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Defects in QFT are a set of boundary conditions on the fields 
and boundary couplings that one imposes on sub-manifolds. 

They are both useful to model physical systems and also to 
probe general properties of quantum field theories.  

Indeed, the partition function in presence of a defect            

is not simply a number but rather an element of a vector 
space (for fixed BC) or more in general an object in a 
category, when considering all admissible boundary 
conditions.  

This makes the study of             a very rich subject naturally 
re la ted to geometry , integrable systems and 
representation theory.

Beauty of defects 



In this talk we will consider surface defects in four and five 
dimensional supersymmetric gauge theories with 8 
supercharges and show that the related partition functions 
obey respectively a set of differential  and q-difference 
equations which provide very effective and general 
tools to explore their non-perturbative dynamics and 
BPS spectrum. 

Which defects ?



Main results - 4d :

-          for gauge group       are tau-functions of non-
autonomous Toda chain of type          ,              .

in four dimensions,             satisfies a set of differential equations 
that produce new recurrence relations for multi-instantons of 
N=2 Super-Yang-Mills theory in a self-dual Omega background. 
These provide a new algorithm to evaluate them for arbitrary 
simple groups from         to         .
integrability:

random matrices:

- late time = strong coupling expansion of                           gives a 
matrix model presentation of the magnetic phase, expansion 
around the monopole point.

- 4d/2d correspondence with tt* equations and Ising model corr.



-            are tau-functions of the cluster algebra associated to 
the quiver.          

- in five dimensions,              satisfies a set of q-difference   
equations arising from the symmetry group of the BPS quiver 
of the SCFT.

representation theory:

- reduction to four-dimensional BPS quivers and a new 
viewpoint on Argyres-Douglas theory. 

Main results - 5d :



Surface defects  



Surface defects can be defined by the assignment of 
singular boundary conditions for the fields in the normal 
bundle of the surface D
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a 2 t

residual gauge symmetry on the defect to its commutant
          Levi subgroup and determines the monodromy around D
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L ⇢ G

Another parameter is given by the coupling to the magnetic
charge of the defect
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the magnetic charge                   is an element of the coroot
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Surface defects 



We will consider full surface operators, namely the ones with
minimal residual gauge symmetry 
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Moreover, we can twist their monodromy by a central element

These are the surface operators generating the one-form 
symmetry of Yang-Mills valued in the center            . Introduced

by ’t Hooft to describe phases of gauge theories.
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Z(G)
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and the discrete label of the center element. This can be 
described in terms of the Dynkin diagram of the affine group 
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Ĝ



Indeed,               is the automorphism group of the affine
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Z(G)
Dynkin diagram

2

order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-
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log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-

It acts on the affine nodes. E.g. for             
<latexit sha1_base64="c4apZh4whCl1F6PNAb28I5UC0BA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO7JXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmxSp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPIzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs2zqndRde/PK7WbPI4iHMExnIIHl1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gAWAI2r</latexit>

An
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Z(G)

The center is given by the quotient of the affine co-weight lattice 
by the affine co-root lattice
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Weyl orbit = orbit of 
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Abstract: We show that the non-perturbative dynamics of N = 2 super Yang-Mills theories in a
self-dual Ω-background and with an arbitrary simple gauge group is fully determined by studying
renormalization group equations of vevs of surface operators generating one-form symmetries. The
corresponding system of equations is a non-autonomous Toda chain, the time being the RG scale.
We obtain new recurrence relations which provide a systematic algorithm computing multi-instanton
corrections from the tree-level one-loop prepotential as the asymptotic boundary condition of the
RGE. We exemplify by computing the E6 and G2 cases up to two-instantons.

In an ideal world the non-perturbative structure of
gauge theories should be computed by quantum equa-
tions of motion determined by a symmetry principle. The
presence of extended operators generating higher form
symmetries in quantum field theory is a powerful tool
to concretely realise such a programme. A perturbative
analysis in a weakly coupled regime, if any, would sup-
ply appropriate asymptotic conditions. In this letter we
present a class of theories where the full non-perturbative
result is fixed in such a framework. These are N = 2
super Yang-Mills theories in four dimensional self-dual
Ω-background, which enjoy a one-form symmetry gener-
ated by surface operators [1]. We show that the renor-
malization group equation obeyed by the vacuum expec-
tation value of such surface operators provides a recur-
sion relation which fully determines, from the perturba-
tive one-loop prepotential, all instanton contributions on
the self-dual Ω-background or, equivalently, the all-genus
topological string amplitudes on the relevant geometric
background. Actually, partition functions with surface
operators display a very clear resurgent structure led by
the summation over the magnetic fluxes [2].

The system of equations we study is a non-autonomous

twisted affine Toda chain of type (Ĝ)∨, where (Ĝ)∨ is the
Langlands dual of the untwisted affine Kac-Moody alge-
bra Ĝ. Each node of the corresponding affine Dynkin
diagram defines a surface operator, the associated τ -
function being its vacuum expectation value. The time
flow corresponds in the gauge theory to the renormaliza-
tion group. The resulting recurrence relations constitute
a new effective algorithm to determine instanton contri-
butions for all classical groups G. Let us remark that
the τ -functions we obtain provide the general solution
at the canonical rays for the Jimbo-Miwa-Ueno isomon-
odromic deformation problem [3, 4] on the sphere with
two-irregular punctures for all classical groups, which to
the best of our knowledge was not known in the previous
literature. The recursion relations we obtain are different
from the blow-up equations of [5] further elaborated in
[6]. Indeed the latter necessarily involve the knowledge of
the partition function in different Ω-backgrounds. This

makes the recursion relations (and the results) coming
from blow-up equations more involved and difficult to
handle. However, we expect a relation between the two
approaches to follow from blow-up relations in presence
of surface defects. Indeed, the isomonodromic τ -function
for the sphere with four regular punctures was obtained
in a similar way from SU(2) gauge theory with Nf = 4
in [7]. In this letter we summarise our results and refer to
a subsequent longer paper for a fully detailed discussion.

The τ -functions are labeled by the simple roots of the
affinization of the Lie algebra of the gauge group α ∈ ∆̂,
namely {τα}α∈∆̂, and satisfy the equations

D2(τβ) = −β∨ · β∨

2
t1/h

∨ ∏

β∈∆̂,β #=α

[τα]
−α·β∨

(1)

where t := (Λ/ε)2h
∨

and the logarithmic Hirota deriva-
tive is given by D2(f) = f∂2

log tf−(∂log tf)2. Given a sim-
ple root α, its coroot is as usual given by α∨ = 2α/(α,α),
where (·, ·) is the scalar product defined by the affine
Cartan matrix. Eq. (1) is the de-autonomization of
the τ -form of the standard Toda integrable system [8, 9]
governing the classical Seiberg-Witten (SW) theory [10].
The de-autonomization is induced by coupling the the-
ory to a self-dual Ω-background (ε1, ε2) = (ε,−ε) [11].
In the autonomous limit ε → 0, τ -functions reduce to
θ-functions on the classical SW curve [12], which were
used to provide recursion relations on the coefficients of
the SW prepotential in [13]. The gauge theory inter-
pretation of these τ -functions is the v.e.v. of surface
operators associated to the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their general-
izations to describe chiral ring relations in presence of
a surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of the
full non-autonomous Toda hierarchy. The actual form
of equations (1) depends on the Dynkin diagram. For
the classical groups A, B and D these reduce to bilinear
equations which we solve via general recursion relations.
For C, E, F and G the resulting equations are of higher
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Abstract: We show that the non-perturbative dynamics of N = 2 super Yang-Mills theories in a
self-dual Ω-background and with an arbitrary simple gauge group is fully determined by studying
renormalization group equations of vevs of surface operators generating one-form symmetries. The
corresponding system of equations is a non-autonomous Toda chain, the time being the RG scale.
We obtain new recurrence relations which provide a systematic algorithm computing multi-instanton
corrections from the tree-level one-loop prepotential as the asymptotic boundary condition of the
RGE. We exemplify by computing the E6 and G2 cases up to two-instantons.

In an ideal world the non-perturbative structure of
gauge theories should be computed by quantum equa-
tions of motion determined by a symmetry principle. The
presence of extended operators generating higher form
symmetries in quantum field theory is a powerful tool
to concretely realise such a programme. A perturbative
analysis in a weakly coupled regime, if any, would sup-
ply appropriate asymptotic conditions. In this letter we
present a class of theories where the full non-perturbative
result is fixed in such a framework. These are N = 2
super Yang-Mills theories in four dimensional self-dual
Ω-background, which enjoy a one-form symmetry gener-
ated by surface operators [1]. We show that the renor-
malization group equation obeyed by the vacuum expec-
tation value of such surface operators provides a recur-
sion relation which fully determines, from the perturba-
tive one-loop prepotential, all instanton contributions on
the self-dual Ω-background or, equivalently, the all-genus
topological string amplitudes on the relevant geometric
background. Actually, partition functions with surface
operators display a very clear resurgent structure led by
the summation over the magnetic fluxes [2].

The system of equations we study is a non-autonomous

twisted affine Toda chain of type (Ĝ)∨, where (Ĝ)∨ is the
Langlands dual of the untwisted affine Kac-Moody alge-
bra Ĝ. Each node of the corresponding affine Dynkin
diagram defines a surface operator, the associated τ -
function being its vacuum expectation value. The time
flow corresponds in the gauge theory to the renormaliza-
tion group. The resulting recurrence relations constitute
a new effective algorithm to determine instanton contri-
butions for all classical groups G. Let us remark that
the τ -functions we obtain provide the general solution
at the canonical rays for the Jimbo-Miwa-Ueno isomon-
odromic deformation problem [3, 4] on the sphere with
two-irregular punctures for all classical groups, which to
the best of our knowledge was not known in the previous
literature. The recursion relations we obtain are different
from the blow-up equations of [5] further elaborated in
[6]. Indeed the latter necessarily involve the knowledge of
the partition function in different Ω-backgrounds. This

makes the recursion relations (and the results) coming
from blow-up equations more involved and difficult to
handle. However, we expect a relation between the two
approaches to follow from blow-up relations in presence
of surface defects. Indeed, the isomonodromic τ -function
for the sphere with four regular punctures was obtained
in a similar way from SU(2) gauge theory with Nf = 4
in [7]. In this letter we summarise our results and refer to
a subsequent longer paper for a fully detailed discussion.

The τ -functions are labeled by the simple roots of the
affinization of the Lie algebra of the gauge group α ∈ ∆̂,
namely {τα}α∈∆̂, and satisfy the equations

D2(τβ) = −β∨ · β∨

2
t1/h

∨ ∏

β∈∆̂,β #=α

[τα]
−α·β∨

(1)

where t := (Λ/ε)2h
∨

and the logarithmic Hirota deriva-
tive is given by D2(f) = f∂2

log tf−(∂log tf)2. Given a sim-
ple root α, its coroot is as usual given by α∨ = 2α/(α,α),
where (·, ·) is the scalar product defined by the affine
Cartan matrix. Eq. (1) is the de-autonomization of
the τ -form of the standard Toda integrable system [8, 9]
governing the classical Seiberg-Witten (SW) theory [10].
The de-autonomization is induced by coupling the the-
ory to a self-dual Ω-background (ε1, ε2) = (ε,−ε) [11].
In the autonomous limit ε → 0, τ -functions reduce to
θ-functions on the classical SW curve [12], which were
used to provide recursion relations on the coefficients of
the SW prepotential in [13]. The gauge theory inter-
pretation of these τ -functions is the v.e.v. of surface
operators associated to the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their general-
izations to describe chiral ring relations in presence of
a surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of the
full non-autonomous Toda hierarchy. The actual form
of equations (1) depends on the Dynkin diagram. For
the classical groups A, B and D these reduce to bilinear
equations which we solve via general recursion relations.
For C, E, F and G the resulting equations are of higher

second Hirota derivative

recursion relations (and the results) coming from blowup
equationsmore involved and difficult to handle.However,we
expect a relation between the two approaches to follow from
blowup relations in the presence of surface defects. Indeed,
the isomonodromic τ function for the spherewith four regular
punctures was obtained in a similar way from SU(2) gauge
theory withNf ¼ 4 in [13]. In this Letter, we summarize our
results and refer to a subsequent longer paper for a fully
detailed discussion.
The τ functions are labeled by the simple roots of the

affinization of the Lie algebra of the gauge group α ∈ Δ̂,
namely fταgα∈Δ̂, and satisfy the equations

D2ðταÞ ¼ −
ðα∨;α∨Þ

2
t1=h

∨ Y

β∈Δ̂;β≠α

½τβ%−ðβ;α
∨Þ; ð1Þ

where t ≔ ðΛ=ϵÞ2h∨ and the logarithmic Hirota derivative is
given by D2ðfÞ ¼ f∂2

log tf − ð∂ log tfÞ2. Given a simple root
α, its coroot is as usual given by α∨ ¼ 2α=ðα;αÞ, where
ð·; ·Þ is the scalar product defined by the affine Cartan
matrix. Equation (1) is the deautonomization of the τ form
of the standard Toda integrable system [14,15] governing
the classical Seiberg-Witten (SW) theory [16]. The
deautonomization is induced by coupling the theory to a
self-dual Ω background ðϵ1; ϵ2Þ ¼ ðϵ;−ϵÞ [17]. In the
autonomous limit ϵ → 0, τ functions reduce to θ functions
on the classical SW curve [18], which were used to provide
recursion relations on the coefficients of the SW prepo-
tential in [19]. The gauge theory interpretation of these τ
functions is the vacuum expectation value of surface
operators associated with the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their generaliza-
tions to describe chiral ring relations in the presence of a
surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of
the full nonautonomous Toda hierarchy. The actual form of
Eqs. (1) depends on the Dynkin diagram. For the classical
groups A, B, and D these reduce to bilinear equations
which we solve via general recursion relations. For C, E, F,
and G the resulting equations are of higher order and we
study them case by case. The symmetries of the equations
are given by the center of the group G, namely

g An Bn Cn D2n D2nþ1 En F4 G2

ZðGÞ Znþ1 Z2 Z2 Z2×Z2 Z4 Z9−n 1 1
:

Moreover, the center is isomorphic to the coset of the affine
coweight lattice by the affine coroot lattice, and coin-
cides with the automorphism group of the affine Dynkin
diagram. By a remark in [20], the coweights, and by
extension the lattice cosets, corresponding to these nodes
are the minuscule coweights, a representation of g being
minuscule if all its weights form a single Weyl orbit. This
remark will be crucial while solving the τ system.

The τ functions corresponding to the affine nodes, that is
the ones which can be removed from the Dynkin diagram
leaving behind that of an irreducible simple Lie algebra,
play a special role. Indeed, these are related to simple
surface operators associated with elements of the center
ZðGÞ, and are bounded by fractional ’t Hooft lines. Such
surface operators are the generators of the one-form
symmetry of the corresponding gauge theory [5]. Since
their magnetic charge is defined modulo the magnetic root
lattice, a natural ansatz for their expectation value is

ταaff ðσ; ηjκgtÞ ¼
X

n∈Q∨
aff

e2π
ffiffiffiffi
−1

p
η·ntð1=2ÞðσþnÞ2Bðσ þ njtÞ; ð2Þ

where BðσjtÞ ¼ B0ðσÞ
P

i≥0 t
iZiðσÞ with Z0ðσÞ≡ 1 and

Q∨
aff ¼ λ∨aff þQ∨, Q∨ being the coroot lattice equipped

with the canonical inner product normalized such that the
norm of the short coroots is 2, and ðλ∨aff ;αÞ ¼ δαaff;α for any
nonextended simple root α. The constant κg ¼ ðngÞrg;s ,
where ng is the ratio of the squares of long vs short roots
and rg;s is the number of short simple roots. For simply
laced, all roots are long and κg ¼ 1.
We will now show how the term tð1=2Þσ

2
BðσjtÞ in (2) is

the full Nekrasov partition function in the self-dual Ω
background upon the identification σ ¼ a=ϵ, where a is the
Cartan parameter. In the An case, (2) is known as the Kiev
ansatz. In the A1 case, it was used to give the general
solution of Painlevé III3 equation in [21] and further
analyzed in [22].
Let us remark that the τ function (2) displays a clear

resurgent structure, with “instantons” given by the
magnetic fluxes in the lattice summed with “resurgent”
coefficients BðσjtÞ and trans-series parameter e2π

ffiffiffiffi
−1

p
η;

see [23] for a similar analysis in the Painlevé III3 case.
The ansatz (2) is consistent with Eqs. (1). Indeed, after

eliminating the τ functions associated with the nonaffine
nodes, the resulting equation is bilinear and therefore
the ansatz (2) reduces to a set of recursion relations for
the coefficients ZiðσÞ. The variables η, σ ∈ Q∨ are the
integration constants of the second order differential
equations (1) and correspond to the initial position and
velocity of the deautonomized Toda particle.
Let us set more precisely the boundary conditions which

we impose to the solutions of Eqs. (1). We consider the
asymptotic behavior of the solutions at t → 0 and σ → ∞ as

logðB0Þ ∼ −
1

4

X

r∈R
ðr · σÞ2 log ðr · σÞ2 ð3Þ

up to quadratic and log terms [24]. We will show that the
solution of (1) which satisfies the above asymptotic con-
dition is such that

B0ðσÞ ¼ Z1−loopðσÞ≡
Y

r∈R

1

Gð1þ r · σÞ
; ð4Þ
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What’s special about surface defects in N=2 SYM ? 

We propose that in this case                     is the tau-function of Toda lattice
equations

recursion relations (and the results) coming from blowup
equationsmore involved and difficult to handle.However,we
expect a relation between the two approaches to follow from
blowup relations in the presence of surface defects. Indeed,
the isomonodromic τ function for the spherewith four regular
punctures was obtained in a similar way from SU(2) gauge
theory withNf ¼ 4 in [13]. In this Letter, we summarize our
results and refer to a subsequent longer paper for a fully
detailed discussion.
The τ functions are labeled by the simple roots of the

affinization of the Lie algebra of the gauge group α ∈ Δ̂,
namely fταgα∈Δ̂, and satisfy the equations

D2ðταÞ ¼ −
ðα∨;α∨Þ

2
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∨ Y

β∈Δ̂;β≠α

½τβ%−ðβ;α
∨Þ; ð1Þ

where t ≔ ðΛ=ϵÞ2h∨ and the logarithmic Hirota derivative is
given by D2ðfÞ ¼ f∂2

log tf − ð∂ log tfÞ2. Given a simple root
α, its coroot is as usual given by α∨ ¼ 2α=ðα;αÞ, where
ð·; ·Þ is the scalar product defined by the affine Cartan
matrix. Equation (1) is the deautonomization of the τ form
of the standard Toda integrable system [14,15] governing
the classical Seiberg-Witten (SW) theory [16]. The
deautonomization is induced by coupling the theory to a
self-dual Ω background ðϵ1; ϵ2Þ ¼ ðϵ;−ϵÞ [17]. In the
autonomous limit ϵ → 0, τ functions reduce to θ functions
on the classical SW curve [18], which were used to provide
recursion relations on the coefficients of the SW prepo-
tential in [19]. The gauge theory interpretation of these τ
functions is the vacuum expectation value of surface
operators associated with the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their generaliza-
tions to describe chiral ring relations in the presence of a
surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of
the full nonautonomous Toda hierarchy. The actual form of
Eqs. (1) depends on the Dynkin diagram. For the classical
groups A, B, and D these reduce to bilinear equations
which we solve via general recursion relations. For C, E, F,
and G the resulting equations are of higher order and we
study them case by case. The symmetries of the equations
are given by the center of the group G, namely

g An Bn Cn D2n D2nþ1 En F4 G2

ZðGÞ Znþ1 Z2 Z2 Z2×Z2 Z4 Z9−n 1 1
:

Moreover, the center is isomorphic to the coset of the affine
coweight lattice by the affine coroot lattice, and coin-
cides with the automorphism group of the affine Dynkin
diagram. By a remark in [20], the coweights, and by
extension the lattice cosets, corresponding to these nodes
are the minuscule coweights, a representation of g being
minuscule if all its weights form a single Weyl orbit. This
remark will be crucial while solving the τ system.

The τ functions corresponding to the affine nodes, that is
the ones which can be removed from the Dynkin diagram
leaving behind that of an irreducible simple Lie algebra,
play a special role. Indeed, these are related to simple
surface operators associated with elements of the center
ZðGÞ, and are bounded by fractional ’t Hooft lines. Such
surface operators are the generators of the one-form
symmetry of the corresponding gauge theory [5]. Since
their magnetic charge is defined modulo the magnetic root
lattice, a natural ansatz for their expectation value is

ταaff ðσ; ηjκgtÞ ¼
X

n∈Q∨
aff

e2π
ffiffiffiffi
−1

p
η·ntð1=2ÞðσþnÞ2Bðσ þ njtÞ; ð2Þ

where BðσjtÞ ¼ B0ðσÞ
P

i≥0 t
iZiðσÞ with Z0ðσÞ≡ 1 and

Q∨
aff ¼ λ∨aff þQ∨, Q∨ being the coroot lattice equipped

with the canonical inner product normalized such that the
norm of the short coroots is 2, and ðλ∨aff ;αÞ ¼ δαaff;α for any
nonextended simple root α. The constant κg ¼ ðngÞrg;s ,
where ng is the ratio of the squares of long vs short roots
and rg;s is the number of short simple roots. For simply
laced, all roots are long and κg ¼ 1.
We will now show how the term tð1=2Þσ

2
BðσjtÞ in (2) is

the full Nekrasov partition function in the self-dual Ω
background upon the identification σ ¼ a=ϵ, where a is the
Cartan parameter. In the An case, (2) is known as the Kiev
ansatz. In the A1 case, it was used to give the general
solution of Painlevé III3 equation in [21] and further
analyzed in [22].
Let us remark that the τ function (2) displays a clear

resurgent structure, with “instantons” given by the
magnetic fluxes in the lattice summed with “resurgent”
coefficients BðσjtÞ and trans-series parameter e2π

ffiffiffiffi
−1

p
η;

see [23] for a similar analysis in the Painlevé III3 case.
The ansatz (2) is consistent with Eqs. (1). Indeed, after

eliminating the τ functions associated with the nonaffine
nodes, the resulting equation is bilinear and therefore
the ansatz (2) reduces to a set of recursion relations for
the coefficients ZiðσÞ. The variables η, σ ∈ Q∨ are the
integration constants of the second order differential
equations (1) and correspond to the initial position and
velocity of the deautonomized Toda particle.
Let us set more precisely the boundary conditions which

we impose to the solutions of Eqs. (1). We consider the
asymptotic behavior of the solutions at t → 0 and σ → ∞ as

logðB0Þ ∼ −
1

4

X

r∈R
ðr · σÞ2 log ðr · σÞ2 ð3Þ

up to quadratic and log terms [24]. We will show that the
solution of (1) which satisfies the above asymptotic con-
dition is such that

B0ðσÞ ¼ Z1−loopðσÞ≡
Y

r∈R

1

Gð1þ r · σÞ
; ð4Þ
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∨ Y
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½τβ%−ðβ;α
∨Þ; ð1Þ
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g An Bn Cn D2n D2nþ1 En F4 G2

ZðGÞ Znþ1 Z2 Z2 Z2×Z2 Z4 Z9−n 1 1
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A special role is played by the tau-functions associated to the affine nodes

2

order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-
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the Cartan parameter. In the An case, (2) is known as
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non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
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t → 0 and σ → ∞ as
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where G(z) is the Barnes’ G-function and R is the ad-
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∈ R and matches the canonical Stokes
rays obtained in [19].
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tries are 1 and the remaining entries vanish. We label
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≡ τj . The τ -system is given by
the closed chain of differential equations
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with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads
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ratio of squares of long vs. short roots 

number of short simple roots
necessary to implement the correct S-duality
for non simply laced groups
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Abstract: We show that the non-perturbative dynamics of N = 2 super Yang-Mills theories in a
self-dual Ω-background and with an arbitrary simple gauge group is fully determined by studying
renormalization group equations of vevs of surface operators generating one-form symmetries. The
corresponding system of equations is a non-autonomous Toda chain, the time being the RG scale.
We obtain new recurrence relations which provide a systematic algorithm computing multi-instanton
corrections from the tree-level one-loop prepotential as the asymptotic boundary condition of the
RGE. We exemplify by computing the E6 and G2 cases up to two-instantons.

