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Geometric Engineering of QFTs

Associates to a D-dimensional – special holonomy, non-compact, usually
singular – space X a theory in 10−D or 11−D dimensions T (X).

Geometric engineering is the dictionary between geometric (topological)
data of X and the physics of the QFT T (X).

Most of this week can be thought of us studying the particle like
spectrum (BPS states) of such a theory.

In this talk: consider extended operators, i.e. defects.



5d SCFTs and Canonical Singularities

The connection to CY3:

M-theory on canonical Calabi-Yau 3-fold singularities
realizes 5d SCFTs.

• We decouple gravity, so the CY3 is non-compact (relative).

• Canonical singularities X admit a resolution X̃ such that
KX̃ = π∗KX +

∑
aiSi, ai ≥ 0.

• ai = 0 results in a smooth Calabi-Yau resolution.
Some non-zero ai: remnant terminal singularities.

M-theory provides a dictionary between the geometry of these canonical
singularities and the physics of 5d SCFTs.



1. Generalized Symmetries

Modern perspective on global symmetries in QFT:
topological operators generate symmetries.

• Codim 1 topological operators generate a 0-form symmetry
(Noether).

E.g.: for a continuous symmetry with a conserved current d ∗ j(x) = 0

and a codim 1 surface Sd−1, then the Noether charge is

Ωλ[Sd−1] = eiλ
∫
Sd−1 ∗j(x)

• Topological operator, measuring the charge of a local – 0-dimensional
– operator inside Sd−1

• Forms a group, which is the flavor symmetry group (0-form
symmetry)



Generalized, Categorical Symmetries

1. Higher-form symmetries Γ(p):
charged objects are p-dimensional defects, charge measured by
topological operators Dg

d−(p+1).

2. Higher-group symmetries:
p-form symmetries might not form product groups

3. Non-invertible symmetries:
relax group law⇒ fusion algebra

4. Higher-categorical symmetries:
topological operators of dimensions 0, · · · , d− 1, with non-invertible
fusion



1.1 Physics: Higher-Form Symmetries Γ(p)

Γ(p) is the p-form symmetry group. Its Pontryagin dual group

Γ̂(p) = Hom(Γ(p),U(1))

is defined as
Γ̂(p) := Lp/ ∼

Lp are the defects of dim p, with equivalence relation

L(1)
p ∼ L(2)

p ⇔ ∃Lp−1 at the junction between L(1)
p and L(2)

p



Line Operators and 1-form symmetry

Example:
p = 1: line operators, with junctions formed by local operators.

L
(1)
1 L

(2)
1

O
(12)
0 6= 0

L
(1)
1 ∼ L

(2)
1 ⇐⇒ there exists

E.g. in a pure G (simply-connected) Yang Mills theory, we have
fundamental Wilson lines. The only local operators are in the adjoint, so

Γ(1) = ZG = Center(G)



Def: Higher-Form Symmetries Γ(p)

A Γ(p)-form symmetry is generated by topological operators of
codimension p+ 1, Dg

d−(p+1), g ∈ Γ(p) satisfying an (abelian) group law

Dg
d−(p+1) ⊗D

h
d−(p+1) = Dgh

d−(p+1) , g, h ∈ Γ(p)

p-dim extended operators are charged under Γ(p)

REMd p
i

• Background field: Bp+1 ∈ Hp+1(M,Γ(p)) (flat)

• Gauging: summing over all such B.



Screening of Higher-Form Symmetries

Adding matter: lines can end on local operators and (part of the) 1-form
symmetry gets screened



1.2 Higher-Group Symmetries

2-group symmetries:
in this screening picture, the local operators could be charged under a
0-form (flavor) symmetry F (0) = F/C (F simply connected)

Refine the equivalence relation on the set of genuine line operators and
flavor Wilson lines (L,R):

L
(1)
1

L
(2)
1

O
(12)
2

(L
(1)
1 ,R

(1)
1 ) ∼ (L

(2)
1 ,R

(2)
1 ) ⇐⇒ ∃

R
(1)
1 ⊗ (R

(2)
1 )∗

Define: Ê = {(L,R)}/ ∼



Ê = {(L,R)}/ ∼

• Ê � Γ̂(1) by forgetting the flavor Wilson lines.

