<

Surface defects, tt* equations
and BPS spectra

Alessandro Tanzini, SISSA, Trieste

Workshop on Quivers, Calabi-Yau threefolds and DT Invariants
Sorbonne U - Campus Pierre et Marie Curie, 11-15 Apr 2022



based on;

G. Bonelli, F. Globlek, A.T.

G. Bonelli
G. Bonelli

Phys.Rev.Lett. 126 (2021)

- Del Monte, A.T.  Ann. Henri Poincare’ (2021)

- Globlek, N. Kubo, T. Nosaka, A.T.

... and work In progress...

arxiv:2202.10654



Beauty of defects

Defects in QFT are a set of boundary conditions on the fields
and boundary couplings that one imposes on sub-manifolds.

They are both useful to model physical systems and also to
probe general properties of quantum field theories.

Indeed, the partition function in presence of a defect Zgefect
is not simply a number but rather an element of a vector
space (for fixed BC) or more in general an object in a
category, when considering all admissible boundary
conditions.

This makes the study of Zgefect a very rich subject naturally
related to geometry, integrable systems and
representation theory.



Which defects ?

In this talk we will consider surface defects in four and five
dimensional supersymmetric gauge theories with 8
supercharges and show that the related partition functions
obey respectively a set of differential and q-difference
equations which provide very effective and general
tools to explore their non-perturbative dynamics and
BPS spectrum.



Main results - 4d :

in four dimensions, Zdefect satisfies a set of differential equations
that produce new recurrence relations tor multi-instantons of
N=2 Super-Yang-Mills theory in a self-dual Omega background.
These provide a new algorithm to evaluate them for arbitrary

simple groups from A to F .
integrability:

Zdefect TOr gauge group G are tau-functions of non-

A

autonomous Toda chain of type (G)V, t~A .
4d/2d correspondence with tt* equations and Ising model corr.
random matrices:

late time = strong coupling expansion of Zdefect (AN) gives a
matrix model presentation of the magnetic phase, expansion

around the monopole point.



Main results - 5d :

- in five dimensions, Zgefect Satisfies a set of g-difference
equations arising from the symmetry group of the BPS quiver
of the SCFT.

representation theory:

Zdefect are tau-functions of the cluster algebra associated to
the quiver.

reduction to four-dimensional BPS quivers and a new
viewpoint on Argyres-Douglas theory.



Surface defects



Surface defects

Surface defects can be defined by the assignment of
singular boundary conditions for the fields in the normal
bundle of the surface D

A=adb+ ...

o — ,0629

normal coordinate  a € t specifies the
residual gauge symmetry on the defect to its commutant

. C G Levi subgroup and determines the monodromy around D

Another parameter is given by the coupling to the magnetic
charge of the defect

b
) —— F
exp(1 o /D )

the magnetic charge m € Q" is an element of the coroot
lattice. The two parameters are packed into a complex one 1



We will consider full surface operators, namely the ones with
minimal residual gauge symmetry

L =T Cartan torus of G

Moreover, we can twist their monodromy by a central element

These are the surface operators generating the one-form
symmetry of Yang-Mills valued in the center Z(G) . Introduced
by 't Hooft to describe phases of gauge theories.

Their vevs depend both on the continuous parameters 7]
and the discrete label of the center element. This can be
described in terms of the Dynkin diagram of the affine group é



Indeed, Z(G) is the automorphism group of the affine
Dynkin diagram

g An Bn Cn D2n D2n—|—1 En F4 GQ
Z(G) Zn_|_1 ZQ ZQ ZQ X Z2 Z4 Zg_n 111

It acts on the affine nodes. E.g. for A,

70

T Tj_l Tj Tj_|_1 T™n

The center is given by the quotient of the affine co-weight lattice
by the affine co-root lattice

Z(G) — Qaff/Q;L/ﬂ’

Wey! orbit = orbit of Z(G)



Toda lattice equations for N=2 surface defects

What's special about surface defects in N=2 SYM ?

