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Background

We have seen that string theory provides a rich arena in which
geometry and physics interplay.

e.g. Geometric engineering - Minkowski x M for M special
holonomy

Cycles/singularities of M < BPS states



Flux Backgrounds

String backgrounds have more degrees of freedom than just the
metric

g ¢
We choose special holonomy M for convenience.

String theory has no preference.



Flux backgrounds are hard

3 global spinor & VE+F-£=0
Unlike with special holonomy

e ¢ defines a G-structure

e KSE translates to complicated differential constraints on
G-structure

These complicated questions are made easier in



Supersymmetric backgrounds of string theory are described by

These G-structures are defined by a complex vector bundle L — M
satisfying

e Complexity - LNL =0

e Isotropy - Lxy L =0

e Positivity - positive definite metric

e Maximality - rank L is maximal

e Involutivity - [L,L] C L

In fact, we need a refined structure v



We call the geometry defined by L an
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Leibniz Algebroids

A Leibniz algebroid is a set {E, M, a, L} such that

e £ — M is a smooth vector bundle
e a: E — TM is a smooth bundle map

e L:T(E)xT(E)— I(E) an R-linear map such that
1. LyLwX =Lg, wX + LwLy X
2. ]L\/(fW) = a(V)(f)W + ﬂL\/W

a = 'anchor’ L = 'Dorfman derivative’



Closed form Leibniz algebroids [saragia

A special type of Leibniz algebroid where

E~ToPINVT 0p]eX

1

Clearly
PP+ T* @ gi] C End(E)

1

Then the Dorfman derivative
Ly ~L,—d\ V=v+AX+kel(E)
We define an antisymmetric bracket

[V, W] =3(LyW —LwV)



Generalised Geometry

Particular closed form Leibniz algebroids such that

e APIT* generate the form field gauge symmetries

e E can be equipped with a G-structure that corresponds to the
global symmetry of the corresponding supergravity theory



e Type 1/NSNS - B € O?
O(d, d) structure - 7

e Heteroticon 6d- B Q?, Ac Q' ®g
O(6,6 + n) structure - n

e M-Theory on 6d - Ae Q3, Ac Q°
Ee(6) X R structure - ¢

e M-Theory on 7d - A€ Q3, Ac Q°
E7(7y x R structure - g, s
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Minor technicality

Really these are extensions
0 —ANT"—E—T—0
We locally patch by
0 — Q' — GDiff — Diff — 0

Choosing a global isomorphism E = T @ ... is equivalent to
choosing flux F
Ly ~L,—d\+

——
End(E)
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Another minor technicality

There exists some N C S?E, an equivariant map
xn:S?E— N

and a differential
de : T(N) — T(E)

Such that the following holds

LVW+LWv: dE(V XN W)
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Generalised Complex Geometry [Hitchin, Gualtieri]

E=ToT"

A generalised C structure is a reduction of the structure group
O(2n,2n) — U(n, n)

It is equivalent to a choice of L C E¢ such that

Complexity - LNL=0

Isotropy - n(L,L) =0

Maximality - rank L is maximal
It is integrable if it is involutive

[LL]cL
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Generalised Calabi-Yau (uitcnin]

E=ToT"
A generalised Calabi-Yau is a refined G-structure
U(n, n) — SU(n, n)
A GCS defines a complex line bundle
U, C Q¢(M)
A generalised Calabi-Yau is defined by a global non-vanishing
d e M(Uy)

It is integrable if
do =0
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E=ToT"
C-structures
L=TYeTo U =0%Mm)
Integrability
[L,L]cL & [TH0, T19) c 710

Symplectic structures
L=e-T U =(e)

Integrability
[L,L] CcL & dw=20

ii5)



More generally

Using isotropy, we can show L must take the form
L = e°[A @ Anni(A)]

for A C T¢ and ¢ € Q*(M)c

Integrability then tells us

[A,A] C A

[L,L]cL &
dAEZO

16



Applications

e Describe certain flux backgrounds of string theory (GMPT)
e Used to study the topological B-model

e Used to study mirror symmetry
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General String Backgrounds

Let G be our (non-compact) structure group
Let H C G be the maximally compact subgroup

It is known that the bosonic fields define a point in the coset
G
B € —
{Bosons} I

In this sense, a choice of background defines a reduction of the

structure group
G—H
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SUSY backgrounds [Waldram, Pacheco, Strickland-Constable, Coimbra,...]

Suppose we can lift the structure to H, the universal cover.

e The global spinor field
£el(S) S ~ fundamental of H

Hence the structure group H— I:IE

e The Killing spinor equation

VE+F-£=0 & Integrable I:Ig structure

19



G H H
0(6,6+n1) 0(6)x0(6+n) SUM@)x0(6+n)
Es) x R USp(8)/Z> USp(8)

Exzy xRT  SU(8)/Z> SU(8)
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General idea

Decompose Ec under U(1) x He
E(c =LP...
We find L satisfies

e Complexity - LNL =0
e Isotropy - Lxy L =0
e Positivity - positive definite metric

e Maximality - rank L is maximal

A choice of L satisfying above defines a U(1) x I:lg structure
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H; Structures

A choice of L defines a complex line bundle
U, C /\3E(c
The I:I§ structure is defined by a global, non-vanishing