In an ideal world the non-perturbative structure of
gauge theories should be computed by quantum equa-
tions of motion determined by a symmetry principle. The
presence of extended operators generating higher form
symmetries in quantum field theory is a powerful tool
to concretely realise such a programme. A perturbative
analysis in a weakly coupled regime, if any, would sup-
ply appropriate asymptotic conditions. In this letter we
present a class of theories where the full non-perturbative
result is fixed in such a framework. These are N = 2
super Yang-Mills theories in four dimensional self-dual
Ω-background, which enjoy a one-form symmetry gener-
ated by surface operators [1]. We show that the renor-
malization group equation obeyed by the vacuum expec-
tation value of such surface operators provides a recur-
sion relation which fully determines, from the perturba-
tive one-loop prepotential, all instanton contributions on
the self-dual Ω-background or, equivalently, the all-genus
topological string amplitudes on the relevant geometric
background. Actually, partition functions with surface
operators display a very clear resurgent structure led by
the summation over the magnetic fluxes [2].

The system of equations we study is a non-autonomous

twisted affine Toda chain of type (Ĝ)∨, where (Ĝ)∨ is the
Langlands dual of the untwisted affine Kac-Moody alge-
bra Ĝ. Each node of the corresponding affine Dynkin
diagram defines a surface operator, the associated τ -
function being its vacuum expectation value. The time
flow corresponds in the gauge theory to the renormaliza-
tion group. The resulting recurrence relations constitute
a new effective algorithm to determine instanton contri-
butions for all classical groups G. Let us remark that
the τ -functions we obtain provide the general solution
at the canonical rays for the Jimbo-Miwa-Ueno isomon-
odromic deformation problem [3, 4] on the sphere with
two-irregular punctures for all classical groups, which to
the best of our knowledge was not known in the previous
literature. The recursion relations we obtain are different
from the blow-up equations of [5] further elaborated in
[6]. Indeed the latter necessarily involve the knowledge of
the partition function in different Ω-backgrounds. This

makes the recursion relations (and the results) coming
from blow-up equations more involved and difficult to
handle. However, we expect a relation between the two
approaches to follow from blow-up relations in presence
of surface defects. Indeed, the isomonodromic τ -function
for the sphere with four regular punctures was obtained
in a similar way from SU(2) gauge theory with Nf = 4
in [7]. In this letter we summarise our results and refer to
a subsequent longer paper for a fully detailed discussion.

The τ -functions are labeled by the simple roots of the
affinization of the Lie algebra of the gauge group α ∈ ∆̂,
namely {τα}α∈∆̂, and satisfy the equations

D2(τβ) = −β∨ · β∨

2
t1/h

∨ ∏

β∈∆̂,β #=α

[τα]
−α·β∨

(1)

where t := (Λ/ε)2h
∨

and the logarithmic Hirota deriva-
tive is given by D2(f) = f∂2

log tf−(∂log tf)2. Given a sim-
ple root α, its coroot is as usual given by α∨ = 2α/(α,α),
where (·, ·) is the scalar product defined by the affine
Cartan matrix. Eq. (1) is the de-autonomization of
the τ -form of the standard Toda integrable system [8, 9]
governing the classical Seiberg-Witten (SW) theory [10].
The de-autonomization is induced by coupling the the-
ory to a self-dual Ω-background (ε1, ε2) = (ε,−ε) [11].
In the autonomous limit ε → 0, τ -functions reduce to
θ-functions on the classical SW curve [12], which were
used to provide recursion relations on the coefficients of
the SW prepotential in [13]. The gauge theory inter-
pretation of these τ -functions is the v.e.v. of surface
operators associated to the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their general-
izations to describe chiral ring relations in presence of
a surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of the
full non-autonomous Toda hierarchy. The actual form
of equations (1) depends on the Dynkin diagram. For
the classical groups A, B and D these reduce to bilinear
equations which we solve via general recursion relations.
For C, E, F and G the resulting equations are of higher
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Abstract: We show that the non-perturbative dynamics of N = 2 super Yang-Mills theories in a
self-dual Ω-background and with an arbitrary simple gauge group is fully determined by studying
renormalization group equations of vevs of surface operators generating one-form symmetries. The
corresponding system of equations is a non-autonomous Toda chain, the time being the RG scale.
We obtain new recurrence relations which provide a systematic algorithm computing multi-instanton
corrections from the tree-level one-loop prepotential as the asymptotic boundary condition of the
RGE. We exemplify by computing the E6 and G2 cases up to two-instantons.

In an ideal world the non-perturbative structure of
gauge theories should be computed by quantum equa-
tions of motion determined by a symmetry principle. The
presence of extended operators generating higher form
symmetries in quantum field theory is a powerful tool
to concretely realise such a programme. A perturbative
analysis in a weakly coupled regime, if any, would sup-
ply appropriate asymptotic conditions. In this letter we
present a class of theories where the full non-perturbative
result is fixed in such a framework. These are N = 2
super Yang-Mills theories in four dimensional self-dual
Ω-background, which enjoy a one-form symmetry gener-
ated by surface operators [1]. We show that the renor-
malization group equation obeyed by the vacuum expec-
tation value of such surface operators provides a recur-
sion relation which fully determines, from the perturba-
tive one-loop prepotential, all instanton contributions on
the self-dual Ω-background or, equivalently, the all-genus
topological string amplitudes on the relevant geometric
background. Actually, partition functions with surface
operators display a very clear resurgent structure led by
the summation over the magnetic fluxes [2].

The system of equations we study is a non-autonomous

twisted affine Toda chain of type (Ĝ)∨, where (Ĝ)∨ is the
Langlands dual of the untwisted affine Kac-Moody alge-
bra Ĝ. Each node of the corresponding affine Dynkin
diagram defines a surface operator, the associated τ -
function being its vacuum expectation value. The time
flow corresponds in the gauge theory to the renormaliza-
tion group. The resulting recurrence relations constitute
a new effective algorithm to determine instanton contri-
butions for all classical groups G. Let us remark that
the τ -functions we obtain provide the general solution
at the canonical rays for the Jimbo-Miwa-Ueno isomon-
odromic deformation problem [3, 4] on the sphere with
two-irregular punctures for all classical groups, which to
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literature. The recursion relations we obtain are different
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makes the recursion relations (and the results) coming
from blow-up equations more involved and difficult to
handle. However, we expect a relation between the two
approaches to follow from blow-up relations in presence
of surface defects. Indeed, the isomonodromic τ -function
for the sphere with four regular punctures was obtained
in a similar way from SU(2) gauge theory with Nf = 4
in [7]. In this letter we summarise our results and refer to
a subsequent longer paper for a fully detailed discussion.

The τ -functions are labeled by the simple roots of the
affinization of the Lie algebra of the gauge group α ∈ ∆̂,
namely {τα}α∈∆̂, and satisfy the equations
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[τα]
−α·β∨
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where t := (Λ/ε)2h
∨

and the logarithmic Hirota deriva-
tive is given by D2(f) = f∂2

log tf−(∂log tf)2. Given a sim-
ple root α, its coroot is as usual given by α∨ = 2α/(α,α),
where (·, ·) is the scalar product defined by the affine
Cartan matrix. Eq. (1) is the de-autonomization of
the τ -form of the standard Toda integrable system [8, 9]
governing the classical Seiberg-Witten (SW) theory [10].
The de-autonomization is induced by coupling the the-
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In the autonomous limit ε → 0, τ -functions reduce to
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the SW prepotential in [13]. The gauge theory inter-
pretation of these τ -functions is the v.e.v. of surface
operators associated to the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their general-
izations to describe chiral ring relations in presence of
a surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of the
full non-autonomous Toda hierarchy. The actual form
of equations (1) depends on the Dynkin diagram. For
the classical groups A, B and D these reduce to bilinear
equations which we solve via general recursion relations.
For C, E, F and G the resulting equations are of higher
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where t ≔ ðΛ=ϵÞ2h∨ and the logarithmic Hirota derivative is
given by D2ðfÞ ¼ f∂2

log tf − ð∂ log tfÞ2. Given a simple root
α, its coroot is as usual given by α∨ ¼ 2α=ðα;αÞ, where
ð·; ·Þ is the scalar product defined by the affine Cartan
matrix. Equation (1) is the deautonomization of the τ form
of the standard Toda integrable system [14,15] governing
the classical Seiberg-Witten (SW) theory [16]. The
deautonomization is induced by coupling the theory to a
self-dual Ω background ðϵ1; ϵ2Þ ¼ ðϵ;−ϵÞ [17]. In the
autonomous limit ϵ → 0, τ functions reduce to θ functions
on the classical SW curve [18], which were used to provide
recursion relations on the coefficients of the SW prepo-
tential in [19]. The gauge theory interpretation of these τ
functions is the vacuum expectation value of surface
operators associated with the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their generaliza-
tions to describe chiral ring relations in the presence of a
surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of
the full nonautonomous Toda hierarchy. The actual form of
Eqs. (1) depends on the Dynkin diagram. For the classical
groups A, B, and D these reduce to bilinear equations
which we solve via general recursion relations. For C, E, F,
and G the resulting equations are of higher order and we
study them case by case. The symmetries of the equations
are given by the center of the group G, namely

g An Bn Cn D2n D2nþ1 En F4 G2

ZðGÞ Znþ1 Z2 Z2 Z2×Z2 Z4 Z9−n 1 1
:

Moreover, the center is isomorphic to the coset of the affine
coweight lattice by the affine coroot lattice, and coin-
cides with the automorphism group of the affine Dynkin
diagram. By a remark in [20], the coweights, and by
extension the lattice cosets, corresponding to these nodes
are the minuscule coweights, a representation of g being
minuscule if all its weights form a single Weyl orbit. This
remark will be crucial while solving the τ system.

The τ functions corresponding to the affine nodes, that is
the ones which can be removed from the Dynkin diagram
leaving behind that of an irreducible simple Lie algebra,
play a special role. Indeed, these are related to simple
surface operators associated with elements of the center
ZðGÞ, and are bounded by fractional ’t Hooft lines. Such
surface operators are the generators of the one-form
symmetry of the corresponding gauge theory [5]. Since
their magnetic charge is defined modulo the magnetic root
lattice, a natural ansatz for their expectation value is

ταaff ðσ; ηjκgtÞ ¼
X

n∈Q∨
aff

e2π
ffiffiffiffi
−1

p
η·ntð1=2ÞðσþnÞ2Bðσ þ njtÞ; ð2Þ

where BðσjtÞ ¼ B0ðσÞ
P

i≥0 t
iZiðσÞ with Z0ðσÞ≡ 1 and

Q∨
aff ¼ λ∨aff þQ∨, Q∨ being the coroot lattice equipped

with the canonical inner product normalized such that the
norm of the short coroots is 2, and ðλ∨aff ;αÞ ¼ δαaff;α for any
nonextended simple root α. The constant κg ¼ ðngÞrg;s ,
where ng is the ratio of the squares of long vs short roots
and rg;s is the number of short simple roots. For simply
laced, all roots are long and κg ¼ 1.
We will now show how the term tð1=2Þσ

2
BðσjtÞ in (2) is

the full Nekrasov partition function in the self-dual Ω
background upon the identification σ ¼ a=ϵ, where a is the
Cartan parameter. In the An case, (2) is known as the Kiev
ansatz. In the A1 case, it was used to give the general
solution of Painlevé III3 equation in [21] and further
analyzed in [22].
Let us remark that the τ function (2) displays a clear

resurgent structure, with “instantons” given by the
magnetic fluxes in the lattice summed with “resurgent”
coefficients BðσjtÞ and trans-series parameter e2π

ffiffiffiffi
−1

p
η;

see [23] for a similar analysis in the Painlevé III3 case.
The ansatz (2) is consistent with Eqs. (1). Indeed, after

eliminating the τ functions associated with the nonaffine
nodes, the resulting equation is bilinear and therefore
the ansatz (2) reduces to a set of recursion relations for
the coefficients ZiðσÞ. The variables η, σ ∈ Q∨ are the
integration constants of the second order differential
equations (1) and correspond to the initial position and
velocity of the deautonomized Toda particle.
Let us set more precisely the boundary conditions which

we impose to the solutions of Eqs. (1). We consider the
asymptotic behavior of the solutions at t → 0 and σ → ∞ as

logðB0Þ ∼ −
1

4

X

r∈R
ðr · σÞ2 log ðr · σÞ2 ð3Þ

up to quadratic and log terms [24]. We will show that the
solution of (1) which satisfies the above asymptotic con-
dition is such that

B0ðσÞ ¼ Z1−loopðσÞ≡
Y

r∈R

1

Gð1þ r · σÞ
; ð4Þ
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simple root of affine Lie algebra                                    co-root

A special role is played by the tau-functions associated to the affine nodes

2

order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-
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aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-

2

order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-

convergent power series

recursion relations (and the results) coming from blowup
equationsmore involved and difficult to handle.However,we
expect a relation between the two approaches to follow from
blowup relations in the presence of surface defects. Indeed,
the isomonodromic τ function for the spherewith four regular
punctures was obtained in a similar way from SU(2) gauge
theory withNf ¼ 4 in [13]. In this Letter, we summarize our
results and refer to a subsequent longer paper for a fully
detailed discussion.
The τ functions are labeled by the simple roots of the

affinization of the Lie algebra of the gauge group α ∈ Δ̂,
namely fταgα∈Δ̂, and satisfy the equations

D2ðταÞ ¼ −
ðα∨;α∨Þ

2
t1=h

∨ Y

β∈Δ̂;β≠α

½τβ%−ðβ;α
∨Þ; ð1Þ

where t ≔ ðΛ=ϵÞ2h∨ and the logarithmic Hirota derivative is
given by D2ðfÞ ¼ f∂2

log tf − ð∂ log tfÞ2. Given a simple root
α, its coroot is as usual given by α∨ ¼ 2α=ðα;αÞ, where
ð·; ·Þ is the scalar product defined by the affine Cartan
matrix. Equation (1) is the deautonomization of the τ form
of the standard Toda integrable system [14,15] governing
the classical Seiberg-Witten (SW) theory [16]. The
deautonomization is induced by coupling the theory to a
self-dual Ω background ðϵ1; ϵ2Þ ¼ ðϵ;−ϵÞ [17]. In the
autonomous limit ϵ → 0, τ functions reduce to θ functions
on the classical SW curve [18], which were used to provide
recursion relations on the coefficients of the SW prepo-
tential in [19]. The gauge theory interpretation of these τ
functions is the vacuum expectation value of surface
operators associated with the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their generaliza-
tions to describe chiral ring relations in the presence of a
surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of
the full nonautonomous Toda hierarchy. The actual form of
Eqs. (1) depends on the Dynkin diagram. For the classical
groups A, B, and D these reduce to bilinear equations
which we solve via general recursion relations. For C, E, F,
and G the resulting equations are of higher order and we
study them case by case. The symmetries of the equations
are given by the center of the group G, namely

g An Bn Cn D2n D2nþ1 En F4 G2

ZðGÞ Znþ1 Z2 Z2 Z2×Z2 Z4 Z9−n 1 1
:

Moreover, the center is isomorphic to the coset of the affine
coweight lattice by the affine coroot lattice, and coin-
cides with the automorphism group of the affine Dynkin
diagram. By a remark in [20], the coweights, and by
extension the lattice cosets, corresponding to these nodes
are the minuscule coweights, a representation of g being
minuscule if all its weights form a single Weyl orbit. This
remark will be crucial while solving the τ system.

The τ functions corresponding to the affine nodes, that is
the ones which can be removed from the Dynkin diagram
leaving behind that of an irreducible simple Lie algebra,
play a special role. Indeed, these are related to simple
surface operators associated with elements of the center
ZðGÞ, and are bounded by fractional ’t Hooft lines. Such
surface operators are the generators of the one-form
symmetry of the corresponding gauge theory [5]. Since
their magnetic charge is defined modulo the magnetic root
lattice, a natural ansatz for their expectation value is

ταaff ðσ; ηjκgtÞ ¼
X

n∈Q∨
aff

e2π
ffiffiffiffi
−1

p
η·ntð1=2ÞðσþnÞ2Bðσ þ njtÞ; ð2Þ

where BðσjtÞ ¼ B0ðσÞ
P

i≥0 t
iZiðσÞ with Z0ðσÞ≡ 1 and

Q∨
aff ¼ λ∨aff þQ∨, Q∨ being the coroot lattice equipped

with the canonical inner product normalized such that the
norm of the short coroots is 2, and ðλ∨aff ;αÞ ¼ δαaff;α for any
nonextended simple root α. The constant κg ¼ ðngÞrg;s ,
where ng is the ratio of the squares of long vs short roots
and rg;s is the number of short simple roots. For simply
laced, all roots are long and κg ¼ 1.
We will now show how the term tð1=2Þσ

2
BðσjtÞ in (2) is

the full Nekrasov partition function in the self-dual Ω
background upon the identification σ ¼ a=ϵ, where a is the
Cartan parameter. In the An case, (2) is known as the Kiev
ansatz. In the A1 case, it was used to give the general
solution of Painlevé III3 equation in [21] and further
analyzed in [22].
Let us remark that the τ function (2) displays a clear

resurgent structure, with “instantons” given by the
magnetic fluxes in the lattice summed with “resurgent”
coefficients BðσjtÞ and trans-series parameter e2π

ffiffiffiffi
−1

p
η;

see [23] for a similar analysis in the Painlevé III3 case.
The ansatz (2) is consistent with Eqs. (1). Indeed, after

eliminating the τ functions associated with the nonaffine
nodes, the resulting equation is bilinear and therefore
the ansatz (2) reduces to a set of recursion relations for
the coefficients ZiðσÞ. The variables η, σ ∈ Q∨ are the
integration constants of the second order differential
equations (1) and correspond to the initial position and
velocity of the deautonomized Toda particle.
Let us set more precisely the boundary conditions which

we impose to the solutions of Eqs. (1). We consider the
asymptotic behavior of the solutions at t → 0 and σ → ∞ as

logðB0Þ ∼ −
1

4

X

r∈R
ðr · σÞ2 log ðr · σÞ2 ð3Þ

up to quadratic and log terms [24]. We will show that the
solution of (1) which satisfies the above asymptotic con-
dition is such that

B0ðσÞ ¼ Z1−loopðσÞ≡
Y

r∈R

1

Gð1þ r · σÞ
; ð4Þ
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Toda Lattice equations from M-theory  

r M5 branes on         described by             superconformal                   
field theory in six-dimensions with (2,0) supersymmetry

superconformal group        SO(6,2) x SO(5) 

Coulomb branch      : r M5 branes on        separated in the 
transversal         space

subtleties, they are obtained as products of two types of basic building block: interacting

theories, which have an ADE classification, and free theories with an abelian “gauge group.”

Our main interest in this paper will be in the theories in the A series. From the point of view

of M-theory, the theory with “gauge group” U(K) can be described as a decoupling limit

of a system of K coincident M5-branes [5]. We use this picture frequently as a convenient

shortcut for understanding properties of the theory.

Let us briefly recall some information about the chiral operators of the (2, 0) theory;

more detail can be found in [24], and see also [25], especially the table on page 31. There

is a basis of operators transforming in short representations of osp(6, 2|4), labeled by the

Casimir operators of the ADE group g. Label the Casimirs by k = 1, . . . , r. Within the

k-th short multiplet we will focus on the subspace Vk of operators with lowest conformal

weight. Vk is an irreducible representation of the so(5) R-symmetry. Its conformal weight

is twice the exponent dk of g.

The theory has a “Coulomb branch” parameterized by vacuum expectation values of

these chiral operators. This branch is especially easy to understand in the AK�1 theory: it

is just (R5)K/SK , parameterizing configurations in which the K M5-branes are separated

in the transverse R
5.

On the Coulomb branch the theory contains BPS strings, geometrically described as

the boundaries of M2-branes running between the separated M5-branes. See Figure 1. Call

�

�

�

��
��

Figure 1: Left: three separated M5-branes, including segments of two M2-branes stretching be-
tween them. Right: the corresponding picture in the AK�1 (2, 0) theory with K = 3. The two
M2-brane segments have been projected down to string segments.

the string that comes from an M2-brane running between brane i and brane j an ij-string.