We propose that in this case Zgefect IS the tau-function of Toda lattice
equations

V V v
DQ(TIB) _ _/8 218 tl/hv H [Ta]—a'la
BEA B+

(f) falogtf_(alog tf)‘2‘ second Hirota derivative [ = (A/e)Zhv

a € A simple root of affine Lie algebra ' =2a/(a,a) co-root

A special role is played by the tau-functions associated to the affine nodes

Tows (O, ligt) = Y 2VTIM03(@40) B(g 4 nlt)

neQ
/ﬂ necessary to implement the correct S-duality
number of short simple roots for non simply laced groups

ratio of squares of long vs. short roots



Toda lattice equations for N=2 surface defects

What's special about surface defects in N=2 SYM 7

We propose that in this case Zgefect IS the tau-function of Toda lattice
equations

V V U
DQ(TIB) _ _/8 2/3 tl/hv H [Ta]_a'ﬁ
BEA B

DZ(f) — f8120g tf_(alog tf)‘zl second Hirota derivative [ = (A/G)Zhv

a e A simple root of affine Lie algebra a’ =2a/(a,a) co-root

A special role is played by the tau-functions associated to the affine nodes

Tows (T |Egt) = Y 2™V TIMRE(@ N B(g 4 nlt)
neQ g

B(olt) = Bo(o)Y ;s0t'Zi(o) Zo(o) = 1 convergent power series

n, o €Q Integration constants



Toda Lattice equations from M-theory

r M5 branes on R® described by A,._1 superconformal
field theory in six-dimensions with (2,0) supersymmetry
superconformal group O S0O(6,2) x SO(5)

Coulomb branch {{ : r M5 branes on RO separated In the
transversal R® space

< [{ described by v.e.v.s of Tr YIYI
z and all other Casimirs of A,_1

YI five real scalars param. the
position of M5s in transv. [R®

13



Toda Lattice equations from M-theory

twisted compactification on R4 X (C :local geometry near Mbs
R* x T*C x R’
superconformal group reduces DO SO(4,2) x U(1) x SU(2)

1
Coulomb branch described by v.e.v.s of §(Y1 +4iY?) = ¢ € T'(K) xEnd(E)

Z/{ = EB71;:1}10 (C7 K®dk>

r-covering of C , sheets labeled
by eigenvalues of

14



Sl compactification gives rise to U(r) Super Yang-Mills theory in 50

on R3 x C . BPS vacua invariant under Super-Poincare’ of R3

satisty Hitchin’s equations

these are equivalent to the flatness of the SL(T, (C) connection

R
Azzgﬁ—FA—FRg@;

15



oper limit: R—0,(—0 (/R=h

radial component of flat Hitchin connection on cylinder w. regular
singularities

o |
A= qtw’ (e"“"Ea(, + ) e"‘"%) +w (e“o‘IEm, + ) e‘“’EQ)

« simple « simple
q = dlag(QQ) cee aq[V—l)

obey’s Toda lattice equations with boundary conditions set by the
surface operator.



Toda lattice equations from 4d/2d correspondence

The Toda system is the radial reduction of 2D Toda lattice
equations on the cylinder C* .

These naturally arise as tt* equations tor a Landau-Ginzburg
model describing complex deformations of a Z(G) singularity

Why is this relevant for surface defects ?




Toda lattice equations from 4d/2d correspondence

The Toda system is the radial reduction of 2D Toda lattice
equations on the cylinder C* .

These naturally arise as tt* equations for a Landau-Ginzburg
model describing complex deformations of a Z((G) singularity

Recall that 1/2 BPS surface defects can also introduced by
coupling the 4d theory to a (2,2) 2d GLSM describing maps

D — G/L

for full surface defects I = T the target space is a complete
flag variety whose Hori-Vafa mirror is precisely the above
Landau-Ginzburg model !



Seiberg-Witten theory viewpoint

Seiberg-Witten curve of N=2 SYM is the spectral curve of affine

Toda chain of type (G)\/ w Langlands dual

The RG equations for surface defects are the de-autonomization
of Toda chain equations. Simplest example:

SU(2) —— 2 particle Toda chain —— Painleve’ lll degen.

SW curve de-autonomization

The de-autonomization is the deformation of the integrable system

describing susy gauge theory in a selt-dual Omega background
and thus gravitational corrections to SW prepotential .

The latter are equivalent to topological string amplitudes on a
suitable local Calabi-Yau via geometric engineering.



Solutions



Tau-system
Toda system in tau form:

/6\/ '/6\/ v —a-3Y
D (rp) = ————t"/"" [ [ra] ™"
BEA,B#x

Kyiv-like ansatz

Tees (0.7 "7\’43975) _ Z 62%\/—_1n-nt%(0'—|—n)2B(0- n n’t)
neQ g

M

B(olt) = Bo(o)> st'Zi(o) Zo(o) = 1

Asymptotic conditions

l08(Bo) ~ 3 3_(r- ) log (r - 0)°

rcR

t —0and o — o



We tind that for the solutions satistying the above asymptotic
conditions

t%"2B(a\t) s the full Nekrasov p.f. in a self-dual
Omega background (e1,€e2) = (€, —¢)

