BPS crystals

BPS algebras

Representations

Summary 000000000

From BPS crystals to BPS algebras: constructions, representations, and applications

Wei Li

Institute of Theoretical Physics, Chinese Academy of Sciences

Quivers, CY₃ and DT invariants April 12 2022

BPS crystals

BPS algebras

Representations

Summary 000000000

Setup and main question

Type IIA string on a toric $CY_3 X$

• $\frac{1}{2}$ -BPS sector:

 $\rm D6/D4/D2/D0$ branes wrapping holomorphic 6/4/2/0 cycles of X

• Consider rank-1 DT theory with

 $\#(D6, D4, D2, D0) = (1, 0, m_i, n)$

$$\sum_{\mathcal{H}_{\rm BPS}} N(m_i, n) (Q_i)^{m_i} q^n = Z_{\rm DT}^X(Q_i, q)$$

Question: Any algebraic structure underlying \mathcal{H}_{BPS} ?

BPS crystals

BPS algebras

Representations

Summary 000000000

Plan and reference

 BPS states → BPS crystals → BPS algebras (NCDT) (vacuum rep) (Quiver Yangians)

[2003.08909] with Masahito Yamazaki

 Shifted quiver Yangians and non-vacuum representations (other chambers, open BPS)

[2106.01230] with Dmitrii Galakhov and Masahito Yamazaki

Trig and elliptic generalizations

[2108.10286] with Dmitrii Galakhov and Masahito Yamazaki

BPS crystals

BPS algebras

Representations

Summary 000000000

Definition of BPS algebra

Definition of BPS algebra

Harvey-Moore '96 Kontsevich-Soibelman '10

- elements: BPS states $|K_i\rangle \in \mathcal{H}_{\mathrm{BPS}}$
- multiplication:

 $\begin{array}{l} \mathcal{H}_{\rm BPS}\otimes\mathcal{H}_{\rm BPS}\rightarrow\mathcal{H}_{\rm BPS}\\ |K_1\rangle\times|K_2\rangle\ \rightarrow\ |K_3\rangle\end{array}$

Today: consider

- BPS algebra: $\mathcal{H}_{\rm BPS} \to \mathcal{H}_{\rm BPS}$
- $\mathcal{H}_{\mathrm{BPS}}$: irrep of BPS algebra

BPS crystals

BPS algebras

Representations

Summary 000000000

Deriving BPS algebra

BPS algebra
$$\cdot \mathcal{H}_{BPS} \to \mathcal{H}_{BPS}$$

 $\alpha |K_1\rangle = |K_2\rangle$

generators: consider "primative BPS states" Δ

- $\begin{cases} \text{raising } e: \quad |\mathbf{K}\rangle \to |\mathbf{K} + \Delta\rangle \\ \text{Cartan } \psi: \quad |\mathbf{K}\rangle \to |\mathbf{K}\rangle \\ \text{lowering } f: \quad |\mathbf{K}\rangle \to |\mathbf{K} + \Delta\rangle \end{cases}$ $\mathcal{H}_{\text{BPS}}: \infty \text{dim} \implies (e_i, \psi_i, f_i) \infty \text{dim}$
- Q1: What is Δ ? (How to determine e_i, ψ_i, f_i)?
 - Condition: free algebra $\langle e_i, \psi_i, f_i \rangle$: $\mathcal{H}_{BPS} \rightarrow \mathcal{H}_{BPS}$
- Q2: What is action of (e_i, ψ_i, f_i) on $|\mathbf{K}\rangle \in \mathcal{H}_{\mathrm{BPS}}$?
- Q3: Find all $F(e_i, \psi_i, f_i)$ s.t. $F(e_i, \psi_i, f_i) | \mathbf{K} \rangle = 0$, $\forall | \mathbf{K} \rangle \in \mathcal{H}_{BPS}$

BPS algebra =
$$\frac{\langle e_i, \psi_i, f_i \rangle}{\{F(e_i, \psi_i, f_i) = 0\}}$$

BPS crystals

BPS algebras

Representations

Summary 000000000

Deriving BPS algebra

• Determine Δ (~ (e_i, ψ_i, f_i))

- 2 Fix action of (e_i, ψ_i, f_i) on $|\mathbf{K}\rangle \in \mathcal{H}_{BPS}$
- Find $\{F(e_i, \psi_i, f_i) | F(e_i, \psi_i, f_i) | \mathbf{K} \rangle = 0\}$

BPS algebra =
$$\frac{\langle e_i, \psi_i, f_i \rangle}{\{F(e_i, \psi_i, f_i) = 0\}}$$

BPS crystals

BPS algebras

Representations

Summary 000000000

Deriving BPS algebra

• Determine
$$\Delta$$
 (~ (e_i, ψ_i, f_i)) |K \rangle : BPS crystal Δ : atoms in BPS crystal

2 Fix action of
$$(e_i, \psi_i, f_i)$$
 on $|\mathrm{K}
angle \in \mathcal{H}_{\mathrm{BPS}}$

• Find $\{F(e_i, \psi_i, f_i) | F(e_i, \psi_i, f_i) | \mathbf{K} \rangle = 0\}$

BPS algebra =
$$\frac{\langle e_i, \psi_i, f_i \rangle}{\{F(e_i, \psi_i, f_i) = 0\}}$$

BPS crystals

BPS algebras

Representations

Summary 000000000

BPS quiver Yangians from colored crystals

IIA string in generic toric CY_3 X

•
$$\frac{1}{2}$$
-BPS sector: $\mathcal{N} = 4$ quiver QM (Q, W)
 \Downarrow define

act $\uparrow \Downarrow$ bootstrap

 $\textcircled{O} \ \mathsf{BPS} \ \mathsf{algebra} = \mathsf{quiver} \ \mathsf{Yangian} \ \mathsf{Y}(Q,W)$

BPS crystals

BPS algebras

Representations

Summary 000000000

BPS quiver Yangians from colored crystals

IIA string in generic toric $CY_3 X$

3 BPS algebra = quiver Yangian $Y(Q, W) \leftarrow Output$

BPS crystals

BPS algebras

Representations

Summary 000000000

BPS quiver Yangians from colored crystals

IIA string in generic toric $CY_3 X$

3 BPS algebra = quiver Yangian $Y(Q, W) \leftarrow Output$

Advantages

- Explicit algebraic relations
- 2 Applies to generic toric Calabi-Yau threefolds
- Searching and a searching a
- Easy to describe representations (by subcrystals or framings of Q).