These strings are oriented; reversal of orientation exchanges ij-strings with ji-strings. The

BPS condition requires that the strings are straight lines in R
5,1. The tension of a BPS

ij-string can be calculated from the M2-brane picture as16

Tij =
2⇡

`3
|xi � xj | (3.1)

where |xi�xj | is the distance in R
5 (with dimensions of length). From BPS non-renormalization

theorems one expects that this geometric picture actually gives the exact tension, even in

16The tension of the M2-brane is 2⇡/`3 and that of the electromagnetic dual M5-brane is 2⇡/`6, where `

is the 11-dimensional Planck length.

– 20 –

described by v.e.v.s of 

five real scalars param. the 
position of M5s in transv. 

and all other Casimirs of 
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twisted compactification on                   : local geometry near M5s

are also some special points on C, namely the ij-branch points where �ij = 0, i.e. the i-th

and j-th sheets of ⌃ come together. An ij-string can end at an ij-branch point. One quick

way of deriving this fact is to recall the description of these states in the M5-brane picture:

the ij-string is an M2-brane foliated by segments connecting sheet i and sheet j, and can

end smoothly when these segments shrink to zero size. See Figure 2.

Figure 2: Left: a portion of an M2-brane stretching between two sheets of an M5-brane. The
M2-brane is foliated by “vertical” segments, each of which lies in a single fiber of T ⇤C. At the
branch point where the two sheets collide, the vertical segments shrink to zero length. Right: the
projection of the M2-brane onto C is a string in the (2, 0) theory which ends on the branch point.

The central charge of a segment of ij-string extended along the curve c is given by

Z =
1

⇡

Z

c
�ij . (3.9)

The mass of the same segment on the other hand is just the integral of the tension,

M =
1

⇡

Z

c
|�ij |. (3.10)

So the BPS bound M � |Z| is saturated if and only if �ij has the same phase # everywhere

along the curve c, i.e., if @t denotes the tangent vector to c, we require

�ij · @t 2 ei#R+. (3.11)

In this case Z = ei#M .

For a multi-string junction the phase #must be the same for all strands. This condition

is equivalent to the no-force condition at the junction: indeed, the vector representing the

force exerted by the ij-strand on the junction can be expressed as the complex number

ei#�̄ij , so since the three �ij sum to zero, the forces do as well.

The simplest BPS object is an ij-string stretched between two ij-branch points. In

the M5-brane picture it would be represented by a disc; see Figure 3. Such an M2-brane

has no moduli. Its quantization yields a single BPS hypermultiplet in four dimensions.

Similarly we can consider an ij-string stretched along a closed loop c in C. In the

M5-brane picture such a string is represented by a cylindrical M2-brane; see Figure 4.

Such an M2-brane has a single bosonic modulus and corresponding fermion zero mode. Its

quantization yields a BPS vectormultiplet.

If K = 2 these cases exhaust the possibilities; this description of the states was used

in [3, 31] to study the BPS spectrum. For K > 2 one should also consider string webs.

– 23 –

superconformal group reduces            SO(4,2) x U(1) x SU(2)

Coulomb branch described by v.e.v.s of 

r-covering of      , sheets labeled
by eigenvalues of 

x End(E)

Toda Lattice equations from M-theory  
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Hitchin’s equations

         compactification gives rise to U(r) Super Yang-Mills theory in 5d 

  on                  .  BPS vacua invariant under Super-Poincare’ of 

  satisfy

in class S have the important property that they enjoy a close relationship with Hitchin

systems. This relation, which is absolutely central to this paper, is revealed when one

further compactifies to three dimensions on a circle. At low energies the three-dimensional

e↵ective theory is a d = 3,N = 4 sigma model with target space M. This target space may

be identified, as a Riemannian manifold, with the moduli space of solutions to a Hitchin

system. To justify this, the essential observation is that instead of compactifying on C

and then on S1, we can — by a QFT version of the “Fubini theorem” — construct the

same e↵ective theory in three dimensions by first compactifying on S1 and then on C. The

first compactification on S1 leads to a five-dimensional supersymmetric Yang-Mills theory.

The subsequent compactification of the (twisted) d = 5 super-Yang-Mills theory on C then

leads to BPS equations which are well known to be the Hitchin equations. In particular, if

we begin with K M5-branes (i.e. the superconformal u(K) (2, 0) theory in six dimensions)

then the Hitchin equations are equations (3.32)-(3.34) below:

F +R2[', '̄] = 0, (1.1)

@z̄'+ [Az̄,'] = 0, (1.2)

@z'̄+ [Az, '̄] = 0, (1.3)

where R is the radius of the circle, F is the fieldstrength of a u(K) gauge field A on C and

' is the (1, 0) part of a 1-form valued in the adjoint. z is a local holomorphic coordinate

on C.

The description of the Hitchin system is incomplete without specifying boundary condi-

tions on (A,') at the punctures of C. At these punctures the fields (A,') have singularities.

Physically these singularities encode the somewhat mysterious “defect operators” of the

six-dimensional superconformal theory (and in practice the defect operators are defined by

the specified singularities of (A,')). The simplest operators to consider – and the ones

upon which we focus – arise from intersections, at the punctures of C, of the multiple u(K)

M5-brane theory with “transverse” singly-wrapped M5-branes. By transverse we mean

the following. In general the curve C is embedded in some hyperkahler manifold Q as a

holomorphic curve. The gravitational decoupling limit allows us to replace Q by a neigh-

borhood of the zero-section of T ⇤C. The transverse fivebranes fill the four-dimensional

spacetime R
1,3 of the N = 2 theory and run along fibers of the projection T ⇤C ! C. In

Section 3 we show how to translate this physical picture into conditions on the singularities

of (A,'). The singularities are described in detail in Section 3.2.4; see (3.74), (3.75), and

(3.76), for the case of regular singularities, and Section 3.2.6, equation (3.115), (3.116), as

well as Section 9.3, for the case of irregular singularities.

The Hitchin system plays a central role throughout the paper and Section 4 of the paper

summarizes the basic facts we need about Hitchin systems. The mathematically-oriented

reader can skip Section 3 and proceed with the brief summary in Section 4, although the

rules for finding BPS states might then appear somewhat unmotivated.

A particularly important set of examples of theories in the class S are provided by

Witten’s geometric construction of N = 2 theories using arrays of NS5- and D4-branes

[2]. These are often summarized by figures such as Figure 5. Much of Section 3 is merely

– 5 –
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only involves the Higgs field; something similar exists in the Hitchin systems literature and
corresponds to the Hitchin connection ∇ in the oper limit [34]. The oper limit consists of
sending R → 0, ζ → 0 in such a way as to keep the ratio ζ/R = ! constant, so that

∇ −→
oper

!∂z + ϕz ⇐⇒ κ∂z −A. (2.21)

Then the parameters κ and ! play the same role, and when they are sent to zero both the
isomonodromic problem and the oper reduce to a Higgs bundle, while the connection of the
isomonodromic problem A still corresponds to the Higgs field ϕz . With this identification
one can think of the compatibility condition (2.8) as a gauge transformation for the oper,
while isomonodromic deformations (2.6) translate into the so-called Whitham deformations
of the Hitchin system [9, 29, 32].

To summarize, from what said previously and from the analysis we will carry out in
the next sections we can construct the dictionary in Table 3.

Painlevé isomonodromic problem N = 2 theory Hitchin system

punctured Riemann sphere C0,n[z] Gaiotto surface C0,n[z]

connection κ∂z −A oper !∂z + ϕz

isomonodromic deformations Whitham deformations

compatibility condition (2.8) gauge transformation

overall scale κ oper parameter !

isospectral limit κ→ 0 (Higgs bundle) complex structure I limit ! → 0 (Higgs bundle)

Painlevé time t gauge coupling Λ or c

Painlevé σ-function (Hamiltonian) Coulomb branch parameter u

Painlevé free parameters masses N = 2 theory

Table 3. Correspondence between Painlevé isomonodromic problems and N = 2 theory Hitchin
systems.

2.4 Painlevé τ-functions and “dual” instanton partition functions

In the previous section we saw how Painlevé equations are related to four-dimensional
N = 2 theories. Given this connection, one can wonder whether there are gauge theory
quantities which have an analogue in Painlevé theory. In fact, an example is already known
in the literature: starting with the work [35], it turned out that Painlevé τ -functions have a
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oper limit:

radial component of flat Hitchin connection on cylinder w. regular

singularities

obey’s Toda lattice equations with boundary conditions set by the 
surface operator.



Toda lattice equations from 4d/2d correspondence

The Toda system is the radial reduction of 2D Toda lattice 
equations on the cylinder          .
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These naturally arise as tt* equations for a Landau-Ginzburg 
model describing complex deformations of a            singularity
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for full surface defects                 the target space is a complete
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flag variety whose Hori-Vafa mirror is precisely the above 
Landau-Ginzburg model !!



Seiberg-Witten theory viewpoint

Seiberg-Witten curve of N=2 SYM is the spectral curve of affine 
Toda chain of type                               
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Abstract: We show that the non-perturbative dynamics of N = 2 super Yang-Mills theories in a
self-dual Ω-background and with an arbitrary simple gauge group is fully determined by studying
renormalization group equations of vevs of surface operators generating one-form symmetries. The
corresponding system of equations is a non-autonomous Toda chain, the time being the RG scale.
We obtain new recurrence relations which provide a systematic algorithm computing multi-instanton
corrections from the tree-level one-loop prepotential as the asymptotic boundary condition of the
RGE. We exemplify by computing the E6 and G2 cases up to two-instantons.

In an ideal world the non-perturbative structure of
gauge theories should be computed by quantum equa-
tions of motion determined by a symmetry principle. The
presence of extended operators generating higher form
symmetries in quantum field theory is a powerful tool
to concretely realise such a programme. A perturbative
analysis in a weakly coupled regime, if any, would sup-
ply appropriate asymptotic conditions. In this letter we
present a class of theories where the full non-perturbative
result is fixed in such a framework. These are N = 2
super Yang-Mills theories in four dimensional self-dual
Ω-background, which enjoy a one-form symmetry gener-
ated by surface operators [1]. We show that the renor-
malization group equation obeyed by the vacuum expec-
tation value of such surface operators provides a recur-
sion relation which fully determines, from the perturba-
tive one-loop prepotential, all instanton contributions on
the self-dual Ω-background or, equivalently, the all-genus
topological string amplitudes on the relevant geometric
background. Actually, partition functions with surface
operators display a very clear resurgent structure led by
the summation over the magnetic fluxes [2].

The system of equations we study is a non-autonomous

twisted affine Toda chain of type (Ĝ)∨, where (Ĝ)∨ is the
Langlands dual of the untwisted affine Kac-Moody alge-
bra Ĝ. Each node of the corresponding affine Dynkin
diagram defines a surface operator, the associated τ -
function being its vacuum expectation value. The time
flow corresponds in the gauge theory to the renormaliza-
tion group. The resulting recurrence relations constitute
a new effective algorithm to determine instanton contri-
butions for all classical groups G. Let us remark that
the τ -functions we obtain provide the general solution
at the canonical rays for the Jimbo-Miwa-Ueno isomon-
odromic deformation problem [3, 4] on the sphere with
two-irregular punctures for all classical groups, which to
the best of our knowledge was not known in the previous
literature. The recursion relations we obtain are different
from the blow-up equations of [5] further elaborated in
[6]. Indeed the latter necessarily involve the knowledge of
the partition function in different Ω-backgrounds. This

makes the recursion relations (and the results) coming
from blow-up equations more involved and difficult to
handle. However, we expect a relation between the two
approaches to follow from blow-up relations in presence
of surface defects. Indeed, the isomonodromic τ -function
for the sphere with four regular punctures was obtained
in a similar way from SU(2) gauge theory with Nf = 4
in [7]. In this letter we summarise our results and refer to
a subsequent longer paper for a fully detailed discussion.

The τ -functions are labeled by the simple roots of the
affinization of the Lie algebra of the gauge group α ∈ ∆̂,
namely {τα}α∈∆̂, and satisfy the equations

D2(τβ) = −β∨ · β∨

2
t1/h

∨ ∏

β∈∆̂,β #=α

[τα]
−α·β∨

(1)

where t := (Λ/ε)2h
∨

and the logarithmic Hirota deriva-
tive is given by D2(f) = f∂2

log tf−(∂log tf)2. Given a sim-
ple root α, its coroot is as usual given by α∨ = 2α/(α,α),
where (·, ·) is the scalar product defined by the affine
Cartan matrix. Eq. (1) is the de-autonomization of
the τ -form of the standard Toda integrable system [8, 9]
governing the classical Seiberg-Witten (SW) theory [10].
The de-autonomization is induced by coupling the the-
ory to a self-dual Ω-background (ε1, ε2) = (ε,−ε) [11].
In the autonomous limit ε → 0, τ -functions reduce to
θ-functions on the classical SW curve [12], which were
used to provide recursion relations on the coefficients of
the SW prepotential in [13]. The gauge theory inter-
pretation of these τ -functions is the v.e.v. of surface
operators associated to the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their general-
izations to describe chiral ring relations in presence of
a surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of the
full non-autonomous Toda hierarchy. The actual form
of equations (1) depends on the Dynkin diagram. For
the classical groups A, B and D these reduce to bilinear
equations which we solve via general recursion relations.
For C, E, F and G the resulting equations are of higher

Langlands dual

The RG equations for surface defects are the de-autonomization
of Toda chain equations. Simplest example:
SU(2)                2 particle Toda chain               Painleve’ III degen.

SW curve de-autonomization

The de-autonomization is the deformation of the integrable system
describing susy gauge theory in a self-dual Omega background 
and thus gravitational corrections to SW prepotential .

The latter are equivalent to topological string amplitudes on a 
suitable local Calabi-Yau via geometric engineering.
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self-dual Ω-background and with an arbitrary simple gauge group is fully determined by studying
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tions of motion determined by a symmetry principle. The
presence of extended operators generating higher form
symmetries in quantum field theory is a powerful tool
to concretely realise such a programme. A perturbative
analysis in a weakly coupled regime, if any, would sup-
ply appropriate asymptotic conditions. In this letter we
present a class of theories where the full non-perturbative
result is fixed in such a framework. These are N = 2
super Yang-Mills theories in four dimensional self-dual
Ω-background, which enjoy a one-form symmetry gener-
ated by surface operators [1]. We show that the renor-
malization group equation obeyed by the vacuum expec-
tation value of such surface operators provides a recur-
sion relation which fully determines, from the perturba-
tive one-loop prepotential, all instanton contributions on
the self-dual Ω-background or, equivalently, the all-genus
topological string amplitudes on the relevant geometric
background. Actually, partition functions with surface
operators display a very clear resurgent structure led by
the summation over the magnetic fluxes [2].

The system of equations we study is a non-autonomous

twisted affine Toda chain of type (Ĝ)∨, where (Ĝ)∨ is the
Langlands dual of the untwisted affine Kac-Moody alge-
bra Ĝ. Each node of the corresponding affine Dynkin
diagram defines a surface operator, the associated τ -
function being its vacuum expectation value. The time
flow corresponds in the gauge theory to the renormaliza-
tion group. The resulting recurrence relations constitute
a new effective algorithm to determine instanton contri-
butions for all classical groups G. Let us remark that
the τ -functions we obtain provide the general solution
at the canonical rays for the Jimbo-Miwa-Ueno isomon-
odromic deformation problem [3, 4] on the sphere with
two-irregular punctures for all classical groups, which to
the best of our knowledge was not known in the previous
literature. The recursion relations we obtain are different
from the blow-up equations of [5] further elaborated in
[6]. Indeed the latter necessarily involve the knowledge of
the partition function in different Ω-backgrounds. This

makes the recursion relations (and the results) coming
from blow-up equations more involved and difficult to
handle. However, we expect a relation between the two
approaches to follow from blow-up relations in presence
of surface defects. Indeed, the isomonodromic τ -function
for the sphere with four regular punctures was obtained
in a similar way from SU(2) gauge theory with Nf = 4
in [7]. In this letter we summarise our results and refer to
a subsequent longer paper for a fully detailed discussion.

The τ -functions are labeled by the simple roots of the
affinization of the Lie algebra of the gauge group α ∈ ∆̂,
namely {τα}α∈∆̂, and satisfy the equations
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2
t1/h
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β∈∆̂,β #=α

[τα]
−α·β∨

(1)

where t := (Λ/ε)2h
∨

and the logarithmic Hirota deriva-
tive is given by D2(f) = f∂2

log tf−(∂log tf)2. Given a sim-
ple root α, its coroot is as usual given by α∨ = 2α/(α,α),
where (·, ·) is the scalar product defined by the affine
Cartan matrix. Eq. (1) is the de-autonomization of
the τ -form of the standard Toda integrable system [8, 9]
governing the classical Seiberg-Witten (SW) theory [10].
The de-autonomization is induced by coupling the the-
ory to a self-dual Ω-background (ε1, ε2) = (ε,−ε) [11].
In the autonomous limit ε → 0, τ -functions reduce to
θ-functions on the classical SW curve [12], which were
used to provide recursion relations on the coefficients of
the SW prepotential in [13]. The gauge theory inter-
pretation of these τ -functions is the v.e.v. of surface
operators associated to the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their general-
izations to describe chiral ring relations in presence of
a surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of the
full non-autonomous Toda hierarchy. The actual form
of equations (1) depends on the Dynkin diagram. For
the classical groups A, B and D these reduce to bilinear
equations which we solve via general recursion relations.
For C, E, F and G the resulting equations are of higher

2

order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-

Toda system in tau form:

 Kyiv-like ansatz

2

order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
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−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].
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∑
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ciei|
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i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-
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order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-

Asymptotic conditions
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order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0
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The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-
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order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑
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aff

e2π
√
−1η·nt
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(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1
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∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
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]

∈ R and matches the canonical Stokes
rays obtained in [19].
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fundamental weights are miniscule, namely
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(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑
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and by inserting it into (6) one gets after some simplifi-
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order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
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(2)
where B(σ|t) = B0(σ)

∑
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iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
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2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-

is the full Nekrasov p.f. in a self-dual 

Omega background 
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Abstract: We show that the non-perturbative dynamics of N = 2 super Yang-Mills theories in a
self-dual Ω-background and with an arbitrary simple gauge group is fully determined by studying
renormalization group equations of vevs of surface operators generating one-form symmetries. The
corresponding system of equations is a non-autonomous Toda chain, the time being the RG scale.
We obtain new recurrence relations which provide a systematic algorithm computing multi-instanton
corrections from the tree-level one-loop prepotential as the asymptotic boundary condition of the
RGE. We exemplify by computing the E6 and G2 cases up to two-instantons.

In an ideal world the non-perturbative structure of
gauge theories should be computed by quantum equa-
tions of motion determined by a symmetry principle. The
presence of extended operators generating higher form
symmetries in quantum field theory is a powerful tool
to concretely realise such a programme. A perturbative
analysis in a weakly coupled regime, if any, would sup-
ply appropriate asymptotic conditions. In this letter we
present a class of theories where the full non-perturbative
result is fixed in such a framework. These are N = 2
super Yang-Mills theories in four dimensional self-dual
Ω-background, which enjoy a one-form symmetry gener-
ated by surface operators [1]. We show that the renor-
malization group equation obeyed by the vacuum expec-
tation value of such surface operators provides a recur-
sion relation which fully determines, from the perturba-
tive one-loop prepotential, all instanton contributions on
the self-dual Ω-background or, equivalently, the all-genus
topological string amplitudes on the relevant geometric
background. Actually, partition functions with surface
operators display a very clear resurgent structure led by
the summation over the magnetic fluxes [2].

The system of equations we study is a non-autonomous

twisted affine Toda chain of type (Ĝ)∨, where (Ĝ)∨ is the
Langlands dual of the untwisted affine Kac-Moody alge-
bra Ĝ. Each node of the corresponding affine Dynkin
diagram defines a surface operator, the associated τ -
function being its vacuum expectation value. The time
flow corresponds in the gauge theory to the renormaliza-
tion group. The resulting recurrence relations constitute
a new effective algorithm to determine instanton contri-
butions for all classical groups G. Let us remark that
the τ -functions we obtain provide the general solution
at the canonical rays for the Jimbo-Miwa-Ueno isomon-
odromic deformation problem [3, 4] on the sphere with
two-irregular punctures for all classical groups, which to
the best of our knowledge was not known in the previous
literature. The recursion relations we obtain are different
from the blow-up equations of [5] further elaborated in
[6]. Indeed the latter necessarily involve the knowledge of
the partition function in different Ω-backgrounds. This

makes the recursion relations (and the results) coming
from blow-up equations more involved and difficult to
handle. However, we expect a relation between the two
approaches to follow from blow-up relations in presence
of surface defects. Indeed, the isomonodromic τ -function
for the sphere with four regular punctures was obtained
in a similar way from SU(2) gauge theory with Nf = 4
in [7]. In this letter we summarise our results and refer to
a subsequent longer paper for a fully detailed discussion.

The τ -functions are labeled by the simple roots of the
affinization of the Lie algebra of the gauge group α ∈ ∆̂,
namely {τα}α∈∆̂, and satisfy the equations

D2(τβ) = −β∨ · β∨

2
t1/h

∨ ∏

β∈∆̂,β #=α

[τα]
−α·β∨

(1)

where t := (Λ/ε)2h
∨

and the logarithmic Hirota deriva-
tive is given by D2(f) = f∂2

log tf−(∂log tf)2. Given a sim-
ple root α, its coroot is as usual given by α∨ = 2α/(α,α),
where (·, ·) is the scalar product defined by the affine
Cartan matrix. Eq. (1) is the de-autonomization of
the τ -form of the standard Toda integrable system [8, 9]
governing the classical Seiberg-Witten (SW) theory [10].
The de-autonomization is induced by coupling the the-
ory to a self-dual Ω-background (ε1, ε2) = (ε,−ε) [11].
In the autonomous limit ε → 0, τ -functions reduce to
θ-functions on the classical SW curve [12], which were
used to provide recursion relations on the coefficients of
the SW prepotential in [13]. The gauge theory inter-
pretation of these τ -functions is the v.e.v. of surface
operators associated to the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their general-
izations to describe chiral ring relations in presence of
a surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of the
full non-autonomous Toda hierarchy. The actual form
of equations (1) depends on the Dynkin diagram. For
the classical groups A, B and D these reduce to bilinear
equations which we solve via general recursion relations.
For C, E, F and G the resulting equations are of higher

2

order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-

We obtain new recurrence relations determining all instanton

corrections in self-dual bckg for all simple groups from 
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solution satisfying the asymptotic conditions

2

order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-

Barnes G-functionadjoint representation

2

order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π
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−1n·ηt
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2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-

the asymptotic expansion matches the perturbative  one-loop calculation
of gauge theory upon a suitable choice of the branch for the log
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which is consistent with equation (6) in 1602.00273 (Resumming instan-

tons ... by Billo,Frau,Fucito,Morales,Lerda).
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this fixes some directions in the complex plane which are the Stokes rays of 
the related non-linear equations - isomonodromic deformation problem on the 

Riemann sphere with two irregular singular point of Poincare’ rank 1.