. 2h _
with ¢ = (A/e) RG scale g — a/e. vev of N=2 scalar

We obtain new recurrence relations determining all instanton
corrections in self-dual bckg for all simple groups from

A, to FE



One-loop

solution satistying the asymptotic conditions

Bo(O’) — Zl—loop(a) = H G(l _|_1

r-o)
rcR \
adjoint representation Barnes G-function

by using

1 1 1 1
log G(1+x) = ﬁ—log(A)+§xlog(27r)—Za:2+(§x2 — E) log(x)+O(x™?)

the asymptotic expansion matches the perturbative one-loop calculation
of gauge theory upon a suitable choice of the branch for the log

In [\/—1r-a/A| € R

this fixes some directions in the complex plane which are the Stokes rays of
the related non-linear equations - isomonodromic deformation problem on the
Riemann sphere with two irregular singular point of Poincare’ rank 1.



Instantons

Start with A,, case

T Tj_l Tj Tj_|_1 Tn
fau-system
_1
D2(Tj) — —{tn+1 Tj—lTj—l—l
Dins1 Symmetry Ti(o|t) = To(o + A1)
reduces to D*(1o(0)) = —7o(0 L €1)
ansatz

ro(o,nt)= S VoI (@tn) g (o 4 n)Z;(o + n)
ne@, >0



Recursion relations

by plugging the ansatz into the tau-system one gets the recurrence relation:

By(o £ n)
k*Z (o) = — 2 Z Bo()? Z;,(c —n)Z; (o +n)
n“+ji+je2==k
nce;+Q, j1,2<k
By(oc £ n
+ > (i, —is + 2n - 0)* of )Zz-l(a—i—n)Zz-Q(O'—n),

) Bo(o)?
n“+i1+i2=kneqQ), i1,2<k

the first step provides one-instanton in terms of one-loop:

B ] By(o £ ¢;) B o 1n+1 1
2@ == Tper ~ VT L gy

going on with two-instantons:

n+1 ‘
Zy (o) = - > Bolo £ &) Z1(o +ei) + Zi(o — €;)]

12« " By(o)?
n+1 o Bo(o = (e; —€;
‘|‘Z(Uz O'j) ( BO(<0')2 ))



70

T2

Other groups

1

o—Q -2 D*(r0) = D*(11), D*(7-1) = D*(7)

o)

. D2(r9) = D2(m1)
7 0—--—0—0=%0
T: Tn— Tn— ™
m 3 o D*(1y_1) = QT T T, o7y, D*(1,) = —tToT T2
(o O O O O
T1 T2 T3 T5 T6 7-6D4(7'0) = TOD4(T6)
Q 74
O 7o

o—qa(a; D*(75t D* (1)) = 3t(D*(70))*



(G5 case
(o ansatz

nloual) = 5 eI ()N B (o4 n| - )
ncQVv

reduced tau-system implies

4
So L eVl i gy (o 1 ny) 24, (o + ny)

1k

{n,}eQ” k=1

{ik}GN
1 1 . 1 .

(z [T o, i = 5o, — ik + (04, —np,) -0
) k1<kso
9 1 , 1 .

+ 1(511?“1 - 5“3 — iz + (n; — n2) - 0)°

1 . 1 :
<§n§+13—§n421—24+(n3—n4)-0)2> =0.

one-instanton
)

30202 (01 4 03)?

1 (U)[GQ] |03=—01—02 —

two-instantons

3 (90;l (6034—1)4—180:1)’ (603—#02)4—30% <180§—|—90§ —2)—|—601 09 (30% —1)—|—(1—30§)2)

Z L ‘ [G2] 03=—01—09 —
2(0') ‘ 3= 1 2 a%(1_305)203(1_3(,3)2(01+02)2(1—3(a1+02)2)2



Matrix models for the magnetic phase
|[Bonelli, Grassi, A.T.]

Toda time — — <_) — RG scale

€

Late time expansion of tau-functions <@l dual Seiberg Witten prepotential

Spectral determinant
Ta, (0,n=0,t) = > &M Zm(A/e)

M>0

dxz 28 cosh z; Ly — Ly ?
M M!/H e Htanh( 9 )

1<J

29-2 D matrix model for SU(2) SYM around the
log Zy =} _ €72y monopole point

@ non-perturbative completion of topological
string on (a limit of) local Hirzebruch geometry




Matrix models for the magnetic phase

Generalisationto 74, 4

N-1

SYM 1 d L I I | I —NTsm —J cosh( i)
Jj=11;€l;

H1§i<j§M 2 sinh ( 12% + §(d- — d)) 2 sinh (mi_xj + %(fz — fj))
H%:12cosh( 1 —f3)>

X

d;, f; are N-dependent phase shifts.
Computes dual prepotential around the massless monopole point ap, = M; T~

Te(2)-2)nl

+ Y TTjlog (ai;) + O(TP),

N —
FP(Ty, ..., Tn_1) Z

j=1

cos( (i]\?j)) —1 '
Clw — it ’ .
cos( (J”) -1 controls the mass spectrum when breaking to
N N =1 supersymmetry.



