Les Matrices Géantes dans le cadre du Modèle en Couches

E. Caurier

Journées Thématiques d'Orsay, IPNO, 11 Décembre2009

MEAN FIELD

- $H=\sum_{i} h_{i}+\sum_{i<j} V_{i j}$
- $\mathrm{h} \rightarrow$ harmonic oscillator +spin orbit
- $\mathrm{V} \rightarrow$ residual interaction
- "0 ${ }^{-} \omega$ " calculations.

PERTURBATION THEORY

- Full Hilbert space \longrightarrow Valence space
$\triangleright H \Psi=E \Psi \longrightarrow H_{\text {eff }} \Psi_{\text {eff }}=E \Psi_{\text {eff }}$
$\bullet\langle\Psi| O|\Psi\rangle \longrightarrow\left\langle\Psi_{\text {eff }}\right| O_{\text {eff }}\left|\Psi_{\text {eff }}\right\rangle$

α Lines

IN PRINCIPLE, possibility to describe SIMULTANEOUSLY
ALL the spectroscopic properties of
ALL the nuclei of the valence space.

- Energies.
- Electric and magnetic transitions.
- β decay, $\beta \beta$ decay.
-

BUT

- Intruder states.
- Validity of the valence space for specific spectroscopic properties ?

$B(E 2)$'s in Tin isotopes

- 1) Define a valence space
- 2) Derive an effective interaction
- 3) Build and diagonalize the Hamiltonian matrix.

Point 3) is a strong technical constraint on the choice of the valence space.
$-{ }^{4} \mathrm{He} \rightarrow{ }^{16} \mathrm{O} \quad \mathrm{p}$ shell $\quad \operatorname{Dim} \sim 10^{2}$

- ${ }^{16} \mathrm{O} \rightarrow{ }^{40} \mathrm{Ca} \quad$ sd shell $\operatorname{Dim} \sim 10^{5}$
- ${ }^{40} \mathrm{Ca} \rightarrow{ }^{80} \mathrm{Zr} \quad$ pf shell $\operatorname{Dim} \sim 10^{9}$

No Shell closure for $N=Z=40 \longrightarrow{ }^{80} \mathrm{Zr}$ is a deformed nucleus.
Shell closure at $N=Z=50 \longrightarrow{ }^{100} S n$
After ${ }^{56} \mathrm{Ni}$ the $0 g_{\frac{9}{2}}$ shell becomes less and less negligible.
Transition of the valence space :
$p f=0 f_{\frac{7}{2}}, 0 f_{\frac{5}{2}}, 1 p_{\frac{3}{2}}, 1 p_{\frac{1}{2}} \longrightarrow r_{3} g=0 f_{\frac{5}{2}}, 1 p_{\frac{3}{2}}, 1 p_{\frac{1}{2}}, 0 g_{\frac{9}{2}}$
$r_{3} g$ space: nuclei with $28<N, Z<50: \operatorname{Dim} \sim 10^{10}$
Description of deformed nuclei around $N=Z=40$ needs the introduction of the $1 d_{\frac{5}{2}}$ shell to get a prolate solution.but now the dimension of the space is $\sim 10^{14}$

For Heavy nuclei spin-orbit closure $\mathrm{N}=50,82,126$
Dimensions of the matrices limit strongly the domain of applicability of standard SM calculations
$r_{4} h$ space: nuclei with $50<N, Z<82$:

- ${ }^{112} \mathrm{Xe}\left(4 \mathrm{p}+8 \mathrm{n}\right.$ active particles) $\operatorname{Dim} \sim 9.3 * 10^{9}$
- ${ }^{114} \mathrm{Xe}\left(4 \mathrm{p}+10 \mathrm{n}\right.$ active particles) $\operatorname{Dim} \sim 5.5 * 10^{10}$
- ${ }^{124} \mathrm{Ba}\left(6 p+12 \mathrm{n}\right.$ active particles) $\operatorname{Dim} \sim 1.1 * 10^{13}$
- Few active particles (holes)
- around semi-magic nuclei

All these nuclei are spherical : seniority truncation . ${ }^{238} \mathrm{U}$ is out of reach but ${ }^{218} \mathrm{U}$ has been done. (semi-magic nucleus).