• Ĉ ↪→ Ê by taking (id,R).
Ĉ which is the ”center-symmetry” of the flavor symmetry F .

0→ Γ(1) → E → C → 0

If this sequence does not split then there is a non-trivial Bockstein
homomorphism

Bock : H2(−,C)→ H3(−,Γ(1))

and there is a 2-group is
δB2 = Bock(w2)

with w2 ∈ H2(BF ,C) is the obstruction to lifting F to F bundles.



Def: 2-Group Symmetry

F , Γ(1) satisfy group law and have background fields
Bp+1 ∈ Hp+1(M,Γ(p)).

They form a 2-group given by the data(
Γ(1),F ,Θ

)
,

if there is a non-trivial Postnikov class

Θ ∈ H3(BF ,Γ(1))

which specifies the relationship between the background fields

δB2 = B∗1Θ , B1 : M → BF

The 1-form symmetry background is not closed, and depends on the
0-form symmetry background.



2-Groups from Bockstein Homomorphisms

δB2 = B∗1Θ , B1 : M → BF

Postnikov class can be constructed in gauge theories as follows:

Θ = Bock(w2) ,

where
Bock : H2(BF ,C)→ H3(BF ,Γ(1))

associated to
0→ Γ(1) → E → C → 0

where F = F/C and w2 is the obstruction to lifting F-bundles to
F -bundles.

Example:
F = SU(2), F = SO(3), C = Z2, E = Z4, Γ(1) = Z2.



Ubiquity of Higher-Group Symmetries

Higher-groups are at least as ubiquituous as (non-anomalous) Γ(p) with
mixed anomalies. Gauging δB2 = Bock(w2), with a non-anomalous
1-form symmetry yields a mixed anomaly∫

Bd−2 ∪ Bock(w2)

between the Γ(d−3) and 0-form symmetry. Other mixed anomalies
yielding 2-groups ∫

A1 ∪B2 ∪C2

which are dual to 2-groups after gauging C2 or B2.

[Sharpe][Tachikawa][Benini, Cordova, Hsin][Cordova, Dumitrescu, Intriligator]

6d SCFT (full classification) [Apruzzi, Bhardwaj, Gould, SSN] 5d SCFTs [Apruzzi,

Bhardwaj, Oh, SSN][Del Zotto, Heckman, Meynet, Moscrop, Zhang],
4d class S [Bhardwaj] 3d/4d: [Hsin, Lam][Lee, Ohmori, Tachikawa][Apruzzi,

Bhardwaj, Gould, SSN].



1.3 Non-Invertible and Higher-categorical Symmetries

So far we assumed that the topological operators obey a group like fusion:

Dg
d−(p+1) ⊗D

h
d−(p+1) = Dgh

d−(p+1) , g, h ∈ Γ(p)

Well-known that e.g. in d = 2,3 topological lines can obey non-trivial
fusion algebra relations:

Dα
1 ⊗D

β
1 =

⊕
γ

Nα,β
γ Dγ

1

with N ∈ Z>0.

In d = 2,3 these form structures like modular tensor categories (lines can
fuse and braid).

Until last year there were no examples known of higher dimensional
d ≥ 4 such non-invertible symmetries: [Heidenreich, McNamara, Montero,Reece,

Rudelius, Valenzuela] [Kaidi, Ohmori, Zheng][Choi,Cordova, Hsin, Lam, Shao][Bhardwaj,

Bottini, SSN, Tiwari]



Non-Invertible Higher-Categorical Symmetries

No string theoretic realization yet, but there are interesting
higher-categorical structures, which mathematicians should really study.
We will define a symmetry higher-category in terms of the topological
operators.

Simple example: 4d Spin(4N) Yang-Mills [Bhardwaj, Bottini, SSN, Tiwari – today]

Γ(1) = ZS2 ×ZC2 .