BPS crystals

BPS algebras

Representations

Summary 000000000

General representations

So far: BPS crystals are molten crystals from canonical crystal

- **1** BPS states from NC chamber
- **2** vacuum representation of quiver Yangians

General representation of (shifted) quiver Yangian

- Molten crystals from subcrystals of full crystal
- **2** Can describe other chambers and open BPS counting.
- **③** Different framings of the same quiver

BPS crystals

BPS algebras

Representations

Summary 000000000

Outline

- 2 BPS crystals
- BPS algebras
- 4 Representations

5 Summary

BPS crystals

BPS algebras

Representations

Summary 000000000

Outline

- 2 BPS crystals
- 3 BPS algebras
- 4 Representations

5 Summary

 BPS algebras

Representations

Summary 000000000

Worldvolume theory on D-brane bound state

IIA string on a toric CY_3 X

• $\frac{1}{2}$ -BPS sector with D6/D2/D0 brane on holomorphic 6/2/0 cycles of X #(D6, D4, D2, D0) = (1, 0, m_i , n)

world volume theory: $\mathcal{N} = 4$ quiver quantum mechanics (Q, W)

(Brane tiling: Hanany-Vegh '05, Feng-He-Kennaway-Vafa '05) Quiver $Q = (Q_0, Q_1)$ $Q_0 = \{\text{vertex } a\}$ $a: U(N_a) \text{ gauge group}$ $Q_1 = \{\text{arrow } I: a \to b\}$ $\Phi_I: \text{ bi-fundamentals } (\overline{N_a}, N_b)$ superpotential $W = \sum \pm \prod \Phi_I$ (with each Φ_I appearing twice with \pm) $(Q, W) \iff \text{periodic } \tilde{Q} = (Q_0, Q_1, Q_2)$ with $W = \text{Tr}(\sum_{F \in Q_2^+} \prod_{I \in F} \Phi_I - \sum_{F \in Q_2^-} \prod_{I \in F} \Phi_I)$

 $\implies \text{ F-term constraints } \partial W \equiv \{ \frac{\partial}{\partial \Phi_I} W = 0 \mid I \in Q_1 \}$

$$\begin{split} W &= \mathrm{Tr}[-X_1 \: X_2 \: X_3 + X_1 \: X_3 \: X_2] \\ (\Longrightarrow \text{F-term constraints:} \\ & [X_1, X_2] = [X_2, X_3] = [X_3, X_1] = 0) \end{split}$$

 $C_m A_m = A_m C_{m+1}$

BPS crystals

BPS algebras

Representations

Summary 000000000

From BPS states to BPS crystals

• Framing (from D6 on CY₃)

$$\hat{Q} = \{\hat{Q}_0, \hat{Q}_1\}: \qquad \begin{cases} \hat{Q}_0 = Q_0 \cup \{\infty\} \\ \hat{Q}_1 = Q_1 \cup \{\infty \to a_{\mathfrak{f}}\} \end{cases} \quad (\text{set } a_{\mathfrak{f}} = 1)$$

• config. of $\{\Phi_I\}$ solving F-term condition:

representation of $\mathcal{A}(\hat{Q}, W) = \frac{\text{path algebra of } \hat{Q}}{F\text{-term constraint}}$

• Path algebra

 $\Phi_I \cdot \Phi_J \neq 0 \quad \longrightarrow \quad \operatorname{target}(I) = \operatorname{source}(J)$

• Path equivalent from F-term constraint

• $[a \rightarrow d \rightarrow e \rightarrow b] \sim [a \rightarrow c \rightarrow b]$ (two F-term equivalent fields)

- Superpotential $W \ni \operatorname{Tr}(\Phi_{ba}\Phi_{ad}\Phi_{de}\Phi_{eb} \Phi_{ba}\Phi_{ac}\Phi_{cb}).$
- F-term relation $\partial W/\partial \Phi_{ba} = \Phi_{ad} \Phi_{de} \Phi_{eb} \Phi_{ac} \Phi_{cb} = 0$

BPS crystals

BPS algebras

Representations

Summary 000000000

BPS states via path algebra of quiver

Szendröi '07, Mozgovoy-Reineke '07

- In terms of the factor algebra $\mathcal{A}(Q, W) = \frac{\text{path algebra of } Q}{F\text{-term constraint}}$
 - a D-brane bound state with charge $(1, 0, m_j, n)$ in toric CY₃ X \uparrow a $U(1)^2$ -inv. solution (of F/D-term) in quiver QM (Q, W) with rank $\{N_a\}$ \uparrow a $U(1)^2$ -inv. $\hat{\theta}$ -stable module of $\mathcal{A}(\hat{Q}, W)$ of dim $\{N_a\}$ \uparrow an ideal ($\subset \mathcal{A}(Q, W)|_{a_f}$) of $\mathcal{A}(Q, W)$ of dim $\{N_a\}$

BPS crystals

BPS algebras

Representations

Summary 000000000

BPS states via path algebra of quiver

Szendröi '07, Mozgovoy-Reineke '07, Ooguri-Yamazaki '08
In terms of the factor algebra A(Q, W) = path algebra of Q F-term constraint
a D-brane bound state with charge (1,0, m_j, n) in toric CY₃ X
a U(1)²-inv. solution (of F/D-term) in quiver QM (Q, W) with rank {N_a}
a U(1)²-inv. ô-stable module of A(Q, W) of dim {N_a}
a ideal (⊂ A(Q, W)|_{ai}) of A(Q, W) of dim {N_a}

• $\mathcal{A}(Q,W)|_{a_{\mathfrak{f}}} \Rightarrow \mathsf{full} \ \mathsf{3D} \ \mathsf{crystal} \ \mathcal{C}_{a_{\mathfrak{f}}}(Q,W) \ \mathsf{from uplift of periodic quiver} \ \tilde{Q}$ (starting from $a = a_{\mathfrak{f}}$)

• An ideal $(\subset \mathcal{A}(Q,W)|_{a_f})$ of $\mathcal{A}(Q,W) \Rightarrow$ a "molten crystal" of $\mathcal{C}_{a_f}(Q,W)$

BPS crystals

BPS algebras

Representations

Summary 000000000

BPS states via path algebra of quiver

Szendröi '07, Mozgovoy-Reineke '07, Ooguri-Yamazaki '08 • In terms of the factor algebra $\mathcal{A}(Q,W) = \frac{\text{path algebra of }Q}{F_{\text{-term constraint}}}$ a D-brane bound state with charge $(1, 0, m_i, n)$ in toric CY₃ X 1 a $U(1)^2$ -inv. solution (of F/D-term) in quiver QM (Q, W) with rank $\{N_a\}$ ↕ a $U(1)^2$ -inv. $\hat{\theta}$ -stable module of $\mathcal{A}(\hat{Q}, W)$ of dim $\{N_a\}$ ↕ an ideal $(\subset \mathcal{A}(Q, W)|_{a_{\mathfrak{f}}})$ of $\mathcal{A}(Q, W)$ of dim $\{N_a\}$ ↕

a 3D molten crystal K from $\mathcal{C}_{a_{\mathfrak{f}}}(Q,W)$ with $\{N_a \text{ number of } a\}$

• $\mathcal{A}(Q,W)|_{a_{\mathfrak{f}}} \Rightarrow \mathsf{full} \; \mathsf{3D} \; \mathsf{crystal} \; \mathcal{C}_{a_{\mathfrak{f}}}(Q,W) \; \mathsf{from uplift of periodic quiver} \; \tilde{Q}$ (starting from $a = a_{\mathfrak{f}}$)

• An ideal $(\subset \mathcal{A}(Q,W)|_{a_{\mathfrak{f}}})$ of $\mathcal{A}(Q,W) \Rightarrow$ a "molten crystal" of $\mathcal{C}_{a_{\mathfrak{f}}}(Q,W)$

BPS crystals

BPS algebras

Representations

Summary 000000000

BPS crystal from uplifting \tilde{Q} : $(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$

BPS crystals

BPS algebras

Representations

Summary 000000000

Origin of crystal

1 set framed vertex $a_{\rm f} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}

BPS crystals

BPS algebras

Representations

Summary 000000000

- **1** set framed vertex $a_{\rm f} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$

BPS crystals

BPS algebras

Representations

Summary 000000000

- **1** set framed vertex $a_{\rm f} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$

BPS crystals

BPS algebras

Representations

Summary 000000000

- **1** set framed vertex $a_{\rm f} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$

BPS crystals

BPS algebras

Representations

Summary 000000000

- **1** set framed vertex $a_{\rm f} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$