$50 \leq Z, N \leq 82$ region

Standard valence space " $0 \hbar \omega$ " space. Intruder states : introduction of some $N \hbar \omega$ states in the valence space.
Deformed and super-deformed band in ${ }^{40} \mathrm{Ca}$: excitations of 4 (8) particles from the $s d$ to the pf shells . Dimensions increase and problem of spurious states (center of mass excitaion)
in NOCORE SHELL MODEL FULL N $\hbar \omega$ space \longrightarrow exact removal of the spurious center of mass states.
Convergence with N at the exact solution (comparison with GFMC results)
Limitation to light nuclei (p shell nuclei).
$N \hbar \omega=16(\mathrm{~A}=6) \quad N \hbar \omega=8(\mathrm{~A}=12,16) \quad N \hbar \omega=4(\mathrm{~A}=22)$
$A=4 N \hbar \omega=24$ small dimension $\sim 1.2 * 10^{8}$ but
325 nlj shells and 5650 nljm states
$A=48 \quad \operatorname{Dim}(N \hbar \omega=2) \sim 2.1 * 10^{8} \quad(N \hbar \omega=4) \sim 2.2 * 10^{11}$

Diagonalization (Lanczos method)

We have a starting vector $|\mathbf{1}\rangle$, First iteration :

$$
H|\mathbf{1}\rangle=E_{11}|\mathbf{1}\rangle+E_{12}|\mathbf{2}\rangle
$$

Second iteration :

$$
H|\mathbf{2}\rangle=E_{21}|\mathbf{1}\rangle+E_{22}|\mathbf{2}\rangle+E_{23}|\mathbf{3}\rangle
$$

Third iteration :

$$
H|\mathbf{3}\rangle=E_{32}|\mathbf{2}\rangle+E_{33}|\mathbf{3}\rangle+E_{34}|\mathbf{4}\rangle
$$

$|1\rangle$ does nor appear since $E_{31}=E_{13}=0$ At rank N, we will get :

$$
H|\mathbf{N}\rangle=E_{N, N-1}|\mathbf{N}-\mathbf{1}\rangle+E_{N, N}|\mathbf{N}\rangle+E_{N, N+1}|\mathbf{N}+\mathbf{1}\rangle
$$

A new basis (Lanczos vectors) is built in which H is TRIDIAGONAL

Diagonalization (Lanczos method)

CPU time is proportional to the number of Lanczos iterations, which is itself proportional to the number of eigenvectors that we need.
It has a small dependance with the dimension of the matrix. (with standard method for diagonalization CPU time $\sim N^{3}$)

Choice of the starting vector is crucial to reduce the number of iterations: eigenvector in a smaller space.

Problems:

- storage of all the Lanczos vectors (Disk capacity)
- numerical errors can appear when the number of iterations becomes large. (orhogonality between the Lanczos vectors, quantum numbers)
note: Lanczos with J^{2} operator allows to project out on states of good angular momentum.

Lanczos Strength Function

Transition matrix elements $\left\langle\Psi_{f}\right| \Omega\left|\Psi_{i}\right\rangle$ for many final states $\left|\Psi_{f}\right\rangle$ β decay, pn reactions, spectroscopic factors ...

$$
\Omega\left|\Psi_{i}\right\rangle=S_{0}\left|\Phi_{0}\right\rangle
$$

S_{0}^{2} is the total strength and Φ_{0} is the sum rule state.
Taking this Φ_{0} vector to start a Lanczos calculation we get:

$$
\begin{gathered}
\left|\Phi_{0}\right\rangle=\sum_{f} S_{f}\left|\Psi_{f}\right\rangle \\
S_{0} * S_{f}=\left\langle\Psi_{f}\right| \Omega\left|\Psi_{i}\right\rangle
\end{gathered}
$$

Convergence of the strength function S_{f} ?