One-loop
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order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-
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order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt
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(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-
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order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
[√

−1r · a/Λ
]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is

τ0

τ1 τj−1 τj τj+1 τn

The root lattice is Q = {
n+1
∑

i=1
ciei|

n+1
∑

i=1
ci = 0}, and all the

fundamental weights are miniscule, namely

λi =
1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0
e2π

√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n)

and by inserting it into (6) one gets after some simplifi-
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order and we study them case by case. The symmetries
of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt
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(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2

B(σ|t) in (2) is
the full Nekrasov partition function in the self-dual Ω-
background upon the identification σ = a/ε, where a is
the Cartan parameter. In the An case, (2) is known as
the Kiev Ansatz. In the A1 case, it was used to give
the general solution of Painlevé III3 equation in [15] and
further analysed in [16].

Let us remark that the τ -function (2) displays a clear
resurgent structure, with “instantons” given by the mag-
netic fluxes in the lattice summed with “resurgent” coef-
ficients B(σ|t) and trans-series parameter e2π

√
−1η, see

[17] for a similar analysis in the Painlevé III3 case.
The Ansatz (2) is consistent with equations (1). In-

deed, after eliminating the τ -functions associated to the
non-affine nodes, the resulting equation is bilinear and
therefore the Ansatz (2) reduces to a set of recursion re-
lations for the coefficients Zi(σ). The variables η and σ
are the integration constants of the second order differ-
ential equations (1) and correspond to the initial position
and velocity of the de-autonomized Toda particle.

Let us set more precisely the boundary conditions
which we impose to the solutions of equations (1). We
consider the asymptotic behaviour of the solutions at
t → 0 and σ → ∞ as

log(B0) ∼ −1

4

∑

r∈R

(r · σ)2 log (r · σ)2 (3)

up to quadratic and log-terms [18]. We will show that
the solution of (1) which satisfies the above asymptotic
condition is such that

B0(σ) = Z1−loop(σ) ≡
∏

r∈R

1

G(1 + r · σ) (4)

where G(z) is the Barnes’ G-function and R is the ad-
joint representation of the group G. The expansion of
the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-
branch. This reads, in the gauge theory variables, as
ln
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]

∈ R and matches the canonical Stokes
rays obtained in [19].

Let us first focus on the An case whose affine Dynkin
diagram is
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ciei|

n+1
∑

i=1
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fundamental weights are miniscule, namely
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1

n+ 1
(1i, 0n+1−i)− i

n+ 1
(1n+1) ,

where (1p, 0n+1−p) stands for a vector whose first p en-
tries are 1 and the remaining entries vanish. We label
the τ -functions as ταj

≡ τj . The τ -system is given by
the closed chain of differential equations

D2(τj) = −t
1

n+1 τj−1τj+1, (5)

with τj = τn+1+j . Since all the nodes in this case are
affine we can use the Kiev Ansatz (2). Then, all the τ -
functions are determined by τ0 as τj(σ|t) = τ0(σ+λj |t).
It is therefore enough to solve the single equation

D2(τ0(σ)) = −τ0(σ ± e1) . (6)

Here and in the following we use the notation f(y±x) ≡
f(y + x)f(y − x). The Ansatz (2) for τ0 reads
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of the equations are given by the center of the group G,
namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

Moreover, the center is isomorphic to the coset of the
affine coweight lattice by the affine coroot lattice, and co-
incides with the automorphism group of the affine Dynkin
diagram. By a remark in [14], the coweights, and by ex-
tension the lattice cosets, corresponding to these nodes
are the miniscule coweights, a representation of g being
miniscule if all its weights form a single Weyl-orbit. This
remark will be crucial while solving the τ -system.

The τ -functions corresponding to the affine nodes, that
is the ones which can be removed from the Dynkin di-
agram leaving behind that of an irreducible simple Lie
algebra, play a special rôle. Indeed, these are related
to simple surface operators associated to elements of the
center Z(G), and are bounded by fractional ’t Hooft lines.
Such surface operators are the generators of the one-form
symmetry of the corresponding gauge theory, [1]. Since
their magnetic charge is defined modulo the magnetic
root lattice, a natural Ansatz for their expectation value
is

ταaff
(σ,η|κgt) =

∑

n∈Q∨
aff

e2π
√
−1η·nt

1
2
(σ+n)2B(σ + n|t)

(2)
where B(σ|t) = B0(σ)

∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1

and Q∨
aff

= λ∨
aff + Q∨, Q∨ being the co-root lattice and

(λ∨
aff,α) = δαaff,α for any simple root α. The constant

κg = (−ng)rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple
roots. For simply laced, all roots are long and κg = 1.

We will now show how the term t
1
2
σ2
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k2Zk(�) = �
X

n2+j1+j2=k
n2e1+Q, j1,2<k

B0(� ± n)

B0(�)2
Zj2(� � n)Zj1(� + n)

+
X
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(i1 � i2 + 2n · �)2 B0(� ± n)
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1
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cations
∑

n1,n2∈Q
i1,i2≥0

e2π
√
−1(n1+n2)·ηt

1
2
n

2
1+

1
2
n

2
2+i1+i2+σ·(n1+n2)

×
(

1

2
n
2
1 −

1

2
n
2
2 + i1 − i2 + σ · (n1 − n2)

)2

×B0(σ + n1)B0(σ + n2)Zi1(σ + n1)Zi2(σ + n2)

= −
∑

m1,m2∈Q
j1,j2≥0

t1+
1
2
m

2
1+

1
2
m

2
2+e1·(m1−m2)+j1+j2+σ·(m1+m2)×

e2π
√
−1(m1+m2)·ηB0(σ +m1 + e1)B0(σ +m2 − e1)×

Zj1(σ +m1 + e1)Zj2(σ +m2 − e1) (7)

Now we simply equate the exponents. To fix B0(σ),
we look at the lowest order in t. This produces a
quadratic constraint and n + 1 linear constraints on the
root lattice variables (n1,n2) and (m1,m2). Let us fix
p, q ∈ {0, ...n+1}, p $= q. Up to Weyl reflections, the only
solution to the above mentioned constraints is given by
n1 = ep − eq, n2 = 0 and m1 = ep − e1, m2 = −eq + e1,
leading to

(1 + (ep − eq) · σ)2 B0(σ + ep − eq)B0(σ) =

−B0(σ + ep)B0(σ − eq) . (8)

This is solved by (4) up to a function periodic on the root
lattice, which is set to one by the asymptotic condition
(3). The higher order terms in (7) provide the recursion
relations

k2Zk(σ) = −
∑

n
2+j1+j2=k

n∈e1+Q, j1,2<k

B0(σ ± n)

B0(σ)2
×

Zj2(σ − n)Zj1(σ + n) +
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n
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n∈Q, i1,2<k

(i1 − i2 + 2n · σ)2

×B0(σ ± n)

B0(σ)2
Zi1(σ + n)Zi2(σ − n) ,

where B0(σ) is given by (4). For k = 1 we easily obtain

Z1(σ) = −
n+1
∑

i=1

B0(σ ± ei)

B0(σ)2
= (−1)n+1

n+1
∑

i=1

1
∏

j %=i(σi − σj)2

and, upon abbreviating σij = σi − σj , the next term

Z2(σ) = −1

4

n+1
∑

i=1

B0(σ ± ei)

B0(σ)2
[Z1(σ + ei) + Z1(σ − ei)]

+
n+1
∑

i<j

(σi − σj)
2B0(σ ± (ei − ej))

B0(σ)2

The above coincide with one and two instanton contri-
butions to the SU(n + 1) Nekrasov partition function
as computed from supersymmetric localization [20, 21].
Let us remark that the use of the τ -system (5) provides
a completely independent tool to compute all instanton
corrections just starting from the asymptotic behaviour
(3). This procedure extends to all classical groups.

τ0

τ1

τ2
τ3 τn−3

τn−2

τn−1

τn

Dn is a simply laced root system, with the checker-
board lattice Q = Q∨ = {

∑n
i=1 ciei|

∑n
i=1 ci ∈ 2Z}.

We consider n > 4. It has four miniscule weights,
λ0 = (0n), λ1 = (1, 0n−1), λn−1 = ((12 )

n−1,− 1
2 ),

λn = ((12 )
n−1,+ 1

2 ). These correspond to the "legs" of
the affine diagram. Whichever rank we consider, we al-
ways have the consistency conditions

D2(τ0) = D2(τ1), D2(τn−1) = D2(τn) (9)

which are also equal if n = 4, due to the enhanced sym-
metry of D4.

τ0

τ1

τ2
τ3 τn−2 τn−1 τn

Bn is non-simply laced. The coroot lattice is the
checkerboard lattice Q∨ = {

∑n
i=1 ciei|

∑n
i=1 ci ∈ 2Z},

and the two miniscule weights are λ∨
0 = (0n) and λ∨

1 =
(1, 0n−1), corresponding to the "antennae" of the dia-
gram. The τ -system coincides with that of Dn+1, with
the modification that (i) there is no τn+1 and (ii) that

D2(τn−1) = −2t
1

2n−1 τn−2τn, D2(τn) = −t
1

2n−1 τ2n−1.

For n ≥ 3, the analysis proceeds as for Dn except
we may only use the left antennae and consider the
first equation in (9). Therefore, we have a unified ap-
proach for both Dn and Bn. Explicitly, inserting (2) and
τ1(σ|t) = τ0(σ + λ1|t) into the first of (9) we get after
some simplification a formula analogous to (7) leading to
quadratic and linear constraints on the lattice labels. By
repeating the analysis similarly to the previous case, the
equation, analogous to (8), fixing B0 is

(1 + (ep + eq) · σ)2B0(σ)B0(σ + ep + eq)

= ((ep − eq) · σ)2 B0(σ + ep)B0(σ + eq) . (10)

The two cases are distinguished by the corresponding dif-
ferent asymptotic conditions (3). Indeed, we have

B[Dn]
0 (σ) =

n
∏

i<j

1
G(1±σi±σj)

B[Bn]
0 (σ) =

(

n
∏

k=1

1
G(1±σk)

)

B[Dn]
0 (σ)

Also the recursion relations are the same, upon using the
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by plugging the ansatz into the tau-system one gets the recurrence relation:

the first step provides one-instanton in terms of one-loop:

going on with two-instantons:

Recursion relations
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The above coincide with one and two instanton contri-
butions to the SU(n + 1) Nekrasov partition function
as computed from supersymmetric localization [20, 21].
Let us remark that the use of the τ -system (5) provides
a completely independent tool to compute all instanton
corrections just starting from the asymptotic behaviour
(3). This procedure extends to all classical groups.
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ferent asymptotic conditions (3). Indeed, we have

B[Dn]
0 (σ) =

n
∏

i<j

1
G(1±σi±σj)

B[Bn]
0 (σ) =

(

n
∏

k=1

1
G(1±σk)

)

B[Dn]
0 (σ)

Also the recursion relations are the same, upon using the

3

cations
∑

n1,n2∈Q
i1,i2≥0

e2π
√
−1(n1+n2)·ηt

1
2
n

2
1+

1
2
n

2
2+i1+i2+σ·(n1+n2)

×
(

1

2
n
2
1 −

1

2
n
2
2 + i1 − i2 + σ · (n1 − n2)

)2

×B0(σ + n1)B0(σ + n2)Zi1(σ + n1)Zi2(σ + n2)

= −
∑

m1,m2∈Q
j1,j2≥0

t1+
1
2
m

2
1+

1
2
m

2
2+e1·(m1−m2)+j1+j2+σ·(m1+m2)×

e2π
√
−1(m1+m2)·ηB0(σ +m1 + e1)B0(σ +m2 − e1)×

Zj1(σ +m1 + e1)Zj2(σ +m2 − e1) (7)

Now we simply equate the exponents. To fix B0(σ),
we look at the lowest order in t. This produces a
quadratic constraint and n + 1 linear constraints on the
root lattice variables (n1,n2) and (m1,m2). Let us fix
p, q ∈ {0, ...n+1}, p $= q. Up to Weyl reflections, the only
solution to the above mentioned constraints is given by
n1 = ep − eq, n2 = 0 and m1 = ep − e1, m2 = −eq + e1,
leading to

(1 + (ep − eq) · σ)2 B0(σ + ep − eq)B0(σ) =

−B0(σ + ep)B0(σ − eq) . (8)

This is solved by (4) up to a function periodic on the root
lattice, which is set to one by the asymptotic condition
(3). The higher order terms in (7) provide the recursion
relations

k2Zk(σ) = −
∑

n
2+j1+j2=k

n∈e1+Q, j1,2<k

B0(σ ± n)

B0(σ)2
×

Zj2(σ − n)Zj1(σ + n) +
∑

n
2+i1+i2=k

n∈Q, i1,2<k

(i1 − i2 + 2n · σ)2

×B0(σ ± n)

B0(σ)2
Zi1(σ + n)Zi2(σ − n) ,

where B0(σ) is given by (4). For k = 1 we easily obtain

Z1(σ) = −
n+1
∑

i=1

B0(σ ± ei)

B0(σ)2
= (−1)n+1

n+1
∑

i=1

1
∏

j %=i(σi − σj)2

and, upon abbreviating σij = σi − σj , the next term

Z2(σ) = −1

4

n+1
∑

i=1

B0(σ ± ei)

B0(σ)2
[Z1(σ + ei) + Z1(σ − ei)]

+
n+1
∑

i<j

(σi − σj)
2B0(σ ± (ei − ej))

B0(σ)2

The above coincide with one and two instanton contri-
butions to the SU(n + 1) Nekrasov partition function
as computed from supersymmetric localization [20, 21].
Let us remark that the use of the τ -system (5) provides
a completely independent tool to compute all instanton
corrections just starting from the asymptotic behaviour
(3). This procedure extends to all classical groups.

τ0

τ1

τ2
τ3 τn−3

τn−2

τn−1

τn

Dn is a simply laced root system, with the checker-
board lattice Q = Q∨ = {

∑n
i=1 ciei|

∑n
i=1 ci ∈ 2Z}.

We consider n > 4. It has four miniscule weights,
λ0 = (0n), λ1 = (1, 0n−1), λn−1 = ((12 )

n−1,− 1
2 ),

λn = ((12 )
n−1,+ 1

2 ). These correspond to the "legs" of
the affine diagram. Whichever rank we consider, we al-
ways have the consistency conditions

D2(τ0) = D2(τ1), D2(τn−1) = D2(τn) (9)

which are also equal if n = 4, due to the enhanced sym-
metry of D4.

τ0

τ1

τ2
τ3 τn−2 τn−1 τn

Bn is non-simply laced. The coroot lattice is the
checkerboard lattice Q∨ = {

∑n
i=1 ciei|

∑n
i=1 ci ∈ 2Z},

and the two miniscule weights are λ∨
0 = (0n) and λ∨

1 =
(1, 0n−1), corresponding to the "antennae" of the dia-
gram. The τ -system coincides with that of Dn+1, with
the modification that (i) there is no τn+1 and (ii) that

D2(τn−1) = −2t
1

2n−1 τn−2τn, D2(τn) = −t
1

2n−1 τ2n−1.

For n ≥ 3, the analysis proceeds as for Dn except
we may only use the left antennae and consider the
first equation in (9). Therefore, we have a unified ap-
proach for both Dn and Bn. Explicitly, inserting (2) and
τ1(σ|t) = τ0(σ + λ1|t) into the first of (9) we get after
some simplification a formula analogous to (7) leading to
quadratic and linear constraints on the lattice labels. By
repeating the analysis similarly to the previous case, the
equation, analogous to (8), fixing B0 is

(1 + (ep + eq) · σ)2B0(σ)B0(σ + ep + eq)

= ((ep − eq) · σ)2 B0(σ + ep)B0(σ + eq) . (10)

The two cases are distinguished by the corresponding dif-
ferent asymptotic conditions (3). Indeed, we have

B[Dn]
0 (σ) =

n
∏

i<j

1
G(1±σi±σj)

B[Bn]
0 (σ) =

(

n
∏

k=1

1
G(1±σk)

)

B[Dn]
0 (σ)

Also the recursion relations are the same, upon using the

3

cations
∑

n1,n2∈Q
i1,i2≥0

e2π
√
−1(n1+n2)·ηt

1
2
n

2
1+

1
2
n

2
2+i1+i2+σ·(n1+n2)

×
(

1

2
n
2
1 −

1

2
n
2
2 + i1 − i2 + σ · (n1 − n2)

)2

×B0(σ + n1)B0(σ + n2)Zi1(σ + n1)Zi2(σ + n2)

= −
∑

m1,m2∈Q
j1,j2≥0

t1+
1
2
m

2
1+

1
2
m

2
2+e1·(m1−m2)+j1+j2+σ·(m1+m2)×

e2π
√
−1(m1+m2)·ηB0(σ +m1 + e1)B0(σ +m2 − e1)×

Zj1(σ +m1 + e1)Zj2(σ +m2 − e1) (7)

Now we simply equate the exponents. To fix B0(σ),
we look at the lowest order in t. This produces a
quadratic constraint and n + 1 linear constraints on the
root lattice variables (n1,n2) and (m1,m2). Let us fix
p, q ∈ {0, ...n+1}, p $= q. Up to Weyl reflections, the only
solution to the above mentioned constraints is given by
n1 = ep − eq, n2 = 0 and m1 = ep − e1, m2 = −eq + e1,
leading to

(1 + (ep − eq) · σ)2 B0(σ + ep − eq)B0(σ) =

−B0(σ + ep)B0(σ − eq) . (8)

This is solved by (4) up to a function periodic on the root
lattice, which is set to one by the asymptotic condition
(3). The higher order terms in (7) provide the recursion
relations

k2Zk(σ) = −
∑

n
2+j1+j2=k

n∈e1+Q, j1,2<k

B0(σ ± n)

B0(σ)2
×

Zj2(σ − n)Zj1(σ + n) +
∑

n
2+i1+i2=k

n∈Q, i1,2<k

(i1 − i2 + 2n · σ)2

×B0(σ ± n)

B0(σ)2
Zi1(σ + n)Zi2(σ − n) ,

where B0(σ) is given by (4). For k = 1 we easily obtain

Z1(σ) = −
n+1
∑

i=1

B0(σ ± ei)

B0(σ)2
= (−1)n+1

n+1
∑

i=1

1
∏

j %=i(σi − σj)2

and, upon abbreviating σij = σi − σj , the next term

Z2(σ) = −1

4

n+1
∑

i=1

B0(σ ± ei)

B0(σ)2
[Z1(σ + ei) + Z1(σ − ei)]

+
n+1
∑

i<j

(σi − σj)
2B0(σ ± (ei − ej))

B0(σ)2

The above coincide with one and two instanton contri-
butions to the SU(n + 1) Nekrasov partition function
as computed from supersymmetric localization [20, 21].
Let us remark that the use of the τ -system (5) provides
a completely independent tool to compute all instanton
corrections just starting from the asymptotic behaviour
(3). This procedure extends to all classical groups.

τ0

τ1

τ2
τ3 τn−3

τn−2

τn−1

τn

Dn is a simply laced root system, with the checker-
board lattice Q = Q∨ = {

∑n
i=1 ciei|

∑n
i=1 ci ∈ 2Z}.

We consider n > 4. It has four miniscule weights,
λ0 = (0n), λ1 = (1, 0n−1), λn−1 = ((12 )

n−1,− 1
2 ),

λn = ((12 )
n−1,+ 1

2 ). These correspond to the "legs" of
the affine diagram. Whichever rank we consider, we al-
ways have the consistency conditions

D2(τ0) = D2(τ1), D2(τn−1) = D2(τn) (9)

which are also equal if n = 4, due to the enhanced sym-
metry of D4.

τ0

τ1

τ2
τ3 τn−2 τn−1 τn

Bn is non-simply laced. The coroot lattice is the
checkerboard lattice Q∨ = {

∑n
i=1 ciei|

∑n
i=1 ci ∈ 2Z},

and the two miniscule weights are λ∨
0 = (0n) and λ∨

1 =
(1, 0n−1), corresponding to the "antennae" of the dia-
gram. The τ -system coincides with that of Dn+1, with
the modification that (i) there is no τn+1 and (ii) that

D2(τn−1) = −2t
1

2n−1 τn−2τn, D2(τn) = −t
1

2n−1 τ2n−1.