BPS crystals

BPS algebras

Representations

Summary 000000000

Path equivalence

- **1** set framed vertex $a_{\rm f} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$
- equivalence of paths

BPS crystals

BPS algebras

Representations

Summary 000000000

Depth of an atom

- **1** set framed vertex $a_{\mathfrak{f}} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$
- equivalence of paths
- $(\mathbf{9}$ depth = number of closed loop in the path

 $\mathrm{depth}=0$

depth = 0

BPS crystals

BPS algebras

Representations

Summary 000000000

Depth of an atom

- **1** set framed vertex $a_{\mathfrak{f}} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$
- equivalence of paths
- $(\mathbf{9}$ depth = number of closed loop in the path

 $\mathrm{depth}=0$

depth = 1

BPS crystals

BPS algebras

Representations

Summary 000000000

From periodic quiver to full crystal $C_{a_{f}}(Q, W)$: $(\mathbb{C}^{2}/\mathbb{Z}_{2}) \times \mathbb{C}$

 $\mathcal{A}(Q,W)|_{a_{\mathfrak{f}}} \Rightarrow \mathsf{full} \text{ 3D crystal } \mathcal{C}_{a_{\mathfrak{f}}}(Q,W)$

(Q, W)

periodic quiver

full crystal

Question: what are the ideals $(\subset \mathcal{A}(Q,W)|_{a_{\mathfrak{f}}})$ of $\mathcal{A}(Q,W)$?

Trivial

BPS crystals

BPS algebras

Representations

Summary 000000000

- Molten crystal K: finite subset removed from tip of full crystal $C_{a_f(Q,W)}$
- Grown from empty space subject to "melting rule"

BPS crystals

BPS algebras

Representations

Summary 000000000

Melting rule

- **1** set framed vertex $a_{\mathfrak{f}} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$
- equivalence of paths
- $(\mathbf{9}$ depth = number of closed loop in the path
- **5** Melting rule: if $a \notin K$, then $I \cdot a \notin K$

BPS crystals

BPS algebras

Representations

Summary 000000000

Melting rule

- **1** set framed vertex $a_{\mathfrak{f}} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$
- equivalence of paths
- $(\mathbf{9}$ depth = number of closed loop in the path
- **5** Melting rule: if $a \notin K$, then $I \cdot a \notin K$

BPS crystals

BPS algebras

Representations

Summary 000000000

Melting rule

- **1** set framed vertex $a_{\mathfrak{f}} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$
- equivalence of paths
- $(\mathbf{9}$ depth = number of closed loop in the path
- **5** Melting rule: if $a \notin K$, then $I \cdot a \notin K$

BPS crystals

BPS algebras

Representations

Summary 000000000

Equivariant weight of arrows and atoms

- **1** set framed vertex $a_{\mathfrak{f}} = 1$ and choose origin \mathfrak{o} (with color 1) in \tilde{Q}
- 2 path from $\mathfrak{o} \Rightarrow \mathsf{atom} \ a$
- equivalence of paths
- $(\mathbf{9}$ depth = number of closed loop in the path

5 Melting rule: if $a \notin K$, then $I \cdot a \notin K$

To derive BPS algebra from crystal, assign equivariant weights to atoms

L-Yamazaki '20

- **1** h_I : equivariant weight of arrow I
- 2 h(a): equivariant weight of atom a

To derive BPS algebra from crystal, assign equivariant weights to atoms

L-Yamazaki '20

- **1** h_I : equivariant weight of arrow I
- 2 h(a): equivariant weight of atom a
BPS crystals

BPS algebras

Representations

Summary 000000000

Number of equivariant parameters

• number of
$$h_I = |Q_1| (= |Q_0| + |Q_2|)$$

 $(Q_0, Q_1, Q_2) = (\text{vertices}, \text{edges}, \text{faces})$

• Loop constraints (global symmetry)

$$\sum_{I \in L} h_I = 0$$

• Vertex constraints (gauge symmetry)

$$\sum_{I \in a} \operatorname{sign}_a(I) h_I = 0$$

After loop and vertex constraints, the number of parameters = 2

L-Yamazaki '20

BPS crystals

BPS algebras

Representations

Summary 000000000

From BPS states to molten crystals

Szendröi '07, Mozgovoy-Reineke '07, Ooguri-Yamazaki '08

- Molten crystals
 - a D-brane bound state with charge $(1, 0, m_j, n)$ in toric CY₃ X \updownarrow a $U(1)^2$ -inv. solution (of F/D-term) in quiver QM (Q, W) with rank $\{N_a\}$ \updownarrow a 3D molten crystal K from $C_{a_f}(Q, W)$ with $\{N_a \text{ number of } a\}$
- periodic quiver $\underset{\text{projection}}{\overset{\text{uplift}}{\longleftarrow}}$ full 3D crystal \longrightarrow {molten crystal K}
- Crystal generating function reproduces BPS partition function

$$Z_{\text{crystal}}(p_a) \equiv \sum_{\mathbf{K}} \text{sign}(\mathbf{K}) \prod_{a \in Q_0} (p_a)^{|\mathbf{K}|_a}$$
$$= Z_{\text{NCDT}}(q_a)$$

BPS crystals

BPS algebras

Representations

Summary 000000000

toric $CY_3 X \rightarrow (Q, W) \rightarrow periodic quiver$: Resolved conifold

 ${\ensuremath{\bullet}}$ toric diagram and $(p,q)\ensuremath{-}\ensuremath{\mathsf{web}}$ diagram

• From (Q, W) to periodic quiver $a_{1,2}$

BPS crystals

BPS algebras

Representations

Summary 000000000

From full crystal to molten crystal (resolved conifold)

$$Z_{\text{crystal}}(q_0, q_1) = \frac{\prod_{k=1}^{\infty} (1 + q_1(q_0q_1)^k)^k (1 + \frac{1}{q_1}(q_0q_1)^k)^k}{\prod_{k=1}^{\infty} (1 - (q_0q_1)^k)^2 k} = 1 + q_0 + 2q_0q_1 + 4q_0^2q_1 + q_0q_1^2 + \dots$$

Young '07

BPS crystals

BPS algebras

Representations

Summary 000000000

Outline

2 BPS crystals

BPS algebras

4 Representations

5 Summary

BPS crystals

BPS algebras

Representations

Summary 000000000

Deriving BPS algebra

BPS algebra
$$\cdot \mathcal{H}_{BPS} \to \mathcal{H}_{BPS}$$

$$\alpha |\mathbf{K}_1\rangle = |\mathbf{K}_2\rangle$$

generators: consider "primative BPS states" Δ

 $\begin{cases} \text{raising } e & : & |\mathbf{K}\rangle \to |\mathbf{K} + \Delta\rangle \\ \text{Cartan } \psi & : & |\mathbf{K}\rangle \to |\mathbf{K}\rangle \\ \text{lowering } f & : & |\mathbf{K}\rangle \to |\mathbf{K} + \Delta\rangle \end{cases}$