Surface defects in 5d



5d Gauge theories on a circle

Codim. 2 defects in 5d gauge theories obey a g-difference uplift of the
tau-system. Discrete dynamical flow generated by automorphism group

of the 5d BPS quiver.

5d BPS quiver from geometric engineering via Calabi-Yau compactification

nodes: Dp branes wrapping calibrated cycles - BPS states of 5d SCFT
arrows: Dirac pairings among BPS patrticles

Example: Pure SU(2) Super Yang-Mills

R o— —
. 1
& e
(0-1) e
local Fo Newton polygon 5d BPS quiver automorphism group

generators m = (1,3)¢, Ty = (4,3,2,1), Tr, = (1,2)(3,4)p1ps3.



Cluster integrable system

quiver mutation
_Bija i:korj:k,
pi(Bij) = n .

{Bij 1 szlBkj|"5Bkj|sz|,

X - cluster variables
—1
T, Jj =k,
pr(xj) =9 7
’ {%‘(1 + B, £k

Poisson bracket adjacency matrix of quiver

{CEZ', .CUj} = B/L'j‘aﬁj.

space of Casimirs ker(B), ¢= H:Ez s always a Casimir by construction

(]

Integrable dynamics on the level surface ¢ = 1 discrete flows generated by
the group of quiver automorphisms.

iIndependent Hamiltonians &P internal points of Newton polygon



Relativistic Toda

For the example of SU(2) SYM

(0.1) P —
10) (10) < Dihy X W(A(l))
(o) @
local FO Newton polygon 5d BPS quiver automorphism group
In the variables r=x1,Y =2, Z=2x173 one gets the Hamiltonian

PR SN

relativistic two-particle periodic Toda chain with flow generated by the quiver
automorphism

Tw, = (1,2)(3,4) pps.



Tau functions and de-autonomization

Tau - cluster variables

i (75) = 4

de-autonomization

q7 1

induces a discrete flow of the Hamiltonians and of the tau functions under

quiver automorphism Tk, = (1,2)(3,4) 13-

o\T1

o
3

(71)
(12) =
o(T3) = Tu,
(14) =

T4

= 5 o5 S

\ 0

— 2 1/2 2
TITL = T4 —l_t/Tg,

2+ qt)1/2 2

24 qt)1/2 2

T3T3 = 732 + t1/27'12

g-difference uplift of A; Toda tau-system of 4d SU(2) SYM
bilinear relations for tau functions of g-Painleve’.



(0,1) (1,1) : €
(-1,0) (1,0) » \ W((AQ + Al)(l))
\ . .
1-1 0-1 L &

Four commuting discrete flows:

T1 = SpSaTr, T2 = S1S0Tr, T3 = S981T 111515 =1
and Ty = o> = (4, 6) uopapisia(4,5,6,1,2,3)
from so = (3,6)ueps3 s1 = (1,4)papr, s = (2,5)p5p2 m=(1,2,3,4,5,6)
ro = (4, 0)p2papis iz r1 = (3,5)u1pspis iy o= (1,4)(2,3)(5,6)

generators of the extended Weyl group W ((A4s + A;)M)



5d SU(2) with two flavours

It is known that the massive deformation of ££3 5d SCFT by the Yang-Mills
action produces 5d SU(2) with two flavours. All the first three flows give rise

to the bilinear equations

- 1/4,1/2— _ _ _ 1/4,1/2  —
T3T2=q/t/7576+7372, 7'67'5:7'57-6‘|'Q/t/7'37'27

_ 1/2 _ 1/2
T3 = —Qut'/ 21576 4 To3, 7516 = —Qat'/*rom3 + 7576,

whose tau functions are 5d partition functions for that gauge
theory:

T = 232@1, Q242 tq"?), 1= Z8(Q1q"?, Qa, tq'/?)
T2 = ZOD(qul/27 Q27tq_1/2)7 T3 = Z(?(qu_l/Za Q27tq1/2)7
5 = ZSQ(QM Q2q1/27tq_1/2)7 T6 — ZBQ(Ql? Q2q_1/27tq1/2)'

Zy = ZSnZ(Q17Q27uqn7t)a 232 = ZSTLZ(QLQmUQnH/Z,t) = 7§ (uq'’?)