For n ≥ 3, the analysis proceeds as for Dn except
we may only use the left antennae and consider the
first equation in (9). Therefore, we have a unified ap-
proach for both Dn and Bn. Explicitly, inserting (2) and
τ1(σ|t) = τ0(σ + λ1|t) into the first of (9) we get after
some simplification a formula analogous to (7) leading to
quadratic and linear constraints on the lattice labels. By
repeating the analysis similarly to the previous case, the
equation, analogous to (8), fixing B0 is

(1 + (ep + eq) · σ)2B0(σ)B0(σ + ep + eq)

= ((ep − eq) · σ)2 B0(σ + ep)B0(σ + eq) . (10)

The two cases are distinguished by the corresponding dif-
ferent asymptotic conditions (3). Indeed, we have

B[Dn]
0 (σ) =

n
∏

i<j

1
G(1±σi±σj)

B[Bn]
0 (σ) =

(

n
∏

k=1

1
G(1±σk)

)

B[Dn]
0 (σ)

Also the recursion relations are the same, upon using the

3

cations
∑

n1,n2∈Q
i1,i2≥0

e2π
√
−1(n1+n2)·ηt

1
2
n

2
1+

1
2
n

2
2+i1+i2+σ·(n1+n2)

×
(

1

2
n
2
1 −

1

2
n
2
2 + i1 − i2 + σ · (n1 − n2)

)2

×B0(σ + n1)B0(σ + n2)Zi1(σ + n1)Zi2(σ + n2)

= −
∑

m1,m2∈Q
j1,j2≥0

t1+
1
2
m

2
1+

1
2
m

2
2+e1·(m1−m2)+j1+j2+σ·(m1+m2)×

e2π
√
−1(m1+m2)·ηB0(σ +m1 + e1)B0(σ +m2 − e1)×

Zj1(σ +m1 + e1)Zj2(σ +m2 − e1) (7)

Now we simply equate the exponents. To fix B0(σ),
we look at the lowest order in t. This produces a
quadratic constraint and n + 1 linear constraints on the
root lattice variables (n1,n2) and (m1,m2). Let us fix
p, q ∈ {0, ...n+1}, p $= q. Up to Weyl reflections, the only
solution to the above mentioned constraints is given by
n1 = ep − eq, n2 = 0 and m1 = ep − e1, m2 = −eq + e1,
leading to

(1 + (ep − eq) · σ)2 B0(σ + ep − eq)B0(σ) =

−B0(σ + ep)B0(σ − eq) . (8)

This is solved by (4) up to a function periodic on the root
lattice, which is set to one by the asymptotic condition
(3). The higher order terms in (7) provide the recursion
relations

k2Zk(σ) = −
∑

n
2+j1+j2=k

n∈e1+Q, j1,2<k

B0(σ ± n)

B0(σ)2
×

Zj2(σ − n)Zj1(σ + n) +
∑

n
2+i1+i2=k

n∈Q, i1,2<k

(i1 − i2 + 2n · σ)2

×B0(σ ± n)

B0(σ)2
Zi1(σ + n)Zi2(σ − n) ,

where B0(σ) is given by (4). For k = 1 we easily obtain

Z1(σ) = −
n+1
∑

i=1

B0(σ ± ei)

B0(σ)2
= (−1)n+1

n+1
∑

i=1

1
∏

j %=i(σi − σj)2

and, upon abbreviating σij = σi − σj , the next term

Z2(σ) = −1

4

n+1
∑

i=1

B0(σ ± ei)

B0(σ)2
[Z1(σ + ei) + Z1(σ − ei)]

+
n+1
∑

i<j

(σi − σj)
2B0(σ ± (ei − ej))

B0(σ)2

The above coincide with one and two instanton contri-
butions to the SU(n + 1) Nekrasov partition function
as computed from supersymmetric localization [20, 21].
Let us remark that the use of the τ -system (5) provides
a completely independent tool to compute all instanton
corrections just starting from the asymptotic behaviour
(3). This procedure extends to all classical groups.

τ0

τ1

τ2
τ3 τn−3

τn−2

τn−1

τn

Dn is a simply laced root system, with the checker-
board lattice Q = Q∨ = {

∑n
i=1 ciei|

∑n
i=1 ci ∈ 2Z}.

We consider n > 4. It has four miniscule weights,
λ0 = (0n), λ1 = (1, 0n−1), λn−1 = ((12 )

n−1,− 1
2 ),

λn = ((12 )
n−1,+ 1

2 ). These correspond to the "legs" of
the affine diagram. Whichever rank we consider, we al-
ways have the consistency conditions

D2(τ0) = D2(τ1), D2(τn−1) = D2(τn) (9)

which are also equal if n = 4, due to the enhanced sym-
metry of D4.

τ0

τ1

τ2
τ3 τn−2 τn−1 τn

Bn is non-simply laced. The coroot lattice is the
checkerboard lattice Q∨ = {

∑n
i=1 ciei|

∑n
i=1 ci ∈ 2Z},

and the two miniscule weights are λ∨
0 = (0n) and λ∨

1 =
(1, 0n−1), corresponding to the "antennae" of the dia-
gram. The τ -system coincides with that of Dn+1, with
the modification that (i) there is no τn+1 and (ii) that

D2(τn−1) = −2t
1

2n−1 τn−2τn, D2(τn) = −t
1

2n−1 τ2n−1.

For n ≥ 3, the analysis proceeds as for Dn except
we may only use the left antennae and consider the
first equation in (9). Therefore, we have a unified ap-
proach for both Dn and Bn. Explicitly, inserting (2) and
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appropriate root systems R:

k2Zk(σ) =
∑

(n−λ1)
2+j1+j2=k

n∈λ1+Q ,j1,2<k

Zj1(σ + n)Zj2(σ − n)

(j1 − j2 + 2n · σ)2 B0(σ ± n)

B0(σ)2
−

∑

n
2+i1+i2=k

n∈Q, i1,2<k

Zj1(σ + n)

×Zj2(σ − n) (i1 − i2 + 2n · σ)2 B0(σ ± n)

B0(σ)2

This result is in line with the contour integral formulae
for the relevant Nekrasov partition functions. Indeed the
poles in the Dn and Bn cases are the same, with differ-
ent residues. From the above recursion relation we can
compute the 1-instanton terms

Z1(σ) =
n
∑

k=1

4σ2
k
B0(σ ± ek)

B0(σ)2
=















∑n
k=1

−1
∏

j !=k

(σ2
k
−σ2

j )
2 , Bn

∑n
k=1

4σ2
k

∏

j !=k

(σ2
k
−σ2

j )
2 , Dn

and the 2-instantons

Z2(σ) =
∑

α∈Q∨,α2=2

−1

(α · σ)2((α · σ)2 − 1)2
∏

β·α=1
(β · σ)2

+
n
∑

k=1

Z1(σ + ek)(σk + 1
2 )

2 + Z1(σ − ek)(σk − 1
2 )

2

∏

β·ek=±1
(β · σ)

and so on. These are easily compared to [22].
We now turn to the analysis of the other classical

groups, which is more involved. Indeed, the τ -system
reduces to higher order equations which produce more
complicated recurrence relations to be solved by a case
by case analysis. We performed explicit checks for C3,
C4 and C5 up to two-instantons again in agreement with
[22].

τ0

τ1 τ2 τ3
τ4

τ5 τ6

For the exceptional group E6 we obtain the system

τ6D
4(τ0) = τ0D

4(τ6) . (11)

where we used the notation D2n := D2 ◦ D2n−2. The
equations which specify B0 can be written as follows.
Choose the miniscule weight to be λ = (05, (− 2

3 )
3). Let

p1, ...p5 be a permutation of {1, ..., 5} and let δ := ((12 )
8).

Then one gets from the lowest order in (11)

(1 + σp1
+ σp2

)2 (1 + σp1
+ σp3

)2 (σp2
− σp3

)2 ×
B0(σ)B0(σ + ep1

+ ep2
)B0(σ + ep1

+ ep3
) =

((δ − ep2
− ep3

) · σ)2 ((δ − ep2
− ep3

− ep4
− ep5

) · σ)2 ×
(σp4

+ σp5
)2 B0(σ + δ + λ)×

B0(σ + δ + λ− ep4
− ep5

)B0(σ + ep1
− λ/2)

The solution satisfying the asymptotic behaviour (3) is

B[E6]
0 =

5
∏

i<j=1

1

G(1± σi ± σj)

∏

εi=±1
∏

8
i=1 εi=1,

ε6=ε7=ε8

1

G(1 + 1
2

8
∑

i=1
εiσi)

We also solved the recurrence relation arising from (11)
up to two-instantons. For one-instanton, our results
agree with the ones of [23], while the two instantons result
is a too huge formula to be reported here. We remark
that (11) represents a completely novel way of obtain-
ing equivariant volumes of instanton moduli spaces for
exceptional groups.

Unimodular algebras G2, F4, E8 have no outer auto-
morphisms and consequently all the τ -functions associ-
ated to different nodes are independent. Therefore, the
equations on the τ -function associated to the affine node
turn out to be more difficult to solve. Let us display them
for the G2 case.
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In the normalization where its longest root has length 2,
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eliminating τ1 and τ2, the τ -system reduces to the single
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3 . (12)

The operator on the l.h.s. of (12) turns out to factorize
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0 D4(τ0)) = D̃4(τ0) · D2(τ0), where D̃4(τ0) is a
fourth order operator in τ0 and its derivatives. The trivial
solution of D2(τ0) = 0 is τ0 = atb which we discard being
incompatible with (2). In the remainder we insert
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The lowest order terms in (13), namely the coefficient of

t3+σ·( 4√
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), gives a quartic relation which simpli-
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This result is in line with the contour integral formulae
for the relevant Nekrasov partition functions. Indeed the
poles in the Dn and Bn cases are the same, with differ-
ent residues. From the above recursion relation we can
compute the 1-instanton terms
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and so on. These are easily compared to [22].
We now turn to the analysis of the other classical

groups, which is more involved. Indeed, the τ -system
reduces to higher order equations which produce more
complicated recurrence relations to be solved by a case
by case analysis. We performed explicit checks for C3,
C4 and C5 up to two-instantons again in agreement with
[22].
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We also solved the recurrence relation arising from (11)
up to two-instantons. For one-instanton, our results
agree with the ones of [23], while the two instantons result
is a too huge formula to be reported here. We remark
that (11) represents a completely novel way of obtain-
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exceptional groups.

Unimodular algebras G2, F4, E8 have no outer auto-
morphisms and consequently all the τ -functions associ-
ated to different nodes are independent. Therefore, the
equations on the τ -function associated to the affine node
turn out to be more difficult to solve. Let us display them
for the G2 case.
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up to two-instantons. For one-instanton, our results
agree with the ones of [23], while the two instantons result
is a too huge formula to be reported here. We remark
that (11) represents a completely novel way of obtain-
ing equivariant volumes of instanton moduli spaces for
exceptional groups.

Unimodular algebras G2, F4, E8 have no outer auto-
morphisms and consequently all the τ -functions associ-
ated to different nodes are independent. Therefore, the
equations on the τ -function associated to the affine node
turn out to be more difficult to solve. Let us display them
for the G2 case.

τ0 τ1 τ2

In the normalization where its longest root has length 2,
the G2 coroot lattice is the span Q∨ = Z

1√
3
(−2, 1, 1) ⊕

Z
√
3(1,−1, 0). We introduce σ = (σ1,σ2,σ3) but all ex-

pressions should be restricted to σ1 + σ2 + σ3 = 0. By
eliminating τ1 and τ2, the τ -system reduces to the single
equation

D2(τ−1
0 D4(τ0)) = 3t(D2(τ0))

3 . (12)

The operator on the l.h.s. of (12) turns out to factorize
as D2(τ−1

0 D4(τ0)) = D̃4(τ0) · D2(τ0), where D̃4(τ0) is a
fourth order operator in τ0 and its derivatives. The trivial
solution of D2(τ0) = 0 is τ0 = atb which we discard being
incompatible with (2). In the remainder we insert

τ0(σ,η|t) =
∑

n∈Q∨
e2π

√
−1η·n (− t

3

)
1
2
(σ+n)2

B
(

σ + n|− t
3

)

and obtain, after a rescaling t &→ −3t,

∑

{nk}∈Q∨

{ik}∈N

4
∏

k=1

e2π
√
−1η·nkt

1
2
(σ+nk)

2+ikB0(σ + nk)Zik(σ + nk)

(

1

4!

∏

k1<k2

(
1

2
n
2
k1

+ ik1
− 1

2
n
2
k2

− ik2
+ (nk1

− nk2
) · σ)2

+
9

4
(
1

2
n
2
1 + i1 −

1

2
n
2
2 − i2 + (n1 − n2) · σ)2

(
1

2
n
2
3 + i3 −

1

2
n
2
4 − i4 + (n3 − n4) · σ)2

)

= 0 . (13)

The lowest order terms in (13), namely the coefficient of

t3+σ·( 4√
3
,− 2√

3
,− 2√

3
), gives a quartic relation which simpli-

<latexit sha1_base64="GGWs8fh48QYeBy91gNAlZWBE1GI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNRDx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bYne+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F1b0/r9Su8ziKcATHcAoeXEIN7qAODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QMako2u</latexit>

Dn

<latexit sha1_base64="ym+W7pvMKkd8SdeQtQBUs0nCDno=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOpF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh3pf9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqndVde8vK7V6HkcRTuAUzsGDa6jBHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwAXho2s</latexit>

Bn

<latexit sha1_base64="VSHERgF3Gb8Rof20NKBij8L9kTA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiCB4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDVh8MPN6bYWZekAiujet+OYWV1bX1jeJmaWt7Z3evvH/Q0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4eua3H1FpHssHM0nQj+hQ8pAzaqx0f9Ov9csVt+rOQf4SLycVyNHolz97g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZITqwxIGCtb0pC5+nMio5HWkyiwnRE1I73szcT/vG5qwks/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlv6R1VvVqVffuvFK/yuMowhEcwyl4cAF1uIUGNIHBEJ7gBV4d4Tw7b877orXg5DOH8AvOxzfHKY13</latexit>

E6

<latexit sha1_base64="q02C1fa0gwa5WzclKH20kB7OlYk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj0oMeK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cNur9kplt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK95Fxb0/L9eu8zgKcAwncAYeXEIN7qAODWAwgGd4hTdHOC/Ou/Mxb11x8pkj+APn8wfEJY11</latexit>

G2

Other groups



4

appropriate root systems R:
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This result is in line with the contour integral formulae
for the relevant Nekrasov partition functions. Indeed the
poles in the Dn and Bn cases are the same, with differ-
ent residues. From the above recursion relation we can
compute the 1-instanton terms
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(β · σ)

and so on. These are easily compared to [22].
We now turn to the analysis of the other classical

groups, which is more involved. Indeed, the τ -system
reduces to higher order equations which produce more
complicated recurrence relations to be solved by a case
by case analysis. We performed explicit checks for C3,
C4 and C5 up to two-instantons again in agreement with
[22].

τ0

τ1 τ2 τ3
τ4

τ5 τ6

For the exceptional group E6 we obtain the system

τ6D
4(τ0) = τ0D

4(τ6) . (11)

where we used the notation D2n := D2 ◦ D2n−2. The
equations which specify B0 can be written as follows.
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3 )
3). Let
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We also solved the recurrence relation arising from (11)
up to two-instantons. For one-instanton, our results
agree with the ones of [23], while the two instantons result
is a too huge formula to be reported here. We remark
that (11) represents a completely novel way of obtain-
ing equivariant volumes of instanton moduli spaces for
exceptional groups.

Unimodular algebras G2, F4, E8 have no outer auto-
morphisms and consequently all the τ -functions associ-
ated to different nodes are independent. Therefore, the
equations on the τ -function associated to the affine node
turn out to be more difficult to solve. Let us display them
for the G2 case.
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G2 ansatz

reduced tau-system implies

5

fies to the following quadratic one

(

2σ1 − σ2 − σ3√
3

+ 1

)2

B0(σ)B0

(

σ +
1√
3
(2,−1,−1)

)

= −
(

σ2 − σ3√
3

)2(σ1 + σ2 − 2σ3√
3

)2(σ1 − 2σ2 + σ3√
3

)2

×
(

σ1 + σ2 − 2σ3√
3

+ 1

)2(σ1 − 2σ2 + σ3√
3

+ 1

)2

×B0

(

σ +
1√
3
(1,−2, 1)

)

B0

(

σ +
1√
3
(1, 1,−2)

)

By imposing (3), these are solved by B[G2]
0 (σ) =

3
∏

i<j

1

G(1 ± 1√
3
(σi − σj))

3
∏

ijk
cyclic

1

G(1 ± 1√
3
(2σi − σj − σk))

The 1-instanton contribution is obtained by considering
the coefficient of the next order t3+σ·(

√
3,0,−

√
3) term: all

B0(σ) factors drop out and we obtain just

Z1(σ)
[G2]|σ3=−σ1−σ2

= − 2

3σ2
1σ

2
2(σ1 + σ2)2

in agreement with [23]. The next order in t gives the
2-instanton term Z2(σ)[G2]|σ3=−σ1−σ2

=
3
(

9σ4
1(6σ2

2+1)+18σ3
1(6σ3

2+σ2)+3σ2
1(18σ4

2+9σ2
2−2)+6σ1σ2(3σ2

2−1)+(1−3σ2
2)

2
)

σ2
1(1−3σ2

1)
2
σ2
2(1−3σ2

2)
2
(σ1+σ2)2(1−3(σ1+σ2)2)

2
.

It should be possible to apply the approach proposed
here to general class-S theories [24] by studying the re-
lated isomonodromic deformation problem (for example
for linear and circular quivers). It would be also interest-
ing to extend the analysis to non-self-dual Ω-background,
which should amount to quantum τ -systems, and its lift
to five dimensional gauge theories on R4 × S1, which
should correspond to q-difference τ -systems [25–27]. Fi-
nally, it would be great to apply similar ideas to models
with less or no supersymmetry, trying to constrain their
dynamics by the study of renormalization group equa-
tions in presence of surface operators.
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The 1-instanton contribution is obtained by considering
the coefficient of the next order t3+σ·(
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√
3) term: all

B0(σ) factors drop out and we obtain just
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in agreement with [23]. The next order in t gives the
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2
.

It should be possible to apply the approach proposed
here to general class-S theories [24] by studying the re-
lated isomonodromic deformation problem (for example
for linear and circular quivers). It would be also interest-
ing to extend the analysis to non-self-dual Ω-background,
which should amount to quantum τ -systems, and its lift
to five dimensional gauge theories on R4 × S1, which
should correspond to q-difference τ -systems [25–27]. Fi-
nally, it would be great to apply similar ideas to models
with less or no supersymmetry, trying to constrain their
dynamics by the study of renormalization group equa-
tions in presence of surface operators.
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Matrix model for gauge theory at strong coupling

Consider pure SU(2) Super Yang-Mills in 4d : this corresponds to 

admits a spectral determinant presentation [Zamolodchikov]

By using the Painleve’/gauge theory correspondence we can relate the ’t Hooft 
expansion of the above matrix model with the genus expansion of the dual
Seiberg-Witten prepotential (             )

and we denoted by SN the permutation group of N elements. The TS/ST duality states that
ZX(N) is the non-perturbative partition function of topological string on X. More precisely,
by using Cauchy identity this can be written as a matrix model which computes the partition
function of this theory in the conifold frame [15, 56]. When we implement the dual limit at the
level of the matrix model (2.21), we obtain a matrix model expression for the partition function
of SU(2) gauge theories in the magnetic frame. This was done in details for the pure SU(2)
theory in [19] where it was found that the matrix model computing its partition function is a
well known O(2) model

Z4d

2 (M) =
1

M !

Z MY

i=1

dxi
4⇡

e�
2⇤
⇡2✏

coshxi
Y

i<j

tanh

✓
xi � xj

2

◆2

. (2.22)

This procedure can be in principle extended to SU(2) theories with matter multiplets as well.
Summarizing the implementation of the dual limit on the TS/ST duality leads to the follow-

ing results in connection with four dimensional N = 2 gauge theories: it gives an operator theory
interpretation of the self-dual ⌦ background, it gives Fredholm determinant representation for
the ⌧ functions of Painlevé equations and it provides a matrix model for the partition function
in the magnetic frame.

3 Non-perturbative string on Y N,0 geometries

The TS/ST duality [15] has been generalized to higher genus mirror curve in [23]. According to
this construction one can associate a set of g operators

{Oi}
g
i=1

(3.1)

to any toric CY manifold, g being the genus of its mirror curve. Of particular interest for
this paper are those CYs from which one can engineer SU(N) supersymmetric gauge theories
[11, 37, 50]. Examples of such geometries are the resolution of the cone over the Y N,0 singularity
studied for instance in [57]. The corresponding mirror curve has genus N �1 and therefore there
are N � 1 di↵erent ”canonical” forms for this curve which reads

Oi(x1, x2, ⇠) + i = 0, i = 1, · · · , N � 1, (3.2)

where i denote the complex moduli of the geometry. For instance we have

O1(x1, x2, ⇠) + 1 = ex2 + e�x2+(�N+2)x1 +
N�1X

i=1

N�ie
(i�N+1)x1 + ⇠e(�N+1)x1 + ex1 = 0, (3.3)

where ⇠ is the mass parameter and should be distinguished from the others moduli i as empha-
sized for instance in [58]. Therefore, the quantization procedure for the Y N,0 geometry leads to
the following N � 1 operators

O1 + 1 = ex2 + e�x2+(�N+2)x1 +
N�1X

i=1

N�ie
(i�N+1)x1 + ⇠e(�N+1)x1 + ex1 ,

Oj + j = Q�1/2
j (O1 + 1) Q�1/2

j , 1 < j  N � 2,

(3.4)
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non-perturbative completion of  topological 
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Topological strings and SU(N) gauge theories  

Analogous scaling limit of topological strings describing SU(N) gauge theories 
gives the matrix model [Bonelli-Grassi-A.T. ] :

The higher genus generalisation can be used to obtain the partition function of 4 dim 
                           SYM theory in the magnetic frameN = 2, SU(N)

di, fi : shifts that depend on N

[15], in the spirit of large N dualities, a non–perturbative formulation of topological string on
toric Calabi-Yau (CY) has been proposed. This formulation has proved to be extremely rich
and constructive leading to several new results and applications in various related fields such as
integrable systems [16–18], supersymmetric gauge theories [19, 20] and condensed matter [21, 22].
The non-perturbative proposal of [15] was originally formulated only for CYs whose mirror curve
has genus one but it has been extended to higher genus mirror curves in [23].

In [19] a link between this non-perturbative completion of topological string and isomon-
odromy problems arising from four dimensional gauge theories has been found in the special
case of SU(2) Super Yang-Mills (SYM). The relevant isomonodromy problem in this case is the
one associated to Painlevé III3 (also called IIID8) equation whose ⌧ -function is known since a
long time [24] to admit a Fredholm determinant description. Upon a suitable four dimensional
scaling limit, the non-perturbative completion of topological string has been shown to be directly
related to the Fredholm determinant above. This produces a matrix model presentation of the
gauge theory partition function in the strongly coupled magnetic frame and provides an operator
theory interpretation of the self–dual ⌦ background (✏1 = �✏2 = ✏).

The purpose of this paper is to extend these results to SU(N) gauge theories. More precisely,
in section 2 we review the consequences of the genus one proposal for SU(2) theories. In section
3, by following the general prescription of [23], we derive the matrix models computing the
topological string partition function on the Y N,0 geometries. The result is given by the N�1 cut
matrix model shown in (3.23). Then, in section 4, we perform the so-called dual four dimensional
limit [19] on these models and we make contact with N = 2 SU(N) SYM in the four dimensional
self-dual ⌦ background [10]. More precisely we find that the partition function in the magnetic
frame is given by

Z4d

N (M1, · · · ,MN�1) =
1

M1! · · ·MN�1!