1 Determine Δ

2 Fix action of (e, ψ, f) on $|\mathbf{K}\rangle \in \mathcal{H}_{BPS}$

 $\ \ \, {\rm Sind} \ \, \{F(e,\psi,f)|F(e,\psi,f)|{\rm K}\rangle=0\}$

BPS algebra =
$$\frac{\langle e, \psi, f \rangle}{\{F(e, \psi, f) = 0\}}$$

BPS crystals

BPS algebras

Representations

Summary 000000000

Deriving BPS algebra

$$\begin{array}{l} \mathrm{BPS} \mbox{ algebra} \cdot \mathcal{H}_{\mathrm{BPS}} \to \mathcal{H}_{\mathrm{BPS}} \\ & \alpha \ |\mathrm{K}_1\rangle \ = |\mathrm{K}_2\rangle \\ \\ \mbox{generators: consider "primative BPS states" } \Delta \\ \\ \left\{ \begin{array}{c} \mathrm{raising} \ e^{(a)}: \ |\mathrm{K}\rangle \to |\mathrm{K} + \mathrm{i}a\rangle \\ \mathrm{Cartan} \ \psi^{(a)}: \ |\mathrm{K}\rangle \to |\mathrm{K}\rangle \\ \mathrm{lowering} \ f^{(a)}: \ |\mathrm{K}\rangle \to |\mathrm{K} + \mathrm{i}a\rangle \end{array} \right. \end{array}$$

1 Determine Δ

$$\label{eq:K} \begin{split} |\mathrm{K}\rangle &: \mbox{BPS crystal} \\ \Delta &: \mbox{ atoms \underline{a} in BPS crystal} \end{split}$$

2 Fix action of (e, ψ, f) on $|\mathbf{K}\rangle \in \mathcal{H}_{BPS}$

• Find $\{F(e,\psi,f)|F(e,\psi,f)|\mathbf{K}\rangle = 0\}$

BPS algebra =
$$\frac{\langle e, \psi, f \rangle}{\{F(e, \psi, f) = 0\}}$$

BPS crystals

BPS algebras

Representations

Summary 000000000

Ansatz for action of BPS algebra on BPS crystal

L-Yamazaki '20

 $\mathcal{H}_{\mathrm{BPS}}: \infty - \mathsf{dim} \quad \Longrightarrow \quad (e_i^{(a)}, \psi_i^{(a)}, f_i^{(a)}) \propto - \mathsf{dim}$

$$e^{(a)}(z) \equiv \sum_{j} \frac{e_{j}^{(a)}}{z^{j+1}} \qquad \psi^{(a)}(z) \equiv \sum_{j} \frac{\psi_{j}^{(a)}}{z^{j+1}} \qquad f^{(a)}(z) \equiv \sum_{j} \frac{f_{j}^{(a)}}{z^{j+1}} \quad a \in Q_{0}$$

Ansatz for action

$$\begin{cases} \text{Cartan:} \quad \psi^{(a)}(z)|\mathbf{K}\rangle = \Psi_{\mathbf{K}}(z)|\mathbf{K}\rangle \\ \text{raising:} \quad e^{(a)}(z)|\mathbf{K}\rangle = \sum \frac{E(\mathbf{K} \to \mathbf{K} + \mathbf{a})}{z - h(\mathbf{a})}|\mathbf{K} + \mathbf{a}\rangle \\ \text{lowering:} \quad f^{(a)}(z)|\mathbf{K}\rangle = \sum \frac{F(\mathbf{K} \to \mathbf{K} - \mathbf{a})}{z - h(\mathbf{a})}|\mathbf{K} - \mathbf{a}\rangle \end{cases}$$

Example: $(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ with $|K\rangle =$

•
$$|\mathbf{K} + \mathbf{a}\rangle = \{ \mathbf{a}, \mathbf{a}, \mathbf{a}, \mathbf{a} \}$$

• $|\mathbf{K} - \mathbf{a}\rangle = \mathbf{a}$

Demand: $|K \pm a\rangle$ are valid crystal states

(otherwise $E(K \to K + @)$ and $F(K \to K - @)$ should vanish)

BPS crystals

BPS algebras

Representations

Summary 000000000

Ansatz for action of BPS algebra on BPS crystal

L-Yamazaki '20 (\mathbb{C}^3 , affine Yangian of \mathfrak{gl}_1 : Tsymbaliuk '14)

$$\begin{cases} \psi^{(a)}(z)|\mathbf{K}\rangle = \Psi_{\mathbf{K}}^{(a)}(z)|\mathbf{K}\rangle , \quad \Psi_{\mathbf{K}}^{(a)}(u) \equiv (\frac{1}{z})^{\delta_{a,1}} \prod_{b \in Q_0} \prod_{b \in \mathbf{K}} \varphi^{a \Leftarrow b}(u - h(\overline{\mathbf{b}})) \\ e^{(a)}(z)|\mathbf{K}\rangle = \sum_{\overline{\mathbf{a}} \in \operatorname{Add}(\mathbf{K})} \frac{\pm \sqrt{\operatorname{Res}_{u=h(\overline{\mathbf{a}})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\overline{\mathbf{a}})} |\mathbf{K} + \overline{\mathbf{a}}\rangle , \\ f^{(a)}(z)|\mathbf{K}\rangle = \sum_{\overline{\mathbf{a}} \in \operatorname{Rem}(\mathbf{K})} \frac{\pm \sqrt{(-1)^{|a|}\operatorname{Res}_{u=h(\overline{\mathbf{a}})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\overline{\mathbf{a}})} |\mathbf{K} - \overline{\mathbf{a}}\rangle , \end{cases}$$

Example:
$$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$$
 with $|K\rangle =$
• $|K + \mathbb{C}\rangle = \{ \overbrace{i}^{i}, \overbrace{i}^{i}, \overbrace{i}^{i}, \overbrace{i}^{i} \}$
• $|K - \mathbb{C}\rangle =$

BPS crystals

BPS algebras

Representations

Summary 000000000

Ansatz for action of BPS algebra on BPS crystal

L-Yamazaki '20 (\mathbb{C}^3 , affine Yangian of \mathfrak{gl}_1 : Tsymbaliuk '14)

$$\begin{cases} \psi^{(a)}(z)|\mathbf{K}\rangle = \Psi_{\mathbf{K}}^{(a)}(z)|\mathbf{K}\rangle , \quad \Psi_{\mathbf{K}}^{(a)}(u) \equiv (\frac{1}{z})^{\delta_{a,1}} \prod_{b \in Q_0} \prod_{b \in \mathbf{K}} \varphi^{a \Leftarrow b}(u - h(\overline{\mathbf{D}})) \\ e^{(a)}(z)|\mathbf{K}\rangle = \sum_{\overline{\mathbf{C}} \in \operatorname{Add}(\mathbf{K})} \frac{\pm \sqrt{\operatorname{Res}_{u=h(\overline{\mathbf{C}})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\overline{\mathbf{C}})} |\mathbf{K} + \overline{\mathbf{C}}\rangle , \\ f^{(a)}(z)|\mathbf{K}\rangle = \sum_{\overline{\mathbf{C}} \in \operatorname{Rem}(\mathbf{K})} \frac{\pm \sqrt{(-1)^{|a|}\operatorname{Res}_{u=h(\overline{\mathbf{C}})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\overline{\mathbf{C}})} |\mathbf{K} - \overline{\mathbf{C}}\rangle , \end{cases}$$

Example:
$$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$$
 with $|K\rangle =$
• $|K + \mathbb{Z}\rangle = \{ \overbrace{i}^{I}, \overbrace{i}^{I}, \overbrace{i}^{I}, \overbrace{i}^{I} \}$
• $|K - \mathbb{Z}\rangle =$

How to fix $\varphi^{a \leftarrow b}(u)$?