The diagonal ZV2 . The topological operators generating Γ(1) are

Cobjects
Spin(4N) =

{
D

(id)
2 ,D

(S)
2 ,D

(C)
2 ,D

(V )
2

}
There is on each topological surface defect D(g)

2 an endomorphism

C1-endo
Spin(4N) =

{
D

(id)
1 ,D

(S)
1 ,D

(C)
1 ,D

(V )
1

}
All these satisfy the group law

D
(g)
i ⊗D

(h)
i = D

(gh)
i



There is an outer automorphism

Γ(0) = Z2

which acts
Γ(0) : D

(S)
i ↔ D

(C)
i

Gauging Γ(0) results in the Pin+(4N) gauge theory.

The invariant topological operators, i.e. objects

Cobjects
Pin+(4N)

=
{
D

(id)
2 ,D

(SC)
2 ,D

(V )
2

}
, D

(SC)
2 =

(
D

(S)
2 ⊕D(C)

2

)
CSpin(4N)

Trivial fusion of invariant objects:

D
(id)
2 ⊗D(V )

2 = D
(V )
2 , D

(V )
2 ⊗D(V )

2 = D
(id)
2

But the non-invertible fusion of objects:

D
(SC)
2 ⊗D(SC)

2 = D
(id)
2 ⊕D(V )

2



1-morphisms are the invariant ones but also the dual to the 0-form
symmetry: 2-form symmetry, generated by a topological line

Γ(0) = Z2 gauged ⇒ Γ(2) = Z2 : generated by D(−)
1

Similarly: 1-morphism on the invariant D(V )
2 , in addition to D(V )

1 : D(V−)
1 .

The morphisms of the new category are:

C1-endo
Pin+(4N) =

{
D

(id)
1 ,D

(−)
1 ,D

(SC)
1 ,D

(V )
1 ,D

(V−)
1

}
with the non-invertible fusion

D
(SC)
1 ⊗D(SC)

1 = D
(id)
1 ⊕D(−)

1 ⊕D(V )
1 ⊕D(V−)

1

There are also 2-morphisms, which are point-like local operators on the
topological defects.

⇒ Generically the symmetries of 4d QFTs form 2-categories, with
non-invertible fusion algebras



Connections to Geometry

Physically there are many motivations for studying these generalized
symmetries (strong coupling, anomalies, vacuum structure etc.). In this
mixed audience, the more interesting question is:

Given a geometric engineering framework: T (X).

How do we determine the generalized global symmetries
(and anomalies) of this QFT?

To be precise: lets focus on M-theory on canonical Calabi-Yau three-fold
singularities, constructing 5d N = 1 SCFTs.



5d N = 1 SCFTs – from Geometry

A 5d superconformal field theory is

T 5d(X) = 11d M-theory on X×R1,4 ,

where X = canonical three-fold singularity (isolated or not), i.e. it admits a
resolutions

π : X̃ −→ X

such that the canonical class is

KX̃ = π∗KX +
∑
i

aiSi , ai ≥ 0

We will identify:

Canonical singularity←→ SCFT

Kähler cone←→ Coulomb Branch: vev of vector-multiplet scalars

Complex deformations←→ Higgs Branch: vev of hyper-multiplet scalars



Coulomb Branch/Kähler Cone

X admits resolutions, crepant (ai = 0) or with remnant terminal
singularities (ai > 0),

π : X̃ −→ X

• Gauge Symmetry: M-theory C3-form field expanded along
(1,1)-forms PD to (compact) exceptional divisors

Sa , a = 1, · · · , r = b4(X̃) = rank of the SCFT

Gauge coupling g−2a = vol(S)

• Global (flavor) symmetry:
non-compact divisors Dα, α = 1 · · · , f = flavor rank,

b2(X̃) = r+ f .

• Effective description: U(1)r theory with matter and CS couplings.
[Intriligator, Morrison, Seiberg]



• Along subloci, non-abelian gauge symmetry:
M2-branes on rational curves:

1. normal bundle degree (−2,0): W-bosons

2. normal bundle degree (−1,−1): matter hypermultiplets

Non-abelian gauge theory description if there exists a ruling of {Sa}

P1 ↪→ Sa→ Σa

• SCFT:
1

g2a
∼ Volume(Sa)→ 0



Flavors of 5d

Amazing progress in the past few years has been the systematic
derivation of global forms of F . A peculiar and non-trivial feature of 5d
SCFTs: F of the SCFT strictly larger than the IR Coulomb branch flavor
symmetry.