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

Evolution of Strength Distribution

GT Strength on ${ }^{48} \mathrm{Sc}$

Giant matrices

Exponential increase of the dimension with :

- N : number of individual states in the valence space.
- n : number of active particles (hole)

Number of $H_{I J} \neq 0$ is not quadratic but \sim LINEAR with the dimensions of the matrices. However we must deal with:

GIANT MATRICES

Number of $H_{I J} \neq 0$ too large to be precalculated AND STORED

They must be recalculated in the diagonalization process (Lanczos).

pf valence space

Shell Model Codes

M-scheme :

The basis is composed of Slater determinants (SD)

$$
|K\rangle=\prod_{i=n j j m \tau} a_{i}^{\dagger}|0\rangle=a_{i 1}^{\dagger} \ldots a_{i A}^{\dagger}|0\rangle
$$

The drawback is that only J_{z} and T_{z} are good quantum numbers.
As a consequence the dimensions of the matrices are maximal:

$$
\mathrm{D} \sim\binom{d_{\pi}}{p} \cdot\binom{d_{\nu}}{n}
$$

- The N-body matrix elements (NBME) are very easy to calculate.
$H_{l J}= \pm V_{i j k l}$ (2-body matrix elements in the decoupled basis).
- The matrix is very sparse.

Shell Model Codes

Coupled-scheme :

The wave function is written as successive coupling of one shell wave functions (c. f. p. 's) defined by $\left|\left(j_{i}\right)^{n_{i}} v_{i} \gamma_{i} x_{i}\right\rangle$:

$$
\left[\left[\left|\left(j_{1}\right)^{n_{1}} v_{1} \gamma_{1} x_{1}\right\rangle\left|\left(j_{2}\right)^{n_{2}} v_{2} \gamma_{2} x_{2}\right\rangle\right]^{\Gamma_{2}} \ldots\left|\left(j_{k}\right)^{n_{k}} v_{k} \gamma_{k} x_{k}\right\rangle\right]^{\Gamma_{k}}
$$

- $\vec{\Gamma}_{k}=\vec{\Gamma}_{k-1}+\vec{\gamma}_{k}$
- $v_{i} \equiv$ seniority i. e. number of particles non coupled by pairs to $J=0$
- smaller dimension (especially $\mathrm{J}=0$ states)
- allows truncations with seniority : heavy spherical nuclei .
- less sparse

Limitations

M-scheme: size of the basis.
Coupled scheme: number of non-zero.

M scheme

WHITEHEAD method (1977)
At each Slater Determinant K is associated an integer number W(K).
At each individual state $\mathrm{i}=\mathrm{nljm} \tau$ is associated a bit of this number.
This bit will be put at 1 or 0 following that the state is occupied or not.
These integer numbers $\mathrm{W}(\mathrm{K})$ are ordered .
Th Hamiltonian is written in the decoupled basis $V_{i j k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}$
At each Lanczos iteration the code works as it follows

- 1) Loop on K
- 2) Loop on the operators $a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}$
- 3) Check $\operatorname{bit}(\mathrm{k})=\operatorname{bit}(\mathrm{l})=1$ and bit($(\mathrm{i})=\operatorname{bit}(\mathrm{j})=0$ If not continue 2)
- 4) $W_{0}=W(K)-\operatorname{bit}(k)-\operatorname{bit}(I)+\operatorname{bit}(i)+\operatorname{bit}(j)$
- 5) By the bisection method identify $W_{0}=W(J)$
- 6) Calculate the phase (permution of the operators) and get $H_{K J}= \pm V_{i j k l}$