Ansatz for action of BPS algebra on BPS crystal L-Yamazaki '20

$$\begin{cases} \psi^{(a)}(z)|\mathbf{K}\rangle = \Psi_{\mathbf{K}}^{(a)}(z)|\mathbf{K}\rangle , \quad \Psi_{\mathbf{K}}^{(a)}(u) \equiv (\frac{1}{z})^{\delta_{a,1}} \prod_{b \in Q_0} \prod_{b \in \mathbf{K}} \varphi^{a \Leftarrow b}(u - h(\mathbb{B})) \\ e^{(a)}(z)|\mathbf{K}\rangle = \sum_{\mathbf{a} \in \mathrm{Add}(\mathbf{K})} \frac{\pm \sqrt{\mathrm{Res}_{u=h(\mathbf{a})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\mathbf{a})} |\mathbf{K} + \mathbf{a}\rangle , \\ f^{(a)}(z)|\mathbf{K}\rangle = \sum_{\mathbf{a} \in \mathrm{Rem}(\mathbf{K})} \frac{\pm \sqrt{(-1)^{|a|}\mathrm{Res}_{u=h(\mathbf{a})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\mathbf{a})} |\mathbf{K} - \mathbf{a}\rangle , \end{cases}$$

Demand:
Irreducibility (cyclic from any |K))
"Melting Rule" satisfied

Bond factor:
$$\varphi^{a \leftarrow b}(u) \equiv (-1)^{|b \rightarrow a|\chi_{ab}} \frac{\prod_{I \in \{a \rightarrow b\}} (u + h_I)}{\prod_{I \in \{b \rightarrow a\}} (u - h_I)}$$

 $\{\text{poles of } \Psi_{\mathbf{K}}^{(a)}(z)\} \simeq \operatorname{Add}^{(a)}(\mathbf{K}) \cup \operatorname{Rem}^{(a)}(\mathbf{K})$

BPS crystals

BPS algebras

 $(\mathbb{C}^2/\mathbb{Z}_2)\times\mathbb{C}$

Representations

Summary 000000000

- After loop and vertex constraints $h_1 + h_2 + h_3 = 0$
- building blocks of $\Psi_{\rm K}^{(a)}(u)$

$$\varphi^{1 \leftarrow 1}(u) = \varphi^{2 \leftarrow 2}(u) = \frac{u + h_3}{u - h_3}$$
$$\varphi^{1 \leftarrow 2}(u) = \varphi^{2 \leftarrow 1}(u) = \frac{(u + h_1)(u + h_2)}{(u - h_1)(u - h_2)}$$

• Now: check irreducibility (cyclic for any $|K\rangle$) and melting rule

BPS crystals

BPS algebras

Representations

Summary 000000000

 $(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal

BPS crystals

BPS algebras

Representations

Summary 000000000

$(\mathbb{C}^2/\mathbb{Z}_2) imes \mathbb{C}$ crystal: vacuum

vacuum $|\emptyset\rangle$ ① Charge functions

$$\begin{cases} \Psi_{\rm K}^{(1)}(z) = \frac{1}{z} \\ \Psi_{\rm K}^{(2)}(z) = 1 \end{cases}$$

 h_3

 $\mathbf{2}$

BPS crystals

 h_{3}/h_{1}

BPS algebras

Representations

Summary 000000000

$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: vacuum \Longrightarrow level-1

BPS crystals

BPS algebras

Representations

Summary 000000000

$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: level-1

1-atom state $|\mathbb{I}\rangle \implies h(\mathbb{I}) = 0$ Charge functions

$$\begin{cases} \psi_{\rm K}^{(1)}(z) = \psi_0(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\underline{\mathbb{I}})) = \frac{1}{z} \cdot \frac{z + h_3}{z - h_3} \\ \psi_{\rm K}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\underline{\mathbb{I}})) = \frac{(z + h_1)(z + h_2)}{(z - h_1)(z - h_2)} \end{cases}$$

BPS crystals

BPS algebras

Representations

Summary 000000000

 $(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: level-1 \Longrightarrow level-2

1-atom state
$$|1\rangle \implies h(1) = 0$$

Charge functions

$$\begin{cases} \psi_{\mathrm{K}}^{(1)}(z) = \psi_{0}(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\underline{\mathbb{1}})) = \frac{1}{z} \cdot \frac{z + h_{3}}{z - h_{3}} \\ \psi_{\mathrm{K}}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\underline{\mathbb{1}})) = \frac{(z + h_{1})(z + h_{2})}{(z - h_{1})(z - h_{2})} \end{cases}$$

2 Pole for
$$\square$$
: $z = 0$ and $z = h_3$
Pole for \square : $z = h_1$ and $z = h_2$

$$\bigcirc f^{(1)}(z)|\mathbb{I}
angle = |\emptyset
angle$$
 and $f^{(2)}(z)|\mathbb{I}
angle = 0$

BPS crystals

BPS algebras

Representations

Summary 000000000

$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: level-2

2-atoms state $| 1_0 2_1 \rangle \implies h(1_0) = 0$, $h(2_1) = h_1$

Charge function

$$\begin{cases} \Psi_{\rm K}^{(1)}(z) = \psi_0(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\mathbb{I})) \cdot \varphi^{2 \Rightarrow 1}(z - h(\mathbb{I})) \\ = \frac{(1)}{t} \cdot \frac{(z + h_3)}{(z - h_3)} \cdot \frac{(z)(z + h_2 - h_1)}{(z - 2h_1)(z + h_3)} \\ \Psi_{\rm K}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\mathbb{I})) \cdot \varphi^{2 \Rightarrow 2}(z - h(\mathbb{I})) \\ = \frac{(z + h_1)(z + h_2)}{(z - h_1)(z - h_2)} \cdot \frac{(z + h_3 - h_1)}{(z + h_2)} \end{cases}$$

BPS crystals

BPS algebras

Representations

Summary 000000000

 $(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: level-2 \Longrightarrow level-3

2-atoms state $|1_02_1\rangle \implies h(1_0) = 0, h(2_1) = h_1$

Charge function

$$\begin{cases} \Psi_{\rm K}^{(1)}(z) = \psi_0(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\mathbb{I})) \cdot \varphi^{2 \Rightarrow 1}(z - h(\mathbb{Z})) \\ = \frac{(1)}{4} \cdot \frac{(z + h_3)}{(z - h_3)} \cdot \frac{(z)(z + h_2 - h_1)}{(z - 2h_1)(z + h_3)} \\ \Psi_{\rm K}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\mathbb{I})) \cdot \varphi^{2 \Rightarrow 2}(z - h(\mathbb{I})) \\ = \frac{(z + h_1)(z + h_2)}{(z - h_1)(z - h_2)} \cdot \frac{(z + h_3 - h_1)}{(z + h_2)} \end{cases}$$

BPS crystals

BPS algebras

Representations

Summary 000000000

$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: Melting Rule

2-atoms state $| \mathbb{1}_0 \mathbb{2}_1 \rangle \implies h(\mathbb{1}_0) = 0, \ h(\mathbb{2}_1) = h_1$

Charge function

$$\begin{cases} \Psi_{\rm K}^{(1)}(z) = \psi_0(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\underline{\mathbb{I}})) \cdot \varphi^{2 \Rightarrow 1}(z - h(\underline{\mathbb{Z}})) \\ &= \frac{(1)}{t} \cdot \frac{(z + h_3)}{(z - h_3)} \cdot \frac{(z)(z + h_2 - h_1)}{(z - 2h_1)(z + h_3)} \\ \Psi_{\rm K}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\underline{\mathbb{I}})) \cdot \varphi^{2 \Rightarrow 2}(z - h(\underline{\mathbb{Z}})) \\ &= \frac{(z + h_1)(z + h_2)}{(z - h_1)(z - h_2)} \cdot \frac{(z + h_3 - h_1)}{(z + h_2)} \end{cases}$$