Example: Rank 1 [Seiberg] theories: SU(2) +NFF, NF = 0, · · · ,7

• IR flavor symmetry: SO(2NF ) and U(1)T

jT =
1

8π2
? TrF ∧ F

• At g→∞:
f×U(1)T ↪→ fSCFT = ENF+1

• global flavor symmetry group: F simply connected Lie group
associated to fSCFT

F = F/C

[Series of papers: Apruzzi, Lawrie, Lin, Yi-Nan Wang, Eckhard, SSN]



Flop-Invariants: Combined Fiber Diagrams

[Series of papers with: Apruzzi, Lawrie, Lin, Yi-Nan Wang, Eckhard, SSN]

FSCFT: Encoded in the Combined Fiber Diagram (CFD):

• Vertices are curves Ci = Di · (
∑
α Sα)

• (−2) (marked) vertices: (−2,0) curves

• (−1) (unmarked) vertices: (−1,−1) curves

• Intersections of curves: edges

The subgraph of marked vertices is the Dynkin diagram of FSCFT. This is
a flop-invariant (i.e. same accross the (not extended) CB).

Applicable to the most general 5d SCFT:
compactify M-theory on elliptically fibered CY3 (6d SCFTs on S1, i.e. 5d
KK-theories). Mass deforming (non-flat resolutions of the elliptic model)
results in all known 5d SCFTs.



Relative Homology Cycles

As we are considering non-compact CY3 singularities, it is natural to ask
what is the physics of relative cycles

Hq(X, ∂X)

These non-compact q-cycles can be wrapped by M2-branes or M5-branes
and give rise to infinitely massive excitations⇒ Defects

Example:
H2(X, ∂X) wrapped by M2s: world-lines of infinitely massively particles –
line operators.

On the set of lines we want to define an equivalence relation:
physics-terms, line operators can be screened by local operators. The
Pontryagin dual of the 1-form symmetry is the lines modulo screening by
local operators:

Γ̂(1) =L/∼

L1 ∼ L2⇔ ∃ local operator O1,2 at junction between L1 and L2 .



Relative Homology cycles to Higher-form Symmetry

Translated into the geometry:
[Morrison, SSN, Willett][Albertini, del Zotto, Garcia Etxebarria, Hosseini]

# M2-branes on compact 2-cycles: H2(X)

mass m <∞ particles in 5d

# M2-brane on non-compact 2-cycle: H2(X, ∂X)

infinite mass particle, worldline defines line operator.

Equivalence relation is then

Γ̂(1) = H2(X, ∂X)/H2(X)

For most purposes in this talk the Γ̂ = Γ (abelian) will be dropped.

For q-form symmetry: e = M2, m = M5-branes wrapped

Γ(q)
e = h(k=3−q)

Γ(q)
m = h(k=6−q)

h(k) = (Hk(X, ∂X)/Hk(X))



Γ(1) from Intersection Theory and Link

Γ(1) = H2(X, ∂X)/H2(X) = Zb4/M4,2Zb2

M4,2 is the intersection matrix between compact curves C and compact
divisors S:

M4,2 = (S ·C)r×(r+f)

Les relative homo:

· · ·H2(X)
f2→ H2(X, ∂X)

g2→ H1(∂X)
h1→ H1(X) · · ·

⇒ Γ = im(g2) = ker(h1) ⊆ H1(∂X)

=‘1-cycles of boundary that become trivial in the bulk’



1-Form Symmetry: Examples

1. Link ∂X particularly simple for X toric: Sasaki-Einstein manifolds.
E.g.

∂X = Y p,q , H1(∂X) = Zgcd(p,q) .

UV-fixed points with IR description SU(p)q .