Z
dMx

(2⇡)M

N�1Y

j=1

Y

ij2Ij

e�
N⇤
⇡2✏

sin(⇡j
N ) cosh(xij )

⇥

Q
1i<jM 2 sinh

⇣
xi�xj

2
+ 1

2
(di � dj)

⌘
2 sinh

⇣
xi�xj

2
+ 1

2
(fi � fj)

⌘

QM
i,j=1

2 cosh
⇣
xi�xj

2
+ 1

2
(di � fj)

⌘ ,

(1.1)
where ⇤ denotes the instanton counting parameter in gauge theory. The shifts fi, di are given in
(3.23) and they depend on the rank N of the gauge group. We also used

Ij =

"
j�1X

s=0

Ms,
jX

s=1

Ms

#
\ N, M0 = 1, M =

N�1X

i=1

Mi. (1.2)

As a consequence we have a spectral determinant representation for the four dimensional Nekrasov-
Okounkov partition function associated to these SU(N) theories as shown in section 4.2. We
expect this to be the ⌧ -function of the isomonodromy problem associated to the Hitchin’s system
describing the relevant SW curve, see the end of section 4.2.

2 Reviewing the SU(2) case

The TS/ST duality [15] has led to various exact results in topological string and in spectral theory
which allows us to explore all range of the couplings in both side of the duality. We denotes by
gs the coupling constant of string theory and by ~ ⇠ g�1

s the Planck constant appearing in the
spectral theory side of the correspondence.

– 2 –
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The non-perturbative proposal of [15] was originally formulated only for CYs whose mirror curve
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case of SU(2) Super Yang-Mills (SYM). The relevant isomonodromy problem in this case is the
one associated to Painlevé III3 (also called IIID8) equation whose ⌧ -function is known since a
long time [24] to admit a Fredholm determinant description. Upon a suitable four dimensional
scaling limit, the non-perturbative completion of topological string has been shown to be directly
related to the Fredholm determinant above. This produces a matrix model presentation of the
gauge theory partition function in the strongly coupled magnetic frame and provides an operator
theory interpretation of the self–dual ⌦ background (✏1 = �✏2 = ✏).
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toric Calabi-Yau (CY) has been proposed. This formulation has proved to be extremely rich
and constructive leading to several new results and applications in various related fields such as
integrable systems [16–18], supersymmetric gauge theories [19, 20] and condensed matter [21, 22].
The non-perturbative proposal of [15] was originally formulated only for CYs whose mirror curve
has genus one but it has been extended to higher genus mirror curves in [23].
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odromy problems arising from four dimensional gauge theories has been found in the special
case of SU(2) Super Yang-Mills (SYM). The relevant isomonodromy problem in this case is the
one associated to Painlevé III3 (also called IIID8) equation whose ⌧ -function is known since a
long time [24] to admit a Fredholm determinant description. Upon a suitable four dimensional
scaling limit, the non-perturbative completion of topological string has been shown to be directly
related to the Fredholm determinant above. This produces a matrix model presentation of the
gauge theory partition function in the strongly coupled magnetic frame and provides an operator
theory interpretation of the self–dual ⌦ background (✏1 = �✏2 = ✏).

The purpose of this paper is to extend these results to SU(N) gauge theories. More precisely,
in section 2 we review the consequences of the genus one proposal for SU(2) theories. In section
3, by following the general prescription of [23], we derive the matrix models computing the
topological string partition function on the Y N,0 geometries. The result is given by the N�1 cut
matrix model shown in (3.23). Then, in section 4, we perform the so-called dual four dimensional
limit [19] on these models and we make contact with N = 2 SU(N) SYM in the four dimensional
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frame is given by
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Analogous scaling limit of topological strings describing SU(N) gauge theories 
gives the matrix model [Bonelli-Grassi-A.T. ] :

The higher genus generalisation can be used to obtain the partition function of 4 dim 
                           SYM theory in the magnetic frameN = 2, SU(N)

di, fi : shifts that depend on N

[15], in the spirit of large N dualities, a non–perturbative formulation of topological string on
toric Calabi-Yau (CY) has been proposed. This formulation has proved to be extremely rich
and constructive leading to several new results and applications in various related fields such as
integrable systems [16–18], supersymmetric gauge theories [19, 20] and condensed matter [21, 22].
The non-perturbative proposal of [15] was originally formulated only for CYs whose mirror curve
has genus one but it has been extended to higher genus mirror curves in [23].

In [19] a link between this non-perturbative completion of topological string and isomon-
odromy problems arising from four dimensional gauge theories has been found in the special
case of SU(2) Super Yang-Mills (SYM). The relevant isomonodromy problem in this case is the
one associated to Painlevé III3 (also called IIID8) equation whose ⌧ -function is known since a
long time [24] to admit a Fredholm determinant description. Upon a suitable four dimensional
scaling limit, the non-perturbative completion of topological string has been shown to be directly
related to the Fredholm determinant above. This produces a matrix model presentation of the
gauge theory partition function in the strongly coupled magnetic frame and provides an operator
theory interpretation of the self–dual ⌦ background (✏1 = �✏2 = ✏).

The purpose of this paper is to extend these results to SU(N) gauge theories. More precisely,
in section 2 we review the consequences of the genus one proposal for SU(2) theories. In section
3, by following the general prescription of [23], we derive the matrix models computing the
topological string partition function on the Y N,0 geometries. The result is given by the N�1 cut
matrix model shown in (3.23). Then, in section 4, we perform the so-called dual four dimensional
limit [19] on these models and we make contact with N = 2 SU(N) SYM in the four dimensional
self-dual ⌦ background [10]. More precisely we find that the partition function in the magnetic
frame is given by
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where ⇤ denotes the instanton counting parameter in gauge theory. The shifts fi, di are given in
(3.23) and they depend on the rank N of the gauge group. We also used
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As a consequence we have a spectral determinant representation for the four dimensional Nekrasov-
Okounkov partition function associated to these SU(N) theories as shown in section 4.2. We
expect this to be the ⌧ -function of the isomonodromy problem associated to the Hitchin’s system
describing the relevant SW curve, see the end of section 4.2.

2 Reviewing the SU(2) case

The TS/ST duality [15] has led to various exact results in topological string and in spectral theory
which allows us to explore all range of the couplings in both side of the duality. We denotes by
gs the coupling constant of string theory and by ~ ⇠ g�1

s the Planck constant appearing in the
spectral theory side of the correspondence.
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Computes dual prepotential around the massless monopole point

G. Bonelli et al. Ann. Henri Poincaré

the Gaussian point for small values of the gs and fixed values of Mi. One finds
that the logarithm of the partition function has the following behavior

logZ4d
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where
∑′

i1,...,iN−1
runs only over i1, . . . , iN−1 such that

i1, . . . , iN−1 ≥ 0, {i1, . . . , iN−1} "= 0,
∑

k

ik = n mod 2, (4.70)

while µi, ζ are constants. By performing the Gaussian integration for several
fixed values of Mi, the coefficients F appearing in (4.69) can be computed
exactly. By combining the two expansions (4.68) and (4.69) it follows that the
small Ti expansion of the genus g free energy

FD
g (T1, . . . , TN−1) (4.71)

is determined by Fg,i1,...,iN−1 . For instance, we have (see “Appendix A” for
more details)
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Let us start by applying these techniques to compute the genus zero free energy
(4.72) of the matrix model (4.62). We obtain
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(4.74)

We refer to O(T 3
i ) as non-perturbative corrections to the prepotential; these

are computed in “Appendix A.” The result in (4.73) and (4.74) agrees with
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controls the mass spectrum when breaking to 
              supersymmetry.                
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Surface defects in 5d



5d Gauge theories on a circle

Codim. 2 defects in 5d gauge theories obey a q-difference uplift of the 
tau-system. Discrete dynamical flow generated by automorphism group
of the 5d BPS quiver.

Figure 2: Quiver associated to local F0

chambers". In [17] an argument was put forward for the existence of a "tame chamber" of
the moduli space. Such a region is characterised by the fact that the higher-spin particles
are unstable and decay, and one is left with hypermultiplet and vector multiplets only,
giving a situation much similar to the four-dimensional weakly coupled chambers.

2.1 Super Yang-Mills, k = 0

As an example, Closset and Del Zotto argued that the spectrum for local F0, engineering
pure SU(2) SYM on R4

⇥ S1 with Chern-Simons level k = 0, in such a tame chamber is
organised as two copies of the weakly coupled chamber of the four-dimensional pure SU(2)

gauge theory. The relevant quiver is depicted in Fig.2, and its a adjacency matrix is

B =

0

BBB@

0 2 0 �2

�2 0 2 0

0 �2 0 2

2 0 �2 0

1

CCCA
. (2.4)

The spectrum of this theory was originally derived by using the mutation algorithm in [17].
This has been done by using the sequence of mutations

m = µ2µ4µ3µ1, (2.5)

which represents the wall-crossing arising from clockwise rotations in the upper half-plane
of central charges. The n-th iteration of this operator has the following effect on the charges
�i, i = 1, . . . , 4 of the BPS states:

m
n(�1) = �1 + 2n�u, m

n(�2) = �2 � 2n�u, (2.6)
m

n(�3) = �3 + 2n�d, m
n(�4) = �4 � 2n�d, (2.7)
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Example: Pure SU(2) Super Yang-Mills 

5d BPS quiver from geometric engineering via Calabi-Yau compactification
nodes: Dp branes wrapping calibrated cycles - BPS states of 5d SCFT
arrows: Dirac pairings among BPS particles

to the q-Painlevé equation of surface type A(1)0

7 , and local F1 in [19], corresponding to A(1)
7

in Sakai’s classification.
In the next section we review these two cases, before turning to the case of dP3, which

corresponds instead to the surface type A(1)
5 . In fact, this case is much richer, as it admits

four commuting discrete flows: we will show that one of these reproduces the bilinear
equations considered in [25, 26] for q-Painlevé III1.

3.2 Pure gauge theory and q-Painlevé III3

Let us briefly review how q-Painlevé equations are obtained from the quivers associated to
local F0 and local F1, whose Newton polygons are depicted in Figure (9a) and (9b). These
correspond to the pure SU(2) gauge theory with Chern-Simons level respectively k = 0, 1.
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(a) Newton polygon for local F0
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(b) Newton polygon for local F1

Figure 9

Local F0: Let us consider first the cluster algebra associated to the quiver in Figure 2.
This corresponds to local F0. The group GQ of quiver automorphisms contains the symmetry
group of the q-Painlevé equation qPIII3 of surface type A(1)0

7 , which is the semidirect product
Dih4 nW (A(1)

1 ). It is generated by

⇡1 = (1, 3)◆, ⇡2 = (4, 3, 2, 1), TF0 = (1, 2)(3, 4)µ1µ3. (3.11)

The operator TF0 generates the time evolution of the corresponding q-Painlevé equation,
and is a Weyl translation on the underlying A(1)

1 lattice. From the adjacency matrix of the
quiver

B =

0

BBB@

0 2 0 �2

�2 0 2 0

0 �2 0 2

2 0 �2 0

1

CCCA
, (3.12)
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The cluster algebra A is determined by the choice of an initial seed. This is a triple
(Q, ⌧ ,y), where

• Q is a quiver without loops and 2-cycles, with n vertices;

• y = (y1, . . . , yn) is an n-tuple of generators of the tropical semifield (P,�, ·) (which
in general will not be independent generators, because dimP  n);

• ⌧ ⌘ (⌧1, . . . , ⌧n) is an n-tuple of elements of F forming a free generating set: they are
algebraically independent over QP, and F = QP(⌧1, . . . , ⌧n).

The variables (⌧ ,y) are called A-cluster variables. We can alternatively define the seed as
(B, ⌧ ,y) in terms of the antisymmetric adjacency matrix B of the quiver.

Given these objects, the cluster algebra is the ZP-subalgebra of F generated recursively
by applying mutations to the initial seed. A mutation µk is an operation defined by its
action on a seed:

µk(⌧j) =

8
<

:
⌧j , j 6= k,

yk
Qn

i=1 ⌧
[Bik]+
i +

Q|Q|
i=1 ⌧

�[Bik]+
i

⌧k(1�yk)
, j = k,

(3.2)

µk(yj) =

(
y�1
j , j = k,

yj(1� y
sgnBjk

k )Bjk , j 6= k,
(3.3)

µk(Bij) =

(
�Bij , i = k or j = k,

Bij +
Bik|Bkj |+Bkj |Bik|

2 ,
(3.4)

where we defined [x]+ = max(x, 0). It is clear from the above expression that the coefficients
yi represent an exponentiated version of the BPS charges �i.

An alternative set of variables are the so-called X-cluster variables x = (x1, . . . , xn),
taking values in F . They are defined in terms of the A-variables as

xi = yi

nY

j=1

⌧
Bji

j , (3.5)

and their mutation rules are the same as for coefficients, but with ordinary sum instead of
semifield sum:

µk(xj) =

(
x�1
j , j = k,

xj(1 + x
sgnBjk

k )Bjk , j 6= k.
(3.6)

The X-cluster variables can be considered as coordinates in the so-called X-cluster
variety, which is endowed with a degenerate Poisson bracket, with respect to which the
X-cluster variables are log-canonically conjugated:

{xi, xj} = Bijxixj . (3.7)

Given a convex Newton polygon � with area S, it is possible to construct a quiver
with 2S nodes describing a discrete integrable system in the variables xi [22, 37]. Due to
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Poisson bracket adjacency matrix of quiver
(3.7), in general the Poisson bracket is degenerate, as there is a space of Casimirs equal to
ker(B). For quivers arising in this way, the quantity

q ⌘

Y

i

xi (3.8)

is always a Casimir. The system is integrable on the level surface

q = 1. (3.9)

The number of independent Hamiltonians is the number of internal points of the Newton
polygon. The set of discrete time flows of the integrable system is the group GQ of quiver
automorphisms4. We will in fact work with the extended group G̃Q, that extends GQ by the
inclusion of the inversion operator ◆. This operation reverses all the arrows in the quiver,
and acts on the cluster variables as

◆(xi) = x�1
i , ◆(yi) = y�1

i , (3.10)

while the variables ⌧ are invariant, consistently with the relation (3.5).
In [18] it was shown that it is possible to obtain q-Painlevé equations by lifting the

constraint q = 1, which amounts to the deautonomization of the system. This is no longer
integrable in the Liouville sense, since the discrete Hamiltonians are no longer preserved
under the discrete flows. The related equations of motion are well-known q-difference inte-
grable equations of mathematical physics, namely q-Painlevé equations: the time evolution
describes in this case a foliation, whose slices are different level surfaces of the original
integrable system, see e.g. [38] for such a description of q-Painlevé equations. These equa-
tions can be obtained geometrically by studying configurations of blowups of eight points
on P1

⇥ P1, or equivalently by configurations of nine blowups on P2. As in the case of
differential Painlevé equations [39], this leads to a classification in terms of the space of
their initial conditions, called in this context surface type of the equation, or equivalently
by their symmetry groups due to Sakai [5], see Figure 1. The former are given by an affine
algebra, while the latter turns out to be given by the extended Weyl group of another
affine algebra, which is the orthogonal complement of the first one in the group of divisors
Pic(X), X being the surface obtained by blowing up points on P1

⇥ P1.
It was further argued in [18] that the time evolution given by the deautonomization of

the cluster integrable system, when written in terms of the cluster A-variables (⌧ ,y) takes
the form of bilinear equations, so that we can identify the variables ⌧ with tau functions
for q-Painlevé equations. However, while the q-Painlevé equations in terms of the X-cluster
variables were derived for all the Newton polygons with one internal point in [18], their
bilinear form was not obtained, except for the Newton polygon of local F0, corresponding

4To be more precise, the discrete time flows are given by a subgroup G� ⇢ GQ, of automorphisms
preserving the Hamiltonians. These are given by spider moves of the associated dimer model, that we are
not introducing here. They are very specific mutation sequences, that in this work we will rather view as
Weyl translations acting on an affine root lattice. For the cases that we will be concerned with in this paper
the two groups coincide and we can forget about the distinction.
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For the example of SU(2) SYM 

Figure 2: Quiver associated to local F0
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Local F0: Let us consider first the cluster algebra associated to the quiver in Figure 2.
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x ⌘ x1 , y ⌘ x2 , Z ⌘ x1x3In the variables                                                       one gets the Hamiltonian

invariant under the action of GQ will be also completed there. Notice, that exact expressions for these
Hamiltonians, which are in the Poisson involution (2.4) (in the nontrivial case with several internal
points) or are singled our being invariant under the action of discrete flow, generally contain fractional
powers of the cluster variables (2.2) (see also discussion of this point in [FM14, M, KM]).

A
(1)
8 . The group G� contains just cyclic permutations ⇡ = (1, 2, 3) (or rotation on the quiver to

120�).
Denote x = y1, y = y2, z = y3, then xyz = 1 and {x, y} = 3xy, the invariant Hamiltonian is

H = x
2/3

y
1/3 +

y
1/3

x1/3
+

1

x1/3y2/3
. (2.11)

A
(1)0

7 . The group G� contains

⇡
2
2 = (1, 3)(2, 4), T = (1, 2)(3, 4) � µ1 � µ3. (2.12)

Denote x = y1, y = y2, Z = y1y3, then {x, y} = 2xy and Z is the Casimir function. Transformation T

acts as (x, y) 7! (y (x+Z)2

(x+1)2 , x
�1). The Hamiltonian, invariant under this transformation, has the form

H =
p
xy +

r
x

y
+

1
p
xy

+ Z

r
y

x
(2.13)

This is the Hamiltonian of relativistic two-particle a�ne Toda chain. At Z ! 0 it turns into the
Hamiltonian of open relativistic Toda chain, first appeared in this context in [FM97].

A
(1)
7 . The group G� contains element T = (1324) � µ3, it has infinite order and generates subgroup

Z ⇢ G�.

Denote x = y3, y = y4, Z = y2

q
y4
y3
, then {x, y} = 2xy and Z is the Casimir function. The

transformation T acts as (x, y) 7! ( 1

Z
p

x3y
(1 + x), Z

p
xp
y (1 + x)). The Hamiltonian, invariant under

such transformation, has the form

H =
p
xy +

r
x

y
+

1
p
xy

+
Z

x
(2.14)

This Hamiltonian is di↵erent from the previous one, though it has the same limit at Z ! 0, so one
can think of this system as of di↵erent a�nization of two-particle relativistic Toda.

3 Cluster mutations and q-di↵erence Painlevé equations

3.1 Poisson cluster varieties and q-Painlevé equations

Let us now start from any of the quivers Q from Fig. 2 and act by elements of the group GQ to the
cluster y-variables, for generic q 6= 1, i.e. forgetting the condition (2.3), necessary for construction of a
cluster integrable system. In this way we obtain q-di↵erence Painlevé equations as deautonomization
of a cluster integrable system, corresponding to the Newton polygons from Fig. 1 and quivers from
Fig. 2. Deautonomization is a standard method to obtain di↵erence Painlevé equations, see [GR]
for review and [CDT] for recent geometric interpretation. However, here we get q-Painlevé dynamics
from deautonomization of the discrete flows in cluster integrable systems, and describe symmetries
of the q-di↵erence Painlevé equations in terms of the group, generated by cluster mutations and
permutations.

7

relativistic two-particle periodic Toda chain with flow generated by the quiver
automorphism 
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The cluster algebra A is determined by the choice of an initial seed. This is a triple
(Q, ⌧ ,y), where

• Q is a quiver without loops and 2-cycles, with n vertices;

• y = (y1, . . . , yn) is an n-tuple of generators of the tropical semifield (P,�, ·) (which
in general will not be independent generators, because dimP  n);

• ⌧ ⌘ (⌧1, . . . , ⌧n) is an n-tuple of elements of F forming a free generating set: they are
algebraically independent over QP, and F = QP(⌧1, . . . , ⌧n).

The variables (⌧ ,y) are called A-cluster variables. We can alternatively define the seed as
(B, ⌧ ,y) in terms of the antisymmetric adjacency matrix B of the quiver.

Given these objects, the cluster algebra is the ZP-subalgebra of F generated recursively
by applying mutations to the initial seed. A mutation µk is an operation defined by its
action on a seed:

µk(⌧j) =

8
<

:
⌧j , j 6= k,

yk
Qn

i=1 ⌧
[Bik]+
i +

Q|Q|
i=1 ⌧

�[Bik]+
i

⌧k(1�yk)
, j = k,

(3.2)

µk(yj) =

(
y�1
j , j = k,

yj(1� y
sgnBjk

k )Bjk , j 6= k,
(3.3)

µk(Bij) =

(
�Bij , i = k or j = k,

Bij +
Bik|Bkj |+Bkj |Bik|

2 ,
(3.4)

where we defined [x]+ = max(x, 0). It is clear from the above expression that the coefficients
yi represent an exponentiated version of the BPS charges �i.