BPS crystals

BPS algebras

Representations

Summary 000000000

$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: Melting Rule

3-atoms state $|1_02_12_2\rangle \implies h(1_0) = 0, h(2_1) = h_1 h(2_2) = h_2$ Other function

$$\begin{cases} \Psi_{\rm K}^{(1)}(z) = \psi_0(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\underline{\mathbb{1}})) \cdot \varphi^{2 \Rightarrow 1}(z - h(\underline{\mathbb{2}}_1)) \cdot \varphi^{2 \Rightarrow 1}(z - h(\underline{\mathbb{2}}_2)) \\ = \frac{(1)}{4} \cdot \frac{(z + h_3)}{(z - h_3)} \cdot \frac{(z)(z + h_2 - h_1)}{(z - 2h_1)(z + h_3)} \cdot \frac{(z)(z + h_1 - h_2)}{(z - 2h_2)(z + h_3)} \\ \Psi_{\rm K}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\underline{\mathbb{1}})) \cdot \varphi^{2 \Rightarrow 2}(z - h(\underline{\mathbb{2}}_1)) \cdot \varphi^{2 \Rightarrow 2}(z - h(\underline{\mathbb{2}}_2)) \\ = \frac{(z + h_1)(z + h_2)}{(z - h_1)(z - h_2)} \cdot \frac{(z + h_3 - h_1)}{(z + h_2)} \cdot \frac{(z + h_3 - h_2)}{(z + h_1)} \end{cases}$$

BPS crystals

BPS algebras

Representations

Summary 000000000

Poles of $\Psi_{\mathrm{K}}^{(a)}(z)$ encode the positions of $a \in \mathrm{Add}(\mathrm{K})$ and $\mathrm{Rem}(\mathrm{K})$

• Each b in K contributes a factor of $\varphi^{a \leftarrow b}(z - h(b))$ to $\Psi_{\rm K}^{(a)}(z)$

$$h(b) \equiv \sum_{I \in \text{path}[\mathfrak{o} \to b]} h_I$$

$$\varphi^{a \leftarrow b}(u) \equiv (-1)^{|b \rightarrow a|\chi_{ab}} \frac{\prod_{I \in \{a \rightarrow b\}} (u + h_I)}{\prod_{I \in \{b \rightarrow a\}} (u - h_I)}$$

(a) loop constraint $\sum_{I \in \text{loop } L} h_I = 0$

Poles are always pushed to the surface of crystal ! "Melting rule" is automatically implemented

BPS crystals

BPS algebras

Representations

Summary 000000000

Quadratic relations in BPS algebra

L-Yamazaki '20

$$\begin{cases} \psi^{(a)}(z)|\mathbf{K}\rangle = \Psi_{\mathbf{K}}^{(a)}(z)|\mathbf{K}\rangle , \qquad \Psi_{\mathbf{K}}^{(a)}(u) \equiv \left(\frac{1}{z}\right)^{\delta_{a,1}} \prod_{b \in Q_0} \prod_{b \in \mathbf{K}} \varphi^{a \leftarrow b}(u - h(\underline{b})) \\ e^{(a)}(z)|\mathbf{K}\rangle = \sum_{\underline{a} \in \mathrm{Add}(\mathbf{K})} \frac{\pm \sqrt{\mathrm{Res}_{u=h(\underline{a})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\underline{a})} |\mathbf{K} + \underline{a}\rangle , \\ f^{(a)}(z)|\mathbf{K}\rangle = \sum_{\underline{a} \in \mathrm{Rem}(\mathbf{K})} \frac{\pm \sqrt{(-1)^{|a|}\mathrm{Res}_{u=h(\underline{a})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\underline{a})} |\mathbf{K} - \underline{a}\rangle , \end{cases}$$

$$\begin{split} \psi^{(a)}(z) \, \psi^{(b)}(w) &= \psi^{(b)}(w) \, \psi^{(a)}(z) \;, \\ \psi^{(a)}(z) \, e^{(b)}(w) &\simeq \varphi^{a \Leftarrow b}(z - w) \, e^{(b)}(w) \, \psi^{(a)}(z) \;, \\ e^{(a)}(z) \, e^{(b)}(w) &\sim (-1)^{|a||b|} \varphi^{a \Leftarrow b}(z - w) \, e^{(b)}(w) \, e^{(a)}(z) \;, \\ \psi^{(a)}(z) \, f^{(b)}(w) &\simeq \varphi^{a \Leftarrow b}(z - w)^{-1} \, f^{(b)}(w) \, \psi^{(a)}(z) \;, \\ f^{(a)}(z) \, f^{(b)}(w) &\sim (-1)^{|a||b|} \varphi^{a \Leftarrow b}(z - w)^{-1} \, f^{(b)}(w) \, f^{(a)}(z) \;, \\ e^{(a)}(z), f^{(b)}(w) &\gtrsim -\delta^{a,b} \frac{\psi^{(a)}(z) - \psi^{(b)}(w)}{z - w} \;, \end{split}$$

ntroduction	BPS crystals	BPS algebras	Representations	Summary
000000	00000000000	000000000000	0000000	00000000

 Algebraic relations confirmed directly from N = 4 quiver QM (using mathematica, up to some level)
 Galakhov-Yamazaki '20

BPS crystals

BPS algebras

Representations 00000000 Summary 000000000

Relations in terms of modes

To compare to other algebras, convert to relations in terms of modes

Sead off mode expansion of $(e^{(a)}(z), \psi^{(a)}(z), f^{(a)}(z))$ from algebra's action on crystals:

Using

$$\varphi^{a \leftarrow b}(u) \equiv (-1)^{|b \rightarrow a|\chi_{ab}} \frac{\prod_{I \in \{a \rightarrow b\}} (u + h_I)}{\prod_{I \in \{b \rightarrow a\}} (u - h_I)}$$

$$e^{(a)}(z) = \sum_{j=0}^{\infty} \frac{e_j^{(a)}}{z^{j+1}} \text{ and } f^{(a)}(z) = \sum_{j=0}^{\infty} \frac{f_j^{(a)}}{z^{j+1}}$$
$$\psi^{(a)}(z) = \begin{cases} \sum_{j=0}^{\infty} \frac{\psi_j^{(a)}}{z^{j+1}} & (\text{w/o compact 4-cycle})\\ \sum_{j=-\infty}^{\infty} \frac{\psi_j^{(a)}}{z^{j+1}} & (\text{w/ compact 4-cycle}) \end{cases}$$

BPS crystals

BPS algebras

Representations

Summary 000000000

Relations in terms of modes

To compare to other algebras, convert to relations in terms of modes

Plug in mode expansions to algebraic relations and take singular terms:

$$\begin{bmatrix} \psi_n^{(a)} , \psi_m^{(b)} \end{bmatrix} = 0 , \qquad \begin{bmatrix} e_n^{(a)} , f_m^{(b)} \end{bmatrix} = \delta^{a,b} \psi_{n+m}^{(a)} ,$$

$$\sum_{k=0}^{|b \to a|} (-1)^{|b \to a|-k} \sigma_{|b \to a|-k}^{b \to a} [\psi_n^{(a)} e_m^{(b)}]_k = \sum_{k=0}^{|a \to b|} \sigma_{|a \to b|-k}^{a \to b} [e_m^{(b)} \psi_n^{(a)}]^k ,$$

$$\cdots$$

$$[A_n B_m]_k \equiv \sum_{j=0}^k (-1)^j \binom{k}{j} A_{n+k-j} B_{m+j}, \quad [B_m A_n]^k \equiv \sum_{j=0}^k (-1)^j \binom{k}{j} B_{m+j} A_{n+k-j}.$$