2. Toric CY3:
SNF({vi}) = diag(n1, n2, n3) then Γ(1) = ⊕iZni

3. Non-Lagrangian theories, which are numerous [Eckhard, SSN, Wang]

E.g. rank 1 P2-Seiberg theory:

P2 : Γ(1)
e = Z3 .

4. Isolated hypersurface singularities [Clossed, SSN, Wang] have 3-form
symmetries. In IIB these correspond to 1-form symmetries in 4d
N = 2 theories.



2-group Symmetries

To compute the higher-form symmetries we need to determine the 0-form
symmetry group, as well as Γ(1).

There are two approaches we have considered for the 2-groups:

1. E from the spectrum of local operators, i.e. curves in X, including
flavor group F
[Apruzzi, Bhardwaj, Oh, SSN]

2. From the boundary ∂X of the space
[del Zotto, Garcia Etxebarria, SSN]



Two-groups from Intersections

[Apruzzi, Bhardwaj, Oh, SSN][Apruzzi, Bhardwaj, Gould, SSN]

The following applies in all geometric engineering frameworks where the
full flavor symmetry that participates in the 2-group is manifest.

Let

M =

 M4,2

MF
4,2

 ,

the intersections of compact and non-compact divisors with curves.

M4,2 = (S ·C) , MF
4,2 = (D ·C) .

Then
Ê = Zr+f/MZr+f .



SU(2)0

SU(2)0 in 5d is realized torically with one compact divisor S1 = F2

SU(2)0 :

D

S1
f

e

On the Coulomb branch (of the SCFT, finite volume for f , zero volume
for e) we find the charges

Curve in S1 S1 D1 ZD2
e 0 2 0 (mod 2)

f 2 −1 1 (mod 2)

The simply-connected form of the flavor group is F = SU(2).



SU(2)0 5d SCFT

From the charges of the e and f curves we can compute:

SNF

0 2

2 −1

 =

4 0

0 1


So that E = Z4 generated by

(
1
4 ,1
)
∈ U(1)×Z2. Projecting to the flavor

center: C =< 1 ∈ Z2 >= Z2, with quotient Γ(1) = 〈(1/2,0)〉 = Z2. These fit
into the extension sequence:

0→ Z(1)
2 → Z4→ Z2→ 0 .

The flavor symmetry group is from these considerations

F =
F

C
=
SU(2)

Z2
= SO(3) .

Consistent with predictions from SCI [Kim, Kim, Lee], and anomalies
[Benetti-Genolini, Tizzano].



0-Form Backgrounds

0→ Z(1)
2 → Z4→ Z2→ 0 .

Consider a background for the 0-form symmetry: since the flavor is
SO(3), let

w2 ∈ H2(M,Z2) : SO(3)→ SU(2)

be the obstruction to lifting SO(3) bundles to SU(2). In the presence of w2

the gauge bundles are

G

E = Z4
bundles with obstruction to lifting to

G

Z2

Then w2 ∈ H2(M,Z2) measure this obstruction.



2-group for the SU(2)0

Again we are on the CB of the SCFT:

0→ Z(1)
2 → Z4→ Z2→ 0 .

Then
w2 ∈ H2(BSO(3),Z2)

is the second Stiefel-Whitney class, and

w3 = δB2 = Bock(w2)

is non-trivial, and the theory has a 2-group.



Two-groups from the Link

[del Zotto, Garcia Etxebarria, SSN]

Assume also that X manifestly realizes the non-abelian flavor symmetry.
Let L5 = ∂X. Let S0 = singular locus modeling the flavor symmetry
intersected with L5.

On the boundary the relation on line operators ∼ has the following
depiction:

let γi = ∂Ci, Ci ∈ H2(X, ∂X). If there is a 2-chain C12 with ∂C12 = γ1 ∪ γ2
then M2s on C12 give rise to O12:



E from Link Geometry

The relation ∼′, which does not include line-changing operators charged
under C:

Consider L5 −S (neighborhood of S0). The chains that pass through S
acquire an extra boundary and do not imply that γ1 = γ2.

The homology relations now come from chains, that are in L5 −S , which
are precisely those uncharged under C and

Ê = H1(L5 −S).