M scheme

ANTOINE SM code (1988-20..) (available on the web). Each state of the basis is now the product of 2 Slater Determinants:

$$
|K\rangle=|i \alpha\rangle
$$

$i \longrightarrow$ SD for protons
$\alpha \longrightarrow$ SD for neutrons
$\operatorname{dim}(\mathrm{i}), \operatorname{dim}(\alpha) \ll \operatorname{dim}(\mathrm{K})$
${ }^{56} \mathrm{Ni} \quad \operatorname{dim}(\mathrm{K})=10^{9} \quad \operatorname{dim}(\mathrm{i}, \alpha)=1.25 * 10^{5}$
Precalculations (storage) done apart for each subspace i and α using the Whitehead Method.
The pn NBME are generated with 3 integer additions.

M scheme basis

Limitations

- Disk Capacity: storage of Lanczos vectors
- RAM Memory : must contain 2 Lanczos vectors
splitting of the initial and final vectors

$$
\begin{gathered}
\Psi_{i, f}=\bigcup_{m} \Psi_{i, f}^{m} \\
\Psi_{f}^{(m)}=\sum_{n} \mathcal{H}^{(m, n)} \Psi_{i}^{(n)}
\end{gathered}
$$

It solves the problem of the RAM memory but increases the CPU time:

- time acess to the disk
- $H(I, J)$ and $H(J, I)$ must be generated separately.

It is a natural way for parallelization.

Coupled code

same separation of p and n subspaces $|I\rangle \equiv|i \alpha\rangle$ We have now J instead of M.
$H_{n n}$ and $H_{p p}$ always

$$
\begin{aligned}
& \langle I| \mathcal{H}_{p p}|J\rangle=\langle i \alpha| \mathcal{H}_{p p}\left|i^{\prime} \alpha^{\prime}\right\rangle=h_{i i^{\prime}} \delta_{\alpha \alpha^{\prime}} \\
& \langle I| \mathcal{H}_{n n}|J\rangle=\langle i \alpha| \mathcal{H}_{n n}\left|i^{\prime} \alpha^{\prime}\right\rangle=\delta_{i i^{\prime}} h_{\alpha \alpha^{\prime}}
\end{aligned}
$$

for $H_{p n}$ we have now generalized CFP coefficients

$$
\langle I| \mathcal{H}_{p n}|J\rangle=\langle i \alpha| \mathcal{H}_{p n}\left|i^{\prime} \alpha^{\prime}\right\rangle=c_{i i^{\prime}} c_{\alpha \alpha^{\prime}} V(K)
$$

Non-zero are generated with 3 integer additions (idem M scheme) +2 floating multiplications.

Coupled code

small dimensions but huge number of NBME.
natural way for parallelization : splitting of H
$H=\sum_{k} H^{(k)}$
Each processor has the initial and calculate a final vector:
$\Psi_{f}^{(k)}=\mathcal{H}^{(k)} \Psi_{i}$
Final vectors are added :
$\Psi_{f}=\sum_{k} \Psi_{f}^{(k)}$

Conclusions

Progress in Computers and in Codes have allowed a strong increase of the domain of applicability of Shell Model.

Nuclei $0 \nu \beta \beta$ emetters :
${ }^{48} \mathrm{Ca},{ }^{76} \mathrm{Ge},{ }^{82} \mathrm{Se},{ }^{96} \mathrm{Zr},{ }^{100} \mathrm{Mo},{ }^{116} \mathrm{Cd},{ }^{130} \mathrm{Te},{ }^{136} \mathrm{Xe},{ }^{150} \mathrm{Nd}$
10 years ago, only ${ }^{48} \mathrm{Ca}$ could be studied with SM.
Now all of them except ${ }^{150} \mathrm{Nd}$ have been calculated .
Future goal :

- Not to reach dimensions $10^{11,12}$ but reduce the CPU time with Massive Parallelization .
Calculation of ${ }^{112} \mathrm{Xe}: 15$ hours (minutes !!) instead of 15 days.
- 3-body forces