An alternative set of variables are the so-called X-cluster variables x = (x1, . . . , xn),
taking values in F . They are defined in terms of the A-variables as

xi = yi

nY

j=1

⌧
Bji

j , (3.5)

and their mutation rules are the same as for coefficients, but with ordinary sum instead of
semifield sum:

µk(xj) =

(
x�1
j , j = k,

xj(1 + x
sgnBjk

k )Bjk , j 6= k.
(3.6)

The X-cluster variables can be considered as coordinates in the so-called X-cluster
variety, which is endowed with a degenerate Poisson bracket, with respect to which the
X-cluster variables are log-canonically conjugated:

{xi, xj} = Bijxixj . (3.7)

Given a convex Newton polygon � with area S, it is possible to construct a quiver
with 2S nodes describing a discrete integrable system in the variables xi [22, 37]. Due to
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Tau functions and de-autonomization

Tau - cluster variables

de-autonomization
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q 6= 1

induces a discrete flow of the Hamiltonians and of the tau functions under 
quiver automorphism

we see that the space of Casimirs of the Poisson bracket (3.7) is two-dimensional. We take
the two Casimirs to be

q =
Y

i

xi =
Y

yi, t = x�1
2 x�1

4 = y�1
2 y�1

4 . (3.13)

Therefore, the tropical semifield has two generators, that we take to be the two Casimirs
q, t. By fixing the initial conditions for the coefficients, consistently with equation (3.13),
to be

y = ((qt)1/2, t�1/2, (qt)1/2, t�1/2), (3.14)

one finds that the action of TF0 on the coefficients yields

q = q, t = qt, (3.15)

while the tau variables evolve as
8
>>>>><

>>>>>:

TF0(⌧1) = ⌧2,

TF0(⌧2) =
⌧22+(qt)1/2⌧24

⌧1
,

TF0(⌧3) = ⌧4,

TF0(⌧4) =
⌧24+(qt)1/2⌧22

⌧3

,

8
>>>>><

>>>>>:

T�1
F0

(⌧1) =
⌧21+t1/2⌧23

⌧2
,

T�1
F0

(⌧2) = ⌧1,

T�1
F0

(⌧3) =
⌧23+t1/2⌧21

⌧4
,

T�1
F0

(⌧4) = ⌧3,

(3.16)

leading to the bilinear equations5

⌧1⌧1 = ⌧21 + t1/2⌧23 , ⌧3⌧3 = ⌧23 + t1/2⌧21 . (3.17)

The actual q-Painlevé equation is the equation involving the variables x. It takes the form
of a system of two first order q-difference equations, or of a single second-order q-difference
equation, in terms of log-canonically conjugated variables

F ⌘ x1, G = x�1
2 , (3.18)

that satisfy
{F,G} = 2FG. (3.19)

Their time evolution can be studied in a completely analogous way by using the mutation
rules (3.6) for X-cluster variables, and leads to the q-Painlevé III3 equation

GG =

✓
G+ t

G+ 1

◆2

. (3.20)

Local F1: We now consider the A-variables associated to the local F1 quiver of Figure 4a,
engineering pure SU(2) SYM with 5d Chern-Simons level k = 1. The adjacency matrix is

B =

0

BBB@

0 2 1 �3

�2 0 1 1

�1 �1 0 2

3 �1 �2 0

1

CCCA
. (3.21)

5We follow the usual convention that one overline denotes a step forward in discrete time, while one
underline denotes a step backwards.
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q-difference uplift of          Toda tau-system of 4d SU(2) SYM 
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Â1

bilinear relations for tau functions of q-Painleve’.
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T3(↵,�) = (↵,�) + (1, 0,�1, 0, 0)�, T4(↵,�) = (↵,�) + (0, 0, 0, 1,�1)�, (3.42)

where � = ↵0 + ↵1 + ↵2 = �0 + �1 is the null root of (A2 + A1)(1). From each one of
these discrete flows we can obtain bilinear equations for the cluster A-variables ⌧ . Once we
choose one of the flows as time, the other flows can be regarded as Bäcklund transformations
describing symmetries of the time evolution.

Let us define the four tropical semifield generators to be q, t, Q1, Q2, and the initial
condition on the parameters to be

y =

✓
�

1

Q2t1/2
, q1/4t1/2, Q1q

1/4,�
1

Q1t1/2
, q1/4t1/2, Q2q

1/4

◆
(3.43)

which means, in terms of the original parametrization of the Casimirs,

a20 =
1

Q1Q2q1/2
, a21 = Q1Q2t, a22 =

1

q1/2t
, (3.44)

b20 = �q�1/2Q1

Q2
, b21 = �q�1/2Q2

Q1
. (3.45)

We now derive bilinear equations for the discrete flows of this geometry: the time
evolution for T1 is

8
>>>>><

>>>>>:

T1(⌧1) = ⌧3,

T1(⌧2) =
⌧5⌧6�Q2t1/2⌧2⌧3

⌧1
,

T1(⌧4) = ⌧6,

T1(⌧5) =
⌧2⌧3�Q1t1/2⌧5⌧6

⌧4
,

8
>>>>><

>>>>>:

T�1
1 (⌧2) =

⌧4⌧5+Q1q1/4⌧1⌧2
⌧3

,

T�1
1 (⌧3) = ⌧1,

T�1
1 (⌧5) =

⌧1⌧2+Q2q1/4⌧4⌧5
⌧6

,

T�1
1 (⌧6) = ⌧4.

(3.46)
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r0 = (4, 6)µ2µ4µ6µ2, r1 = (3, 5)µ1µ3µ5µ1, (2.32)

⇡ = (1, 2, 3, 4, 5, 6), � = (1, 4)(2, 3)(5, 6)◆. (2.33)

In this case there are four commuting evolution operators, given by Weyl translations of
W̃ ((A2 + A1)(1)), acting on the affine root lattice Q

�
(A2 +A1)(1)

�
[30, 34]2. One has the

three operators

T1 = s0s2⇡, T2 = s1s0⇡, T3 = s2s1⇡ (2.34)

satisfying T1T2T3 = 1, and finally
T4 = r0⇡

3 . (2.35)

Let us consider the flow T1 first, given by

Figure 6: 4d subquivers for local dP3, under T1

T1 = s0s2⇡ = (3, 6)µ6µ3(2, 5)µ5µ2(1, 2, 3, 4, 5, 6). (2.36)

Its action on the BPS charges is the following:

Tn
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�5,

�(n+ 1)(�4 + �5)� n�6

1

CCCCCCCA

(2.37)

2For the action on the roots, see Section 3.3.
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from 

and the associated evolution on the vector of charges � is

T 2n
F1

(�) = Tn
F0
(�) =

⇣
�1 + n�u �2 � n�u �3 + n�d �4 � n�d

⌘
, (2.28)

T 2n�1
F1

(�) =
⇣
�3 + n�d, �4 � n�d, �2 � n�u, �1 + n�u,

⌘
. (2.29)

We see that even though the introduction of a Chern-Simons level will affect some physical
aspects, it does not modify the type of states in the spectrum: again �u, �d correspond to
the vector multiplets of the 4d subquivers depicted in Figure 4b. What changes however
is the number of tame chambers: because the symmetry group now does not include the
Dih4 factor – as it is clear by inspection of the quiver – there is not the related chamber.

2.3 Nf = 2, k = 0

Figure 5: Quiver for dP3

When we include matter the situation is much richer, because we encounter the new
feature of multiple commuting flows, each characterizing the spectrum in a different chamber
of the moduli space. The relevant quiver is the one of dP3, engineering the SU(2) theory
with two flavors, depicted in Figure 10. It has adjacency matrix

B =

0

BBBBBBB@

0 1 1 0 �1 �1

�1 0 1 1 0 �1

�1 �1 0 1 1 0

0 �1 �1 0 1 1

1 0 �1 �1 0 1

1 1 0 �1 �1 0

1

CCCCCCCA

. (2.30)

The extended Weyl group is W̃ ((A2 +A1)(1)), which is generated by

s0 = (3, 6)µ6µ3 s1 = (1, 4)µ4µ1, s2 = (2, 5)µ5µ2, (2.31)
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generators of the extended Weyl group 

and the associated evolution on the vector of charges � is
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⌘
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The extended Weyl group is W̃ ((A2 +A1)(1)), which is generated by

s0 = (3, 6)µ6µ3 s1 = (1, 4)µ4µ1, s2 = (2, 5)µ5µ2, (2.31)
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Figure 8: 4d subquivers for local dP3, under T3

charges transform as

R2n+1
2 :

0

BBBBBBB@

�1
�2
�3
�4
�5
�6

1

CCCCCCCA

�!

0

BBBBBBB@

�(n+ 1)�2 � n(�3 + �4)

n�1 + (n+ 1)(�5 + �6)

�1 + �5
�(n+ 1)�5 � n(�1 + �6)

n�4 + (n+ 1)(�2 + �3)

�2 + �4

1

CCCCCCCA

, (2.50)

while of course R2n
2 = Tn

2 . Note that this generates the CPT conjugates of the towers of
states as T2, while the states that are left fixed by the action of R2 are exactly the missing
quarks from our analysis of T2, so that R2 generates the full spectrum of the two copies of
Nf = 1 in the subquivers of Figure 7.

Finally, the time evolution T4 is given by

T4 = r0⇡
3 = (4, 6)µ2µ4µ6µ2(4, 5, 6, 1, 2, 3), (2.51)

and acts on the BPS charges as follows:

T 3n�2
4 :

0

BBBBBBB@

�1
�2
�3
�4
�5
�6

1

CCCCCCCA

�!

0

BBBBBBB@

�1 + (�3 + �4) + n�

�2 � (�1 + �2)� n�

�3 + (�5 + �6) + n�

�4 � (�3 + �4)� n�

�5 + (�1 + �2) + n�

�6 � (�5 + �6)� n�

1

CCCCCCCA

, (2.52)
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 5d SU(2) with two flavours 

It is known that the massive deformation of          5d SCFT by the Yang-Mills 
<latexit sha1_base64="FfMNXsCYxg5uWcMvULC6XAdy1Dk=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GqbN6i0ogseIZoFkCD2dnqRJz0J3jxBCPsGLB0W8+kXe/Bs7yQgq+qDg8V4VVfW8WHClHefDyqysrq1vZDdzW9s7u3v5/YOWihJJWZNGIpIdjygmeMiammvBOrFkJPAEa3vjy7nfvmdS8Si805OYuQEZhtznlGgj3V71i/18wbFrGFfOy8ixnQUMwU65VKwinCoFSNHo5997g4gmAQs1FUSpLnZi7U6J1JwKNsv1EsViQsdkyLqGhiRgyp0uTp2hE6MMkB9JU6FGC/X7xJQESk0Cz3QGRI/Ub28u/uV1E+3X3CkP40SzkC4X+YlAOkLzv9GAS0a1mBhCqOTmVkRHRBKqTTo5E8LXp+h/0jqzccXGN6VC/SKNIwtHcAyngKEKdbiGBjSBwhAe4AmeLWE9Wi/W67I1Y6Uzh/AD1tsnC5uNpw==</latexit>

E3
action produces 5d SU(2) with two flavours. All the first three flows give rise
to the bilinear equations 

The action on the Casimirs is given by (3.37), that means

T1(Q1) = q�1/2Q1, T1(Q2) = q�1/2Q2, (3.47)

We then have
8
>>>>><

>>>>>:

⌧2⌧3 = ⌧5⌧6 �Q2t1/2⌧2⌧3,

⌧5⌧6 = ⌧2⌧3 �Q1t1/2⌧5⌧6,

⌧2⌧3 = ⌧5⌧6 �Q1q1/2⌧2⌧3,

⌧5⌧6 = ⌧2⌧3 �Q1/2
2 q1/2⌧5⌧6,

⌧i = ⌧i(q
�1/2Q1, q

1/2Q2). (3.48)

The time flow under T2 for the A-cluster variables is
8
>>>>><

>>>>>:

T2(⌧2) = ⌧4,

T2(⌧3) =
⌧3⌧4+q1/4t1/2⌧1⌧6

⌧2
,

T2(⌧5) = ⌧1,

T2(⌧6) =
⌧1⌧6+q1/4t1/2⌧3⌧4

⌧5
,

,

8
>>>>><

>>>>>:

T�1
2 (⌧1) = ⌧5,

T�1
2 (⌧3) =

�Q1t1/2⌧5⌧6+⌧2⌧3
⌧4

,

T�1
2 (⌧4) = ⌧2,

T�1
2 (⌧6) =

�Q2t1/2⌧2⌧3+⌧5⌧6
⌧1

,

(3.49)

where the time evolution is given by

T2(t) = qt, (3.50)

leading to the bilinear equations

⌧3⌧2 = q1/4t1/2⌧5⌧6 + ⌧3⌧2, ⌧6⌧5 = ⌧5⌧6 + q1/4t1/2⌧3⌧2, (3.51)

⌧2⌧3 = �Q1t
1/2⌧5⌧6 + ⌧2⌧3, ⌧5⌧6 = �Q2t

1/2⌧2⌧3 + ⌧5⌧6. (3.52)

In particular, from the flow T2 it is possible to reproduce the bilinear equations of [26],
thus obtaining an explicit parametrization of the geometric quantities ai, bi coming from
the blowup configuration of P1

⇥ P1 in terms of the Kähler parameters of dP3.
The discrete flow T3 is not independent, being simply given by T3 = T�1

1 T�1
2 , but we

write it down for completeness:
8
>>>>><

>>>>>:

T3(⌧1) =
⌧1⌧2+Q2q1/4⌧4⌧5

⌧6
,

T3(⌧3) = ⌧5,

T3(⌧4) =
⌧4⌧5+Q1q1/4⌧1⌧2

⌧3
,

T3(⌧6) = ⌧2,

8
>>>>><

>>>>>:

T�1
3 (⌧1) =

⌧3⌧4+q1/4t1/2⌧1⌧6
,

T�1
3 (⌧2) = ⌧6,

T�1
3 (⌧4) =

⌧1⌧6+q1/4t1/2⌧3⌧4
⌧5

,

T�1
3 (⌧5) = ⌧3,

(3.53)

leading to the bilinear relations
8
>>>>><

>>>>>:

⌧1⌧2 = ⌧1⌧2 +Q2q1/4⌧4⌧5,

⌧4⌧5 = ⌧4⌧5 +Q1q1/4⌧1⌧2,

⌧1⌧2 = q1/4t1/2⌧1⌧2 + ⌧4⌧5,

⌧4⌧5 = q1/4t1/2⌧4⌧5 + ⌧1⌧2.

, ⌧i = ⌧i(q
1/2Q1, q

1/2Q2, q
�1t). (3.54)
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whose tau functions are 5d partition functions for that gauge
theory:

so that the discrete time evolution shifts the gauge coupling while the masses stay constant.
We can therefore write the bilinear equations as q-difference equations
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>>>>><

>>>>>:

⌧2(qt)⌧3(q�1t) = ⌧2(t)⌧3(t)�Q1t1/2⌧5(t)⌧6(t),

⌧5(qt)⌧6(q�1t) = ⌧5(t)⌧6(t)�Q2t1/2⌧2(t)⌧3(t),

⌧2(t)⌧3(qt) = ⌧2(qt)⌧3(t) + q1/4t1/2⌧5(qt)⌧6(t),

⌧5(qt)⌧6(t) = ⌧5(t)⌧6(qt) + q1/4t1/2⌧2(qt)⌧3(t).

(4.25)

It was shown in [26] that the above bilinear equations are solved in terms of the dual
partition function for SU(2) SYM with two fundamental flavors. More precisely, in that
paper it was shown that if we define

ZD
0 ⌘

X

n

snZ(Q1, Q2, uq
n, t), ZD

1/2 =
X

n

snZ(Q1, Q2, uq
n+1/2, t) = ZD

0 (uq1/2), (4.26)

where Z is the Nekrasov partition function for the Nf = 2 theory, the ⌧ -functions solving
(4.25) can be written as

⌧2 = ZD
0 (Q1q

1/2, Q2, tq
�1/2), ⌧3 = ZD

0 (Q1q
�1/2, Q2, tq

1/2), (4.27)

⌧5 = ZD
1/2(Q1, Q2q

1/2, tq�1/2), ⌧6 = ZD
1/2(Q1, Q2q

�1/2, tq1/2). (4.28)

By using also ⌧4 = T2(⌧2), ⌧1 = T2(⌧5), we can add to these

⌧1 = ZD
1/2(Q1, Q2q

1/2, tq1/2), ⌧4 = ZD
0 (Q1q

1/2, Q2, tq
1/2). (4.29)

Working in the same way as in Subsection 4.1, one can arrive at bilinear equations for
Nekrasov functions, but differently from what happened in that simpler case, now one
equation does not suffice to determine the nonperturbative contribution from the pertur-
bative one: we have to use both the first and third equations of (4.25). The first equation
takes the form

X

n

t2n
2
u2nZ1-lZinst(Q1q

1/2, uqn; tq1/2)Z1-lZinst(Q1q
�1/2, uq�n, tq�1/2) =

=
X

n

t2n
2
u�2nZ1-lZinst(Q1q

1/2, uqn; tq�1/2)Z1-lZinst(Q1q
�1/2, uq�n, tq1/2) (4.30)

�t1/2Q1

X

r2Z+1/2

t2r
2
u�2rZ1-lZinst(Q2q

1/2, uqr, tq�1/2)Z1-lZinst(Q2q
�1/2, uq�r, tq1/2).

This leads to the following equation on the one-instanton contribution:

q�1/2(1� q)[Z1(Q1q
�1/2)� Z1(Q1q

1/2)] =

=
u

Q1

Z1-l(Q2q�1/2, uq1/2)Z1-l(Q2q1/2, uq�1/2)

Z1-l(Q1q1/2)Z1-l(Q1q�1/2)

+
1

Q1u

Z1-l(Q2q�1/2, uq�1/2)Z1-l(Q2q1/2, uq1/2)

Z1-l(Q1q1/2)Z1-l(Q1q�1/2)
.

(4.31)
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so that the discrete time evolution shifts the gauge coupling while the masses stay constant.
We can therefore write the bilinear equations as q-difference equations
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Working in the same way as in Subsection 4.1, one can arrive at bilinear equations for
Nekrasov functions, but differently from what happened in that simpler case, now one
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takes the form
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t2n
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u2nZ1-lZinst(Q1q
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�1/2, uq�n, tq�1/2) =
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u�2nZ1-lZinst(Q1q
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�t1/2Q1

X

r2Z+1/2

t2r
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u�2rZ1-lZinst(Q2q

1/2, uqr, tq�1/2)Z1-lZinst(Q2q
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�1/2)� Z1(Q1q
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Z1-l(Q2q�1/2, uq1/2)Z1-l(Q2q1/2, uq�1/2)
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Q1u
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so that the discrete time evolution shifts the gauge coupling while the masses stay constant.
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1/2(Q1, Q2q

1/2, tq1/2), ⌧4 = ZD
0 (Q1q

1/2, Q2, tq
1/2). (4.29)

Working in the same way as in Subsection 4.1, one can arrive at bilinear equations for
Nekrasov functions, but differently from what happened in that simpler case, now one
equation does not suffice to determine the nonperturbative contribution from the pertur-
bative one: we have to use both the first and third equations of (4.25). The first equation
takes the form

X

n

t2n
2
u2nZ1-lZinst(Q1q

1/2, uqn; tq1/2)Z1-lZinst(Q1q
�1/2, uq�n, tq�1/2) =

=
X

n

t2n
2
u�2nZ1-lZinst(Q1q

1/2, uqn; tq�1/2)Z1-lZinst(Q1q
�1/2, uq�n, tq1/2) (4.30)

�t1/2Q1

X

r2Z+1/2

t2r
2
u�2rZ1-lZinst(Q2q

1/2, uqr, tq�1/2)Z1-lZinst(Q2q
�1/2, uq�r, tq1/2).

This leads to the following equation on the one-instanton contribution:

q�1/2(1� q)[Z1(Q1q
�1/2)� Z1(Q1q

1/2)] =

=
u

Q1

Z1-l(Q2q�1/2, uq1/2)Z1-l(Q2q1/2, uq�1/2)

Z1-l(Q1q1/2)Z1-l(Q1q�1/2)

+
1

Q1u

Z1-l(Q2q�1/2, uq�1/2)Z1-l(Q2q1/2, uq1/2)

Z1-l(Q1q1/2)Z1-l(Q1q�1/2)
.

(4.31)
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An AD surprise

The fourth flow give rise to new bilinear relations ! 

3.4 Super Yang-Mills with two flavours, q-Painlevé IV and q-Painlevé II

On top of the previous time evolutions giving rise to qPIII1 equations, there is another the
time evolution T4 from a further automorphism of the dP3 quiver. This gives rise to the
qPIV dynamics and has the following action on the Casimirs, dictated by (3.40):

T4(Q1) = q1/2Q1, T4(Q2) = q�1/2Q2. (3.55)

On the tau variables, this amounts to
8
>>>>>>>>>><

>>>>>>>>>>:

T4(⌧1) = ⌧4,

T4(⌧2) =
⌧1⌧2⌧6+⌧4⌧5⌧6�Q2t1/2⌧2⌧3⌧4

⌧1⌧3
,

T4(⌧3) = ⌧6,

T4(⌧4) =
⌧1⌧2⌧6+⌧4⌧5⌧6+q1/4t1/2⌧2⌧3⌧4

⌧3⌧5
,

T4(⌧5) = ⌧2,

T4(⌧6) =
�Q2t1/2⌧1⌧2⌧6+q1/4t1/2⌧4⌧5⌧6�Q2q1/4t⌧2⌧3⌧4

⌧1⌧5
,

(3.56)

8
>>>>>>>>>><

>>>>>>>>>>:

T�1
4 (⌧1) =

⌧1⌧2⌧3+Q2q1/4⌧3⌧4⌧5+Q2q1/2t1/2⌧1⌧5⌧6
⌧2⌧6

,

T�1
4 (⌧2) = ⌧5,

T�1
4 (⌧3) =

q1/4t1/2⌧1⌧2⌧3�Q1t1/2⌧3⌧4⌧5�Q1q1/4t⌧1⌧5⌧6
⌧2⌧4

,

T�1
4 (⌧4) = ⌧1,

T�1
4 (⌧5) =

⌧1⌧2⌧3+Q2q1/4⌧3⌧4⌧5�Q1t1/2⌧1⌧5⌧6
⌧4⌧6

,

T�1
4 (⌧6) = ⌧3.

(3.57)

At first sight this seems to lead to cubic equations. However, by following the procedure
explained in Appendix B.2, one obtains an equivalent set of bilinear equations

8
>><

>>:

⌧6⌧2 � q1/4t1/2⌧2⌧6 = �t1/2
�
Q2 + q1/2Q1

�
⌧2⌧6,

Q1/2
+ q1/4⌧6⌧4 +Q2t1/2⌧4⌧6 = t1/2

�
Q2 + q1/2Q1

�
⌧4⌧6,

⌧4⌧2 � ⌧2⌧4 = t1/2
�
Q2 + q1/2Q1

�
⌧2⌧4.

, ⌧i = ⌧i(q
1/2Q1, q

�1/2Q2).