E from Link Geometry

To see that these are the line operators uncharged under C consider a line
that is trivial in Γ̂(1): γ is trivial in H1(L5).

This is charged under the flavor center symmetry C, if γ ∈ TorH1(∂S) is
nontrivial.

Overall we find the geometrized version of the extension sequence:

0→ TorH1(∂S)→ H1(L5 −S)→ H1(L5)→ 0



Toric CY3

For toric models this can be readily applied to compute the 2-group
symmetries.

The non-compact divisors (and the singularity S) are encoded in vertices
along the edges (minus corners).

The homology of the link can be computed by noting that it is glued
together by Lens spaces [Garcia Etxebarria, Heidenreich]

Hn(L5) = Hn(B3L) for n ≤ 2 ,

where B3L is a 3-chain of lens spaces

B3L ' Ln1
Y Ln2

Y . . . Y Lnν

where Y denotes that the lens spaces are joined along their torsion cycle.



Toric CY3

The homology is then

Γ(1) ∼= H1(B3L) = Zgcd(n1,...,nν) ,

For each external vertex vi, i ∈ {1, . . . , ν}, construct the triangle Ti:
{vi−1,vi,vi+1}. Then

ni = 2Area(Ti) .

For Ê we excise the singularity, i.e. the vertices associated to the flavor
symmetry and compute likewise

Ê = H1(B3L−S)



SU(2)0

1 2 3

4

Γ(1) from triangles: Ti = ∆(i− 1, i, i+ 1):

S3/Z2 S3/Z2

S3/Z4

⇒ Γ(1) = Zgcd(2,2,4) = Z2.



To determine Ê , excise the vertex 2:

S3/Z4

Then
Ê = H1(L−S) = Z4

Therefore C = Z2 and we recover the extension sequence from the
intersection computation.



SU(2n)2n

SU(2n)2n has Γ(1) = Z2n and F = SO(3), and by intersection
computations in [Apruzzi, Bhardwaj, Oh, SSN] a 2-group:

S3/Z2N

(0,N )
S3/ZNS3/ZN

S3/Z2N

(0,N )

0→ Z2n → Z4n → Z2→ 0

does not split (for odd N it does and there is no 2-group).



Non-Lagrangian theories with 2-Groups

Generalizing the P2 rank 1 Seiberg theory, which has no non-abelian
gauge theory description on the CB, there is a series of non-Lagrangian
theories [Eckhard, SSN, Wang]

B
(2)
N : ((N,0,1), (0,N − 1− k,1)), k = 0, · · · ,N − 2 ,

with
Γ(1) = ZN

and flavor symmetry group

F = SU(N − 2)/ZN−2



S3/Z8

S3/Z4

S3/Z4

(0,0)
S3/Z8

(0,0)

B
(2)
4 : Γ(1) = Zgcd(4,4,8) = Z4

B
(2)
N : Γ(1) = Zgcd(N,N,(N−2)N) = ZN .

Excising the flavor vertices associated to F we find

E = ZN(N−2) ,

and thus there is a non-trivial extension only for N = 2n.



Generalizations to Generalized Torics

All toric CY3 are dual to so-called 5-brane-webs: (in a loose sense, this is
the dual tropical geometry)

1 2 3

4

Given a toric polygon, we compute the charges of (p, q) 5-branes:

vi − vi+1 = (a, b,0) ⇔ (p, q) = (b,−a)

D5 horizontal: (1,0)), NS5 vertical: (0,1).



This map from toric geometry to W = {(pi, qi)} derives via string duality.
As in the geometry, parallel 5-branes indicate flavor symmetries, or
asymptotic C2/Zn-singularities.

The 1-form symmetry is simply computed from [Bhardwaj, SSN]

Γ(1) = Zn1
⊕Zn2

, diag(n1, n2) = SNF(W ) .

Denoting the multiplicity of a (p, q) brane charges in a given web by
m(p,q) the geometric derivation of E can be rephrased as

E = Zn1
⊕Zn2

, diag(n1, n2) = SNF(W red
(p,q)) .

where

W red
(p,q) = Matrix obtained by removing (p, q)m(p,q) from W .