Y e T(Up)

Integrability is given by
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Example - Heterotic

E=T®adPcaT"
We can classify all possible ECS
L=eweATLO U, = <ei“’eAQO’3>
Integrability then gives us
[T, TLO] ¢ TLO

[L,L]clL & H=dw
Foo=0
d(e=2Q) =0

uw=0 = FAwAw=0

dle2wAw)=0
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Example - M-Theory 6d

E=TONT ONT*
We can find the most general ECS. Isotropy tells us
L= e“P[A @ Anny(A)] U, = e TP det(Anny(A))
for a € Q3(M)c, B € Q5(M)¢, A C T¢ where Codimec A = 0,3
Involutivity gives us

[A,A] € A

L, L] cL &
It L] { dpa =0

24



Example - M-theory 6d

E=ToNT oNT*
Let's take the following example
L=¢e". T¢ Z/{L:<eip>

Positivity constraint tells us

d3Q=p+ip
Integrability tells us
[L, L] cL &
uw=0 &

25



Example - M-theory 7d

E=TOoNT oNT &(T QAN T*)
We can find the most general ECS. Isotropy tells us
L= e“P[A @ Anny(A)] U, = e TP det(Anny(A))
for a, B, A as before
Involutivity gives us

[A,A] C A

L, L] cL &
It L] { dpa =0
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Example - M-theory 7d

E=ToNT oNT (T AT
Lets take the following example
L=e%. T¢ U = <ei“’>

The positivity constraint says

Integrability gives

[L,L]cL &
pw=0 &
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All supersymmetric backgrounds are described by ECS
They have properties very similar to CS and GCS

We have classified all ECS along with integrability conditions

In certain cases they give rise to SL(3, C) structures and Gy
structures
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Applications

e Unifies C-structures, G,, GCS, hyperkahler, SE,...
e Moduli
e AdSs/CFTj4 - chiral ring, superconformal indices, RG flows,

a-maximisation
e Topological theories - AKSZ, Hitchin functionals
e Geometric engineering?

o K-stability
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My = {¢| L involutive, p = 0}/GDiff
The space Z = {#¢| L involutive} is Kahler with Kahler potential

\1-a
£= [ .9
M
Formally, 1 is a moment map for GDiff on Z
My = Z//GDiff

If we were in finite dimensions then the Kemp-Ness Theorem
would tell us
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%
p=0
unstable

Stable
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The Hilbert-Mumford Criterion

Consider some U(1) C GDiff and complexify to C* action
v — P(v) veC
Consider the limit v — 0
If Z/C* is compact then we have a fixed point
lim (v) = "V = lim K = |[v2*VKG
v—0 v—0
some w(y, V) € Z

We define
if w(¢)) < 0 for all 1-PS then ¢ is stable,
if w(tp) <0 for all 1-PS then 1) is semistable,
if w(t)) > 0 for some 1-PS then 1 is unstable.
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The moment map

We have a nice identity
EIvaC = _2M( V)
This then tells us the following

e mu=0 <« stationary points of IC
o w(y, V)Ko = —2u(¢o, V)
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C*1o

semistable

unstable

Figure 1: Stability for a 1-PS orbit of .
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e The space Z/C* is not compact

e /C is not convex along GDiff¢ flows
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E=T®adPcaT"

We have a normal subgroup

Q% «GDiff  GDiff := GDiff/Q%
We can first do the quotient by le and then the rest

Z=2//9% M, = 2P /GDifi¢
Note we have G C G« G/r]iﬁ' The moment map for this action on
Zis

1(0) ~ / e 2XTr(0F) Aw Aw
M
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Taking C* C Gg. The limit v — 0 we get
vGer = Gpar
Then
Ji_r)now —  holomorphic reduction ad P¢ — ad Pg,,,

We then have

w(1h,0) = —2u(tbo, 0) ~ /M e 2 cy(ad Pa,.) Aw Aw

The statement that this is negative for all parabolic subgroups is
equivalent to
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Heterotic (H = 0)

Now consider the normal subgroup
G x Q2 aCDiff  Symp ~ CGDiff/(G x Q%)
Hence, by first doing
2= Z//(G x 22)
We find that K is convex on Symp flows on Z and

K ~ Mabuchi functional
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K—Sta bility [Yau, Tian, Donaldson]

A Fano manifold (X, L) admits a Kahler-Einstein metric if and only
if it is K-stable

A test configuration L — X — C is

e 7: X — Cis a flat family with 771(1) = X

e L — X is a line bundle which is ample on the fibres, and the
restriction to 7~1(1) is L™, some m > 0

e Ja C* action on L, X which lifts the C* action on C

A Fano manifold is K-stable if, for all (non-trivial) test
configurations
Fut(7—(0)) > 0
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A reasonable starting point?

A test configuration of (M,U,) is given by

L—X—C

e m: X — C is some flat bundle with 7=(1) = M
e £ — X is a line bundle with the restriction to 7~%(1) being U,
e 1 a smooth C* action on L, X which lifts the C* action on C

Could (M,Uy) be stable if for all non-trivial test configurations we
have

By studying this in the E7(7)-case, could this define a notion of
K-stability for G
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