 $\sigma_k^{a \to b} \equiv k^{\rm th}$ elementary symmetric sum of the set $\{h_I\}$ with $I \in \{a \to b\}$

BPS crystals

BPS algebras

Representations

Summary 000000000

Serre relations

Demanding that

vacuum character of algebra = generating function of crystal

gives additional cubic or higher relations

L-Yamazaki '21

 $\bullet\,$ Reproduce Serre relations for affine Yangian of $\mathfrak{gl}_{n|m}$

e.g.
$$\mathbb{C}^3$$
: Sym_(z1,z2,z3)(z₂ - z₃) $e(z_1) e(z_2) e(z_3)$
~Sym_(z1,z2,z3)(z₂ - z₃) $f(z_1) f(z_2) f(z_3) \sim 0$

• Open problem: classify Serre relations for general quiver Yangians

BPS crystals

BPS algebras

Representations

Summary 000000000

Compare with known algebras

• For general toric CY₃, quiver Yangian is new algebra

BPS crystals

BPS algebras

Representations

Summary 000000000

Generalize to trigonometric and elliptic version

Galakhov-L-Yamazaki '21

bond factor

$$\varphi^{a \Leftarrow b}(u) \equiv (-1)^{|b \to a|\chi_{ab}} \frac{\prod_{I \in \{a \to b\}} \zeta(u + h_I)}{\prod_{J \in \{b \to a\}} \zeta(u - h_J)}$$

 $\bullet \ \ \mathsf{rational} \longrightarrow \mathsf{trigonometric} \longrightarrow \mathsf{elliptic}$

$$\zeta(u) \equiv \begin{cases} u & (\text{rational}) \implies \text{quiver Yangians} \\ \sim \sinh \beta u & (\text{trig.}) \implies \text{toroidal quiver algebras} \\ \sim \theta_q(u) & (\text{elliptic}) \implies \text{elliptic quiver algebras} \end{cases}$$

- Bootstrap from crystal representation before central extension
- Turn on central extension and fix by consistency
- Confirm from gauge theory (2D (2,2) and 3D $\mathcal{N}=2$ theory)

BPS crystals

BPS algebras

Representations

Summary 000000000

Outline

- Introduction
- 2 BPS crystals
- 3 BPS algebras
- 4 Representations

5 Summary

BPS crystals

 \mathbb{C}^3

BPS algebras

Representations

Summary 000000000

So far: canonical crystal

resolved conifold

BPS crystals

BPS algebras

Representations

Summary 000000000

From canonical crystal to other crystals

- The canonical crystal corresponds to counting of closed BPS invariants in the non-commutative DT chamber.
- Can have crystal with other shapes

wall crossing to other chambers

Open BPS states

• Can consider arbitrary subcrystals of canonical crystal

BPS crystals

BPS algebras

Representations

Summary 000000000

Subscrystal ${}^{\ddagger}\mathcal{C}$

• How to describe an arbitrary subcrystal ${}^{\sharp}C?$

What is their relations to quiver Yangian?

What is their relation to the quiver?

BPS crystals

BPS algebras

Representations

Summary 000000000

Subscrystal ${}^{\sharp}C$

- How to describe an arbitrary subcrystal ${}^{\sharp}C?$
 - \implies superposition of positive/negative canonical crystals
- **2** What is their relations to quiver Yangian?

 \implies non-vacuum representations of (shifted) quiver Yangians

What is their relation to the quiver?

 \implies different framing of the original quiver

BPS crystals

BPS algebras

Representations

Summary 000000000

Decomposing subcrystal ${}^{\sharp}\mathcal{C}$ into positive/negative \mathcal{C}_0

- step-1: determine the positions of positive crystals
- step-2: determine the overlaps of positive crystals
 add negative crystals to cancel the overlaps

BPS crystals

BPS algebras

Representations

Summary 000000000

- step-3: determine the overlaps of negative crystals
 - \implies add positive crystals to cancel overlaps of negative crystals
- step-4: continue until ${}^{\sharp}C$ is reproduced (inclusion-exclusion principle)

BPS crystals

BPS algebras

Representations

Summary 000000000

Decomposing subcrystal ${}^{\sharp}\mathcal{C}$ into positive/negative \mathcal{C}_0

• (optional) final step: truncate by adding negative crystals

Simply-connected subcrystal can be decomposed into superpositions of positive/negative crystals.

Galakhov-L-Yamazaki '21

BPS crystals

BPS algebras

Representations

Summary 000000000

Crystal decomposition — infinite chamber for conifold

- positive crystal: starts at \square at x_1, x_2, x_3
- negative crystal: starts at 2 at y_1, y_2

BPS crystals

BPS algebras

Representations

Summary 000000000

From subcrystal ${}^{\sharp}\!\mathcal{C}$ to ground state charge function ${}^{\sharp}\!\psi$

Galakhov-L-Yamazaki '21

• charge function of arbitrary crystal

$$\psi^{(a)}(z)|\mathbf{K}\rangle = \Psi_{\mathbf{K}}^{(a)}(z)|\mathbf{K}\rangle , \quad \Psi_{\mathbf{K}}^{(a)}(u) \equiv {}^{\sharp}\psi_{0}^{(a)}(z)\prod_{b\in Q_{0}}\prod_{b\in\mathbf{K}}\varphi^{a\Leftarrow b}(u-h(\mathbb{E}))$$

- General representations
- contribution from ground state

sub-crystal
$${}^{\sharp}\mathcal{C}$$
: ${}^{\sharp}\psi_0^{(a)}(z) = \frac{\prod_{\beta=1}^{\mathfrak{s}_-^{(a)}}(z-z_{-\beta}^{(a)})}{\prod_{\alpha=1}^{\mathfrak{s}_-^{(a)}}(z-\mathfrak{p}_{\alpha}^{(a)})}$
positive crystal staring at a : pole $\mathfrak{p}^{(a)} = h(a)$
negative crystal staring at a : zero $z_-^{(a)} = h(a)$

c.f. canonical crystal C_0 : $\psi_0^{(a)}(z) = \left(\frac{1}{z}\right)^{\delta_{a,o}}$

BPS crystals

BPS algebras

Representations

Summary 000000000

Shifted quiver Yangian

Galakhov-L-Yamazaki '21

• mode expansion of original quiver Yangian

$$\psi^{(a)}(z) = \begin{cases} \sum_{j=-1}^{\infty} \frac{\psi_j^{(a)}}{z^{j+1}} & \text{(w/o compact 4-cycle)} \\ \sum_{j=-\infty}^{\infty} \frac{\psi_j^{(a)}}{z^{j+1}} & \text{(w/ compact 4-cycle)} \end{cases}$$

• change of ground state charge function

$$\psi_0^{(a)}(z) = \left(\frac{1}{z}\right)^{\delta_{a,1}} \implies \qquad \sharp \psi_0^{(a)}(z) = \frac{\prod_{\beta=1}^{\mathfrak{s}_{-1}^{(a)}}(z - z_{-\beta}^{(a)})}{\prod_{\alpha=1}^{\mathfrak{s}_{+1}^{(a)}}(z - \mathfrak{p}_{\alpha}^{(a)})}$$

