − bit(l) + bit(i) + bit(j)
◮ 5) By the bisection method identify W0 = W (J)
◮ 6) Calculate the phase ( permution of the operators) and

get HKJ = ±Vijkl
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M scheme

ANTOINE SM code (1988-20..) (available on the web).
Each state of the basis is now the product of 2 Slater
Determinants:

|K 〉 = |iα〉

i −→ SD for protons
α −→ SD for neutrons
dim(i),dim(α) ≪ dim(K)

56Ni dim(K)=109 dim(i,α)=1.25 ∗ 105

Precalculations (storage) done apart for each subspace i and α

using the Whitehead Method.
The pn NBME are generated with 3 integer additions.
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M scheme basis
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Limitations

◮ Disk Capacity: storage of Lanczos vectors
◮ RAM Memory : must contain 2 Lanczos vectors

splitting of the initial and final vectors

Ψi ,f =
⋃

m
Ψm

i ,f

Ψ
(m)
f =

∑

n
H(m,n)Ψ

(n)
i

It solves the problem of the RAM memory but increases
the CPU time:

◮ time acess to the disk
◮ H(I, J) and H(J , I) must be generated separately.

It is a natural way for parallelization .
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Coupled code

same separation of p and n subspaces |I〉 ≡ |iα〉
We have now J instead of M.

Hnn and Hpp always

〈I|Hpp|J〉 = 〈iα|Hpp|i ′α′〉 = hii ′ δαα′

〈I|Hnn|J〉 = 〈iα|Hnn|i ′α′〉 = δii ′ hαα′

for Hpn we have now generalized CFP coefficients

〈I|Hpn|J〉 = 〈iα|Hpn|i ′α′〉 = cii ′ cαα′V (K )

Non-zero are generated with 3 integer additions (idem M
scheme) + 2 floating multiplications.
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Coupled code

small dimensions but huge number of NBME.

natural way for parallelization : splitting of H

H =
∑

k
H(k)

Each processor has the initial and calculate a final vector:

Ψ
(k)
f = H(k)Ψi

Final vectors are added :

Ψf =
∑

k
Ψ

(k)
f
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Conclusions

Progress in Computers and in Codes have allowed a strong
increase of the domain of applicability of Shell Model .

Nuclei 0νββ emetters :

48Ca, 76Ge, 82Se, 96Zr , 100Mo, 116Cd , 130Te, 136Xe, 150Nd

10 years ago, only 48Ca could be studied with SM.
Now all of them except 150Nd have been calculated .

Future goal :
◮ Not to reach dimensions 1011,12 but reduce the CPU time

with Massive Parallelization .
Calculation of 112Xe : 15 hours (minutes !!) instead of 15
days .

◮ 3-body forces
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