So far this is an equivalent analysis to the toric one. However brane-webs
go beyond toric geometry.



Generalized Toric Polygons

Parallel 5-branes can end on a single 7-brane – in the geometry this
should correpond to a kind of deformation. Such brane-webs are formally
dual to generalized toric polygons [Benini, Benvenuti, Tachikawa][Cabrera,

Hanany, Yagi][van Beest, Bourget, Eckhard, SSN]2: introduce ”white” (empty) edge
vertices, which are dual to 5-branes ending on the same 7-brane. E.g.

This describes SU(4)2 + 1AS, which has Γ(1) = Z2.



Applying the web-based analysis we find

WGTP =



2 2

−3 1

−1 −1

1 −1

1 −1


, W =



1 1

1 1

−3 1

−1 −1

1 −1

1 −1


and

SNF(W red
(1,1)) = diag(1,4)

consistent with this theory SU(4)2 + 1AS having a 2-group symmetry
(shown in the geometric intersection analysis in [ABOS]).

Clearly: it would be very interesting to understand the dual generalized
toric geometry.



Comments

Generalizations to any (singular) geometries in M-theory are
straight-forward (in fact our analysis is agnostic to the dimension of the
compactification space). The only limitation at this point in the link
approach is that the flavor symmetry needs to be manifest in the
geometric singularity. This is not the case in the intersection theory
though.

E.g. for G2 and F-theory elliptic fibrations, see recent works by [Tian,

Wang][del Zotto, Heckman, Meynet, Moscrop, Zhang] for orbifolds, and for
F-theory elliptic Calabi-Yaus [Morrison, Hubner, SSN, Wang][Cvetic, Heckman,

Hubner, Torres].



View from the Edge

One message to take home is: much of the symmetries (and other
properties like anomalies) are encoded in the boundary of the
compactification space. This philosophy ties in with the Symmetry TFT
[Freed] and in string theory [Apruzzi, Bonetti, Garcia Etxebarria, Hosseini, SSN],
which encodes essentially the anomaly∗ theory of the QFT in terms of
background fields. In string theory this can be derived from first
principles in the supergravity reduced on the link L5. E.g. we found ’t
Hooft anomalies for the 5d SCFTs using this approach.

5d: reducing the CS- and C3X
8 coupling in M-theory on the link:

E.g. for SU(p)q where the 5d link geometry is Y p,q :

A(B3)
6d =

qp(p− 1)(p− 2)

6 gcd(p, q)
B3

2

A(FB2)
6d =

p(p− 1)

2 gcd(p, q)2
FIB

2
2



View from the Edge

Note, the SymTFT should also encode the 2-group more explicitly in
terms of its dual mixed anomaly, obtained after gauging the 1-form
symmetry (if this has no B3 anomaly)

A6d = B3Bock(w2)

where B3 is the background for the dual 2-form symmetry.



Questions for Math

1. Develop the theory of higher-categorical structures that are relevant
for QFTs

2. Interconnection between the symmetry higher-category and
geometry (mostly topological data, but these defect operators, like
Wilson lines can also be BPS)

3. Classification problem of 5d SCFTs: explicit form of Mori program for
canonical non-compact CY3



Outlook: Physics

1. Geometric realization of non-invertible symmetries: probably using
mixed anomalies; see [Kaidi, Ohmori, Zhen] and 4d, 5d and 6d
implementations in field theory in [Bhardwaj, Bottini, SSN, Tiwari].

2. In 4d 1-form symmetries have a clear physical imprint, as providing a
diagnostic for confinement.

What is the role of higher-form symmetries in other dimensions, for
SQFTs, SCFTs?

3. Generally: what physical implications do 2-group symmetries have
in QFTs?

4. Determine the anomaly theories from a d+ 1 bulk for discrete
generalized symmetries from first principles in string/M-theory. See
Requires differential cohomology description of supergravity
reductions:
Symmetry TFT [Apruzzi, Bonetti, Garcia Etxebarria, Hosseini, SSN]