(3.58)

These provide a bilinear form for the qPIV equation, which to our knowledge did not appear
in the literature so far.

q-Painlevé II bilinear relations from "half" traslations: Given the root lattice
(A2 + A1)(1), there exists another time flow that preserves a (A1 + A0

1)
(1) sublattice only

[40, 41]. It corresponds to the q-Painlevé II equation, and it is given by

R2 = ⇡2s1, (3.59)

which is still an automorphism of the quiver in Figure 10. Because R2
2 = T2, this flow is

also known as half-translation6. Its action on the Casimirs is a translational motion (i.e. a
6Other half-traslations can be analogously defined from T1 and T3.
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T3, qPIII1,
t = t/q, Q+ = qQ+

8
>>>>><

>>>>>:

⌧1⌧2 = ⌧1⌧2 +Q1/2
+ q1/4⌧4⌧5,

⌧4⌧5 = ⌧4⌧5 +Q1/2
+ q1/4⌧1⌧2,

⌧1⌧2 = q1/4t1/2⌧1⌧2 + ⌧4⌧5,

⌧4⌧5 = q1/4t1/2⌧4⌧5 + ⌧1⌧2,

(3.66)

T4, qPIV,
Q� = qQ�

8
>>><

>>>:

⌧6⌧2 � q1/4t1/2⌧2⌧6 + (tqQ+)1/2
⇣
1 +Q1/2

� q�1/2
⌘
⌧2⌧6 = 0,

Q1/2
+ q1/4⌧6⌧4 + q1/4t1/2⌧4⌧6 � (tqQ+)1/2

⇣
1 +Q1/2

� q�1/2
⌘
⌧4⌧6 = 0,

⌧4⌧2 � ⌧2⌧4 � (tqQ+)1/2
h
1 +Q1/2

� q�1/2
i
⌧2⌧4 = 0,

(3.67)

R2, qPII, (Q1 = Q�1
2 = �1)

t = q1/2t,

(
⌧3⌧6 = ⌧3⌧6 + q1/4t1/2⌧3⌧6,

⌧3⌧6 = ⌧3⌧6 + q1/4t1/2⌧3⌧6,
(3.68)

4 Solutions

In this Section we discuss how the solutions of the discrete flow of BPS quivers are naturally
encoded in topological string partition functions having as a target space the toric Calabi-
Yau varietes associated to the relevant Newton polygons. The corresponding geometries are
given by rank two vector bundles over punctured Riemann surfaces. Let us recall that the
BPS states of the theory are associated to curves on this geometry that locally minimise
the string tension. More specifically, hypermultiplets are associated to open curves ending
on the branch points of the covering describing the Riemann surface, while BPS vector
multiplets are associated to closed curves7. The BPS states are then described in this
setting by open topological string amplitudes with boundaries on those curves. The very
structure of the discrete flow suggests to expand the ⌧ functions as grand canonical partition
functions for the relevant brane amplitudes. Specifically, we propose that

⌧{mi}
(si, Qi) =

X

ni

sni
i Ztop(q

miniQi) (4.1)

where q = e~, ~ = gs being the topological string coupling, Qi the Calabi-Yau moduli
and si the fugacities for the branes amplitudes associated to BPS states with intersection
numbers mi with the cycles associated to the Qi moduli. These cycles represent a basis
associated to the BPS state content of theory in the relevant chamber, the intersection
numbers representing the Dirac pairing among them. It is clear from this that the expansion
(4.1) for the tau function crucially depends on the BPS chamber. Moreover, distinct flows
of the BPS quivers described in the previous sections correspond to bilinear equations in
distinct moduli of the Calabi-Yau.

7Let us notice that in the 5d theories on a circle, one finds in general also "wild chambers" with multiplets
of higher spin which can be reached via wall crossing from the "tame" ones. It would be interesting to
realise these higher spin multiplets as curves on the spectral geometry.
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4d sub-quivers and  Argyres-Douglas theory

Figure 14: Nf = 2 subquivers for the discrete flow T4

good degeneration limit as an automorphism of the subquiver, but rather its square did.
We observed that this was related to the Z2-periodicity of the action of TF1 on the BPS
charges. What happens here is that not T4, but rather T 3

4 has a good action after taking
the limit, in particular only for T 3

4 it is true that

T 3
4 (x2) ! 0, T 3

4 (x5) ! 1, (5.36)

consistently with the limit.
The resulting sub quiver is the oriented square with arrows of valency one and no

diagonals with adjacency matrix

B =

0

BBB@

0 1 0 �1

�1 0 1 0

0 �1 0 1

1 0 �1 0

1

CCCA
. (5.37)

The corresponding four dimensional gauge theory has been already classified in [14] as
Q(1, 1) and shown to correspond to H3, which is the Argyres-Douglas limit of the Nf = 3

with SU(2). All this is consistent with the reductions of the Sakai’s table in Figure 1.
The symmetry type of the five dimensional SU(2) Nf = 2 gauge theory is E(1)

3 . The
reduction of the T1, T2 and T3 flows corresponds to the reduction E(1)

3 ! D(1)
2 , the latter
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Conversely, one can recover 4d sub-quivers from the 5d one by sending to 
zero/infinity two X-cluster variables consistently with the flow.

5d BPS quivers are obtained from 4d ones by adding two nodes, corresponding
to Kaluza-Klein modes on the circle and to 5d instanton-particle.

For the new flow, the consistent choices are:

and bring to the 4d quiver of             Argyres-Douglas theory.

Figure 13: Nf = 2 kite-subquivers for the discrete flow T3

on the discrete evolution T3. This is given by
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

T3(x1) =
1+x4(1+x6)(1+x�1

3 )�1

x6(1+x�1
1 (1+x�1

6 )(1+x3))
,

T3(x2) =
1+x�1

6
x1(1+x3)

,

T3(x3) =
x5(1+x6)(1+x1(1+x3)(1+x�1

6 )�1)
(1+x�1

3 )(1+x4(1+x�1
3 )(1+x6)�1)

,

T3(x4) =
1+x1(1+x3)(1+x�1

6 )�1

x3(1+x�1
4 (1+x�1

3 )(1+x6)�1)
,

T3(x5) =
1+x�1

3
x4(1+x6)

,

T3(x6) =
x2(1+x3)(1+x4(1+x6)(1+x�1

3 )�1)
(1+x�1

6 )(1+x�1
1 (1+x�1

6 )(1+x3)�1)
,

!

8
>>>>>>>>>>><

>>>>>>>>>>>:

x1
1+x6(1+x1)

,
1+x�1

6
x1

,

0,

x4(1 + x6(1 + x1)),

1,
x2

(1+x�1
6 )(1+x�1

1 (1+x�1
6 ))

.

(5.32)

We see that in all the cases that yielded the time evolution of q-Painlevé III1, the degen-
eration of the time flow produces the same automorphism of an appropriate subquiver. It
remains to study the flow T4, which yielded a q-Painlevé IV time evolution, characterized
by

T4(Q�) = qQ�, Q� =
Q2

Q1
. (5.33)

In terms of the Casimirs b0, b1, this leads to

x2x4x6 = (qQ�)
1/2

! 0, x1x3x5 = q�1Q�1/2
� ! 1. (5.34)

To achieve this without affecting the Casimirs a0, a1, a2 we have to decouple either the
nodes 2,5, or the nodes 3,6, or the nodes 1,4, giving the subquivers in Figure 14, and we
will consider the first option, given by the limit

x2 = (qQ�)
1/2x�1

4 x�1
6 ! 0, x5 = q�1Q�1/2

� x�1
1 x�1

3 ! 1. (5.35)

Here something similar to what happened when we studied the degeneration of the
q-Painlevé III3 associated to local F1 happens: recall that in that case TF1 did not have a
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3 )(1+x6)�1)

,

T3(x4) =
1+x1(1+x3)(1+x�1

6 )�1

x3(1+x�1
4 (1+x�1

3 )(1+x6)�1)
,

T3(x5) =
1+x�1

3
x4(1+x6)

,

T3(x6) =
x2(1+x3)(1+x4(1+x6)(1+x�1

3 )�1)
(1+x�1

6 )(1+x�1
1 (1+x�1

6 )(1+x3)�1)
,

!

8
>>>>>>>>>>><

>>>>>>>>>>>:

x1
1+x6(1+x1)

,
1+x�1

6
x1

,

0,

x4(1 + x6(1 + x1)),

1,
x2

(1+x�1
6 )(1+x�1

1 (1+x�1
6 ))

.

(5.32)

We see that in all the cases that yielded the time evolution of q-Painlevé III1, the degen-
eration of the time flow produces the same automorphism of an appropriate subquiver. It
remains to study the flow T4, which yielded a q-Painlevé IV time evolution, characterized
by

T4(Q�) = qQ�, Q� =
Q2

Q1
. (5.33)

In terms of the Casimirs b0, b1, this leads to

x2x4x6 = (qQ�)
1/2

! 0, x1x3x5 = q�1Q�1/2
� ! 1. (5.34)

To achieve this without affecting the Casimirs a0, a1, a2 we have to decouple either the
nodes 2,5, or the nodes 3,6, or the nodes 1,4, giving the subquivers in Figure 14, and we
will consider the first option, given by the limit

x2 = (qQ�)
1/2x�1

4 x�1
6 ! 0, x5 = q�1Q�1/2

� x�1
1 x�1

3 ! 1. (5.35)

Here something similar to what happened when we studied the degeneration of the
q-Painlevé III3 associated to local F1 happens: recall that in that case TF1 did not have a
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keeping other Casimirs finite.
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A puzzle

Recall that              Argyres-Douglas theory is the IR SCF point of 
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4d SU(2) gauge theory with three flavours.
On the other hand, the toric diagram of         SCFT 

(1,0)

(0,1)

(0,0)
(-1,0)

(0,-1)

(1,1)

(-1,-1)

Figure 10: Newton polygon and quiver for dP3

T3(↵,�) = (↵,�) + (1, 0,�1, 0, 0)�, T4(↵,�) = (↵,�) + (0, 0, 0, 1,�1)�, (3.42)

where � = ↵0 + ↵1 + ↵2 = �0 + �1 is the null root of (A2 + A1)(1). From each one of
these discrete flows we can obtain bilinear equations for the cluster A-variables ⌧ . Once we
choose one of the flows as time, the other flows can be regarded as Bäcklund transformations
describing symmetries of the time evolution.

Let us define the four tropical semifield generators to be q, t, Q1, Q2, and the initial
condition on the parameters to be

y =

✓
�

1

Q2t1/2
, q1/4t1/2, Q1q

1/4,�
1

Q1t1/2
, q1/4t1/2, Q2q

1/4

◆
(3.43)

which means, in terms of the original parametrization of the Casimirs,

a20 =
1

Q1Q2q1/2
, a21 = Q1Q2t, a22 =

1

q1/2t
, (3.44)

b20 = �q�1/2Q1

Q2
, b21 = �q�1/2Q2

Q1
. (3.45)

We now derive bilinear equations for the discrete flows of this geometry: the time
evolution for T1 is

8
>>>>><

>>>>>:

T1(⌧1) = ⌧3,

T1(⌧2) =
⌧5⌧6�Q2t1/2⌧2⌧3

⌧1
,

T1(⌧4) = ⌧6,

T1(⌧5) =
⌧2⌧3�Q1t1/2⌧5⌧6

⌧4
,

8
>>>>><

>>>>>:

T�1
1 (⌧2) =

⌧4⌧5+Q1q1/4⌧1⌧2
⌧3

,

T�1
1 (⌧3) = ⌧1,

T�1
1 (⌧5) =

⌧1⌧2+Q2q1/4⌧4⌧5
⌧6

,

T�1
1 (⌧6) = ⌧4.

(3.46)
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engineers 5d SU(2) gauge theory with two flavours.

So, what is going on ?



Sakai’s classification and rank one 5d SCFTs

Sakai’s classification of q-Painleve’ equations based on symmetry lattice
of eight-point blow-up of 
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P1 ⇥ P1

standard geometric engineering
to 4d with two flavours

reduction of          SCFT to             Argyres-Douglas
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different limit pointing to a Argyres-Douglas SCFT !



Matrix models for the magnetic phase

Conjectural proposal for non-perturbative completion of topological strings 

where ⌧i, ⌧ i, ⌧̄i are defined from a single ⌧ -function ⌧ (✓0, ✓1, ✓t, ✓1; s, �, t) as

⌧1 (t) = ⌧ (✓0, ✓1, ✓t, ✓1 + 1/2; s, �, t) , ⌧2 (t) = ⌧ (✓0, ✓1, ✓t, ✓1 � 1/2; s, �, t) ,

⌧3 (t) = ⌧ (✓0 + 1/2, ✓1, ✓t, ✓1; s, � + 1/2, t) , ⌧4 (t) = ⌧ (✓0 � 1/2, ✓1, ✓t, ✓1; s, � � 1/2, t) ,

⌧5 (t) = ⌧ (✓0, ✓1 � 1/2, ✓t, ✓1; s, �, t) , ⌧6 (t) = ⌧ (✓0, ✓1 + 1/2, ✓t, ✓1; s, �, t) ,

⌧7 (t) = ⌧ (✓0, ✓1, ✓t � 1/2, ✓1; s, � + 1/2, t) , ⌧8 (t) = ⌧ (✓0, ✓1, ✓t + 1/2, ✓1; s, � � 1/2, t) ,

⌧ i (t) = ⌧i
�
q�1t

�
, ⌧̄i (t) = ⌧i (qt) . (2.5)

The q-PVI equations follow from the bilinear identities satisfied by the five dimensional Nekrasov-

Okounkov partition function [42]:

⌧1⌧2 � q�2✓1 · t⌧3⌧4 �
⇣
1 � q�2✓1 · t

⌘
⌧5⌧6 = 0,

⌧1⌧2 � t⌧3⌧4 �
⇣
1 � q�2✓t · t

⌘
⌧5⌧̄6 = 0,

⌧1⌧2 � ⌧3⌧4 +
⇣
1 � q�2✓1 · t

⌘
q2✓t⌧7⌧̄8 = 0,

⌧1⌧2 � q2✓t⌧3⌧4 +
⇣
1 � q�2✓t · t

⌘
q2✓t⌧7⌧8 = 0,

⌧5⌧6 + q�✓1�✓1+✓t�1/2
· t⌧7⌧8 � ⌧1⌧2 = 0,

⌧5⌧6 + q�✓1+✓1+✓t�1/2
· t⌧7⌧8 � ⌧1⌧2 = 0,

⌧5⌧6 + q✓0+2✓t⌧7⌧8 � q✓t⌧3⌧4 = 0,

⌧5⌧6 + q�✓0+2✓t⌧7⌧8 � q✓t⌧3⌧4 = 0. (2.6)

These eight equations provide the ⌧ -form of q-Painlevé VI system.

2.2 Topological string/spectral theory correspondence

Let’s consider the topological string on a local toric Calabi-Yau threefold X, whose mirror curve can

be written as WX (ex, ep) =
P

m,n am,nemx+np = 0 in C⇤
⇥ C⇤. WX is the Newton polynomial of the

CY3 X and the sum over m, n runs over a finite set in Z2 determined by the toric fun of X, known as

the Newton polygon of the curve [45, 46, 47, 48]. Let us consider the quantum version of this curve,
bO =

P
(m,n) 6=(0,0) am,nembx+nbp, with [bx, bp] = i~. It has been conjectured in [17] that the di↵erence

operator bO is Fredholm, so in particular with discrete spectrum and trace class, that is tr bO�n are

finite for n = 1, 2, · · · . This has been checked in some relevant cases in [49, 33] and our analysis in this

paper extends the verification to other cases. In particular, Fredholm operators admit a well defined

spectral determinant:

⌅() = det
⇣
1 +  bO�1

⌘
. (2.7)

In the topological string/spectral theory (TS/ST) correspondence [17] this spectral determinant is

conjectured to provide a non-perturbative completion of the free energy of topological strings on X.

Indeed, the perturbative expansion of the topological string free energy displays infinitely many poles,
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⇣
1 � q�2✓t · t

⌘
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These eight equations provide the ⌧ -form of q-Painlevé VI system.

2.2 Topological string/spectral theory correspondence

Let’s consider the topological string on a local toric Calabi-Yau threefold X, whose mirror curve can

be written as WX (ex, ep) =
P

m,n am,nemx+np = 0 in C⇤
⇥ C⇤. WX is the Newton polynomial of the

CY3 X and the sum over m, n runs over a finite set in Z2 determined by the toric fun of X, known as

the Newton polygon of the curve [45, 46, 47, 48]. Let us consider the quantum version of this curve,
bO =

P
(m,n) 6=(0,0) am,nembx+nbp, with [bx, bp] = i~. It has been conjectured in [17] that the di↵erence

operator bO is Fredholm, so in particular with discrete spectrum and trace class, that is tr bO�n are

finite for n = 1, 2, · · · . This has been checked in some relevant cases in [49, 33] and our analysis in this

paper extends the verification to other cases. In particular, Fredholm operators admit a well defined

spectral determinant:

⌅() = det
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1 +  bO�1

⌘
. (2.7)

In the topological string/spectral theory (TS/ST) correspondence [17] this spectral determinant is

conjectured to provide a non-perturbative completion of the free energy of topological strings on X.

Indeed, the perturbative expansion of the topological string free energy displays infinitely many poles,
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Quantum mirror curve 

(5d quantum SW curve)

Spectral determinant
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Okounkov partition function [42]:
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2.2 Topological string/spectral theory correspondence

Let’s consider the topological string on a local toric Calabi-Yau threefold X, whose mirror curve can

be written as WX (ex, ep) =
P

m,n am,nemx+np = 0 in C⇤
⇥ C⇤. WX is the Newton polynomial of the

CY3 X and the sum over m, n runs over a finite set in Z2 determined by the toric fun of X, known as

the Newton polygon of the curve [45, 46, 47, 48]. Let us consider the quantum version of this curve,
bO =

P
(m,n) 6=(0,0) am,nembx+nbp, with [bx, bp] = i~. It has been conjectured in [17] that the di↵erence

operator bO is Fredholm, so in particular with discrete spectrum and trace class, that is tr bO�n are

finite for n = 1, 2, · · · . This has been checked in some relevant cases in [49, 33] and our analysis in this

paper extends the verification to other cases. In particular, Fredholm operators admit a well defined

spectral determinant:

⌅() = det
⇣
1 +  bO�1

⌘
. (2.7)

In the topological string/spectral theory (TS/ST) correspondence [17] this spectral determinant is

conjectured to provide a non-perturbative completion of the free energy of topological strings on X.

Indeed, the perturbative expansion of the topological string free energy displays infinitely many poles,
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Spectral determinants and topological strings

The operator                            admits an analytic spectral determinant
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      TS/ST conjecture

matrix model for topological string partition function

Problem: inverting quantum mirror curve is hard !



Matrix models for the magnetic phase
             [Bonelli, Globlek, Kubo, Nosaka, A.T. ]

Proposal for local           which engineers 5d SU(2)                  gauge theory 
<latexit sha1_base64="uZVYPipgJzxu7AcpgM4RAlPTH5Q=">AAAB63icbVDLSsNAFL2pr1pfVZduBovgqiRSH8uiG5cV7APaUCaTSTt0ZhJmJkIJ/QU3LhRx6w+582+ctFlo64ELh3Pu5d57goQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TRWibxDxWvQBrypmkbcMMp71EUSwCTrvB5C73u09UaRbLRzNNqC/wSLKIEWxyKWwNL4fVmlt350CrxCtIDQq0htWvQRiTVFBpCMda9z03MX6GlWGE01llkGqaYDLBI9q3VGJBtZ/Nb52hM6uEKIqVLWnQXP09kWGh9VQEtlNgM9bLXi7+5/VTE934GZNJaqgki0VRypGJUf44CpmixPCpJZgoZm9FZIwVJsbGU7EheMsvr5LORd27qjceGrXmbRFHGU7gFM7Bg2towj20oA0ExvAMr/DmCOfFeXc+Fq0lp5g5hj9wPn8AlWKN8w==</latexit>

dP5
<latexit sha1_base64="F75zUgI18v3g8YxZ5aAlUDt03yY=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU9mVol6EoiCepILbFtqlZNNsG5pklyQrlKW/wYsHRbz6g7z5b0zbPWjrg4HHezPMzAsTzrRx3W+nsLK6tr5R3Cxtbe/s7pX3D5o6ThWhPol5rNoh1pQzSX3DDKftRFEsQk5b4ehm6reeqNIslo9mnNBA4IFkESPYWMm/791e1Xrlilt1Z0DLxMtJBXI0euWvbj8mqaDSEI617nhuYoIMK8MIp5NSN9U0wWSEB7RjqcSC6iCbHTtBJ1bpoyhWtqRBM/X3RIaF1mMR2k6BzVAvelPxP6+TmugyyJhMUkMlmS+KUo5MjKafoz5TlBg+tgQTxeytiAyxwsTYfEo2BG/x5WXSPKt659XaQ61Sv87jKMIRHMMpeHABdbiDBvhAgMEzvMKbI50X5935mLcWnHzmEP7A+fwB5a+OGQ==</latexit>

NF = 4

The coalescence can be seen as a degeneration of the tau function. In (3.16), we saw the relation

between the q-Painlevé VI tau function and the grand partition function of the quiver superconformal

Chern-Simons matter theory displayed in Fig.1. In (3.16) we normalized the grand partition function

by Zk (0; M1, M2, M, ⇣1, ⇣2). In this section, we adopt a slightly di↵erent normalization factor, namely

we define
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where we used (B.19). Notice that the integrand of ZVI
k can also be written explicitly as
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The normalization factor in the first line of (5.2) is the prefactor appearing in (B.19) and is

independent of N . This normalization factor provides a result consistent with the known result in [9]

at the end of the coalescence, as we will comment later. Note that this definition does not contradict

our previous analysis since for M = 0 the two normalization factors coincide (see (B.24)).

For clarity, we will study the coalescence limit by treating at the same time the matrix model and

the quantum curve. In such a way we can provide the relation between them while flowing along the

coalescence. For this purpose, we first clarify the relation between the matrix model and the quantum

curve for q-Painlevé VI. The conjecture (3.9) implies that

ZVI
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Check:  its spectral determinant satisfies the expected q-difference equation
              in Sakai’s list



Summary

Surface defects strongly determine non-perturbative dynamics of gauge
theories and have many relations with integrability, random matrices and
representation theory.  Main results:

- new recurrence relations for instanton counting on self-dual Omega   
background for all simple groups from          to         . 
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An

-  new matrix models for the magnetic phase of a class of 4d and 5d theories.

-  connection between 5d BPS quivers, cluster algebrae and q-difference eq.

-  new viewpoint on Argyres-Douglas SCFT.

-  4d/2d correspondence and t t* equations.



Outlook

Some natural lines of development:

- 5d uplift of tau-system for general gauge groups  
(de-autonomization of relativistic Toda chain).

- matrix model for the magnetic phase beyond         series.
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An

- general Omega background and quantum cluster algebrae.

- solutions of the new bilinear equations and Argyres-Douglas SCFTs.

- spectrum of quantum integrable system from zeroes of the tau-functions.
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- general Omega background and quantum cluster algebrae.
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- spectrum of quantum integrable system from zeroes of the tau-functions.
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