X, >

full Nekrasov partition function - topological string on local dP3 at large volume



/.

y

An AD surprise

The fourth flow give rise to new bilinear relations !

Tor2 — ¢/ g = —t1/? (Q2 +q'/? Q1) 276,

QY . ¢V 75y + QoY e = t1/2 (Q2 + ¢V/2Q1) TuTe, , Ti= 7i(q"2Q1, ¢ 2 Qo).

Tame — Tams = tY2 (Q2 + ¢/2Q1) Toms.

O =q0_ _ @
Q- =qQ Q__Q2



4d sub-quivers and Argyres-Douglas theory

5d BPS quivers are obtained from 4d ones by adding two nodes, corresponding
to Kaluza-Klein modes on the circle and to 58d instanton-particle.

Conversely, one can recover 4d sub-quivers from the 5d one by sending to
zero/infinity two X-cluster variables consistently with the flow.

keeping other Casimirs finite.

For the new flow, the consistent choices are:

and bring to the 4d quiver of Ho  Argyres-Douglas theory.



A puzzle

Recallthat Hs  Argyres-Douglas theory is the IR SCF point of
4d SU(2) gauge theory with three flavours.

On the other hand, the toric diagram of FE3 SCFT

T 2
(0,1) (1,1)
) o) \)
5 >_<(4)

(-1-1

engineers 5d SU(2) gauge theory with two flavours.

So, what is going on ?



Sakai’s classification and rank one 5d SCFTs

Sakai’s classification of g-Painleve’ equations based on symmetry lattice
of eight-point blow-up of P! x P!

El: Es”

I I 1
I I 1
| I 1
b w h

Add: E{® — E’ — E{’ » DY — A

standard geometric engineering +*
to 4d with two flavours

reduction of F'3s SCFTto Hy Argyres-Douglas

different limit pointing to a Argyres-Douglas SCFT !



Matrix models for the magnetic phase

Conjectural proposal for non-perturbative completion of topological strings

Quantum mirror curve O = Y730 0) Gmn€™ TP Z,p] = ih

(5d quantum SW curve)

Spectral determinant =(k) = det (1 + m@_l)
=(k,h) — matrix model for topological string partition function
N>O
TS/ST conjecture

Problem: inverting quantum mirror curve is hard !



Matrix models for the magnetic phase

[Bonelli, Globlek, Kubo, Nosaka, A.T. ]

Proposal for local dPs which engineers 5d SU(2) Nr =4 gauge theory

VI dun NAM o
Z (N; My, Mo, M, 1, G2) = N'( / H 2mk AL 27rk
X ﬂ (R e P (2% — AL ip) Py (wa iy 26 %b)
n=1 Py (525 + 55+ — 3b) @, (%b + Matie %b)
: NﬁMe(iil+M1;fM2)V” cI)b (2y_7?b + %) (I)b (27/7?[) + zM22—£2C2)
n=1 ®y (% - 7’%1) Dy, (2’/7% — iM22;2C2>

2
N M — [y, N+M Un—V,1
y <Hm<m,281nh2]€ nen/ 28in h ST )

Hm 1 HN+M 2 cosh um%vn

Check: its spectral determinant satisfies the expected g-difference equation
in Sakai’s list



Summary

Surface defects strongly determine non-perturbative dynamics of gauge
theories and have many relations with integrability, random matrices and
representation theory. Main results:

- new recurrence relations for instanton counting on self-dual Omega
background for all simple groups from A,, to E

4d/2d correspondence and t t* equations.

new matrix models for the magnetic phase of a class of 4d and 5d theories.

connection between 5d BPS quivers, cluster algebrae and g-difference eq.

new viewpoint on Argyres-Douglas SCFT.



Outlook

Some natural lines of development:
- 5d uplift of tau-system for general gauge groups
(de-autonomization of relativistic Toda chain).

- matrix model for the magnetic phase beyond A,, series.
- spectrum of quantum integrable system from zeroes of the tau-functions.

- solutions of the new bilinear equations and Argyres-Douglas SCFTs.

- general Omega background and quantum cluster algebrae.



Outlook

Some natural lines of development:

- bd uplift of tau-system for general gauge groups
(de-autonomization of relativistic Toda chain).

- matrix model for the magnetic phase beyond A,, series.
- spectrum of quantum integrable system from zeroes of the tau-functions.

- solutions of the new bilinear equations and Argyres-Douglas SCFTs.

- general Omega background and quantum cluster algebrae.

THANKS!