• mode expansion of shifted quiver Yangian

$$\psi^{(a)}(z) = \begin{cases} \sum_{j=-1}^{\infty} \frac{\psi_j^{(a)}}{z^{j+1+\mathbf{s}(a)}} & \text{(w/o compact 4-cycle)} \\ \sum_{j=-\infty}^{\infty} \frac{\psi_j^{(a)}}{z^{j+1+\mathbf{s}(a)}} & \text{(w/ compact 4-cycle)} \end{cases}$$
$$\mathbf{s}^{(a)} \equiv \mathbf{s}^{(a)}_+ - \mathbf{s}^{(a)}_-$$

BPS crystals

BPS algebras

Representations

Summary 000000000

From subcrystal to framed quiver

Galakhov-L-Yamazaki '21

- \blacksquare For starting atom @ of each positive crystal, add an arrow $\infty
 ightarrow a$
- 2 For starting atom @ of each negative crystal, add an arrow from $a
 ightarrow \infty$
- Add terms to superpotential

BPS crystals

BPS algebras

Representations

Summary 000000000

Outline

- 2 BPS crystals
- 3 BPS algebras
- 4 Representations

BPS crystals

BPS algebras

Representations

Summary •00000000

Summary of construction

Given a toric Calabi-Yau threefold X, consider the BPS sector of D-brane system of type IIA string on X

 $\textcircled{\ } \textbf{Q} \text{ uiver quantum mechanics } (Q,W)$

 \Downarrow define

- ② { BPS states } = { colored crystals }
 act ↑↓ bootstrap
- $\textcircled{O} \ \mathsf{BPS} \ \mathsf{quiver} \ \mathsf{Yangian} \ Y(Q,W)$

BPS crystals

BPS algebras

Representations

Summary 000000000

Summary of construction

Given a toric Calabi-Yau threefold X, consider the BPS sector of D-brane system of type IIA string on X

- Quiver quantum mechanics $(Q, W) \leftarrow$ Input
- ③ { BPS states } = { colored crystals }
 act
 ↑
 ↓ bootstrap

BPS crystals

BPS algebras

Representations

Summary 00000000

Summary: BPS algebra for general toric Calabi-Yau X_3

- $\ \, {\rm Operiodic \; quiver \; } (Q,W) \Longrightarrow \varphi^{a \Leftarrow b}(z-w) \ \, {\rm and} \ \, |a|$
- 2 quiver Yangian Y(Q, W)

$$\begin{split} \psi^{(a)}(z) \, \psi^{(b)}(w) &= \psi^{(b)}(w) \, \psi^{(a)}(z) \;, \\ \psi^{(a)}(z) \, e^{(b)}(w) &\simeq \varphi^{a \Leftarrow b}(z - w) \, e^{(b)}(w) \, \psi^{(a)}(z) \;, \\ e^{(a)}(z) \, e^{(b)}(w) &\sim (-1)^{|a||b|} \varphi^{a \Leftarrow b}(z - w) \, e^{(b)}(w) \, e^{(a)}(z) \;, \\ \psi^{(a)}(z) \, f^{(b)}(w) &\simeq \varphi^{a \Leftarrow b}(z - w)^{-1} \, f^{(b)}(w) \, \psi^{(a)}(z) \;, \\ f^{(a)}(z) \, f^{(b)}(w) &\sim (-1)^{|a||b|} \varphi^{a \Leftarrow b}(z - w)^{-1} \, f^{(b)}(w) \, f^{(a)}(z) \;, \\ \left[e^{(a)}(z), f^{(b)}(w) \right\} &\sim -\delta^{a,b} \, \frac{\psi^{(a)}(z) - \psi^{(b)}(w)}{z - w} \;, \end{split}$$

Advantages

- Explicit algebraic relations
- Applies to ALL toric Calabi-Yau threefolds
- Easily generalized to trigonometric and elliptic versions
- Easy to describe representations (by subcrystals and framed quivers)

roduction	BPS crystals	BPS algebras	Representations	Summary
00000	00000000000	00000000000	0000000	0000000

Subcrystal representation, shifted quiver Yangians, and framed quiver

Cover all other cyclic chambers and open BPS states

BPS crystals

BPS algebras

Representations

Summary 000000000

questions....

BPS crystals

BPS algebras

Representations

Summary 000000000

Q1: relation to Kontsevich-Soibelman's CoHA

- ullet Want to show CoHA \sim Borel subalgebra (with e 's) of quiver Yangians
- Maybe along the line of Rapcak-Soibelman-Yang-Zhao '18 (for $\hat{\mathcal{Y}}(\mathfrak{gl}_1)$) Rapcak-Soibelman-Yang-Zhao '20 (for $\hat{\mathcal{Y}}(\mathfrak{gl}_{n|m})$)
- How about general toric CY₃ (w/ compact 4-cycle)? More direct approach?

BPS crystals

BPS algebras

Representations

Summary 000000000

Q2: relations to vertex operator algebras

C³: 𝒴[𝔅ἶ₁] ≅ UEA[𝒴_{1+∞}] Procházka '15; Gaberdiel-Gopakumar-L-Peng '17
 𝒴_{1+∞} algebra: 𝔅 algebra with one field per spin s = 1, 2, 3, · · · , ∞, only two parameters

$$W^{(s)}(z) = \sum_{n \in \mathbb{Z}} \frac{W_n^{(s)}}{z^{n+s}} \qquad s = 1, 2, 3, \dots$$

•	•		•	•	•	•	•	•
-	•		•				•	•
•	•	•	•			-	•	•
spin-5		X_{-3}	X_{-2}	$X_{-1} \sim e_4$	$X_0 \sim \psi_5$	$X_1 \sim f_4$	X_2	X_3
spin-4		U_{-3}	U_{-2}	$U_{-1} \sim e_3$	$U_0\!\sim\psi_4$	$U_1 \sim f_3$	U_2	U_3
spin-3		W_{-3}	W_{-2}	$W_{-1} \sim e_2$	$W_0 \sim \psi_3$	$W_1 \sim f_2$	W_2	W_3
spin-2		L_{-3}	L_{-2}	$L_{-1} \sim e_1$	$L_0 \sim \psi_2$	$L_1 \sim f_1$	L_2	L_3
spin-1		J_{-3}	J_{-2}	$\mathbf{J_{-1}} \sim e_0$	$J_0 \sim \psi_1$	$\mathbf{J_1} \sim f_0$	J_2	J_3

• Calabi-Yau without compact 4-cycles (non-chiral quivers):

affine Yangian of $\mathfrak{g} \cong \mathsf{UEA}[\mathfrak{g}\text{-extended } \mathcal{W}_{1+\infty} \text{ algebra}]$

 $\left(\mathsf{w} / \ \mathfrak{g}{=} \mathfrak{gl}_{n|m} \ \mathrm{or} \ D(2,1|\alpha) \right)$

• <u>Q</u>: Calabi-Yau with compact 4-cycles (chiral quivers) \sim some VOA?

BPS crystals

BPS algebras

Representations

Summary 000000000

Q3: algebra isomorphism from quiver mutation

In general, the map from toric $CY_3 X$ to (Q, W) is one-to-many

related as Seiberg duality (quiver mutation) Beasley-Plesser '01

Conjecture: quiver Yangins related by quiver mutation are isomorphic

L-Yamazaki '20

(Evidence: for $\hat{\mathcal{Y}}(\mathfrak{gl}_{n|m})$, mutation \rightarrow same $\mathfrak{gl}_{n|m}$ with different Dynkin diagrams)

BPS crystals

BPS algebras

Representations

Summary

More questions

- What are those new sub-crystal representations?
- Derive R-matrices for general quiver Yangians? (for Bethe/Gauge correspondence)
- Generalize to other geometries?

BPS crystals

BPS algebras

Representations

Summary

Thank you for your attention !