Rank r DT Theory from Rank 1

Soheyla Feyzbakhsh

Imperial College London

April 12, 2022

- Joint project with Richard Thomas
 - [FT1] Curve counting and S-duality, arXiv:2007.03037
 - [FT2] Rank r DT theory from rank 0, arXiv:2103.02915
 - [FT3] Rank r DT theory from rank 1, arXiv:2108.02828

- [F] Explicit formulae for rank zero DT invariants and the OSV conjecture, arXiv:2203.10617

2 Weak Bridgeland stability conditions

3 Idea of proof

• Let (X, O(1)) be a smooth polarised complex projective threefold, $H := c_1(O(1))$.

- Let (X, O(1)) be a smooth polarised complex projective threefold, H := c₁(O(1)).
- The μ_H -slope of a coherent sheaf E on X is

$$\mu_H(E) := \begin{cases} \frac{\operatorname{ch}_1(E).H^2}{\operatorname{ch}_0(E)H^3} & \text{if } \operatorname{ch}_0(E) \neq 0, \\ +\infty & \text{if } \operatorname{ch}_0(E) = 0. \end{cases}$$

• $E \in \operatorname{Coh}(X)$ is $\mu_{H^{-}}(\text{semi})$ stable if $0 \neq E' \subset E$, $\mu_{H}(E') (\leq) \mu_{H}(E/E')$.

- Let (X, O(1)) be a smooth polarised complex projective threefold, H := c₁(O(1)).
- The μ_H -slope of a coherent sheaf E on X is

$$\mu_H(E) := \begin{cases} \frac{\operatorname{ch}_1(E).H^2}{\operatorname{ch}_0(E)H^3} & \text{if } \operatorname{ch}_0(E) \neq 0, \\ +\infty & \text{if } \operatorname{ch}_0(E) = 0. \end{cases}$$

- $E \in Coh(X)$ is μ_H -(semi)stable if $0 \neq E' \subset E$, $\mu_H(E') \leq \mu_H(E/E')$.
- Any μ_H -semistable sheaf E satisfies

$$\Delta_{\mathcal{H}}(E) = \left(\mathsf{ch}_1(E).\mathcal{H}^2\right)^2 - 2\mathcal{H}^3\,\mathsf{ch}_0(E)\,\mathsf{ch}_2(E).\mathcal{H} \ge 0.$$

 Bayer-Macrì-Toda generalised μ_H-stability on Coh(X) to ν_{b,w}-stability on the bounded derived category of coherent sheaves on X for (b, w) ∈ ℝ × ℝ^{>0}.

- Bayer-Macrì-Toda generalised μ_H-stability on Coh(X) to ν_{b,w}-stability on the bounded derived category of coherent sheaves on X for (b, w) ∈ ℝ × ℝ^{>0}.
- BMT conjectured a Bogomolov-Gieseker type inequality involving ch₃ for ν_{b,w}-semistable objects.

- Bayer-Macrì-Toda generalised μ_H-stability on Coh(X) to ν_{b,w}-stability on the bounded derived category of coherent sheaves on X for (b, w) ∈ ℝ × ℝ^{>0}.
- BMT conjectured a Bogomolov-Gieseker type inequality involving ch₃ for ν_{b,w}-semistable objects.
- The conjecture is now known to hold for many threefolds such as \mathbb{P}^3 or the quintic 3-fold, \ldots

- Bayer-Macrì-Toda generalised μ_H-stability on Coh(X) to ν_{b,w}-stability on the bounded derived category of coherent sheaves on X for (b, w) ∈ ℝ × ℝ^{>0}.
- BMT conjectured a Bogomolov-Gieseker type inequality involving ch₃ for ν_{b,w}-semistable objects.
- The conjecture is now known to hold for many threefolds such as \mathbb{P}^3 or the quintic 3-fold, \ldots
- We only need a weakening of BMT conjecture, denoted by BG.

- Bayer-Macrì-Toda generalised μ_H-stability on Coh(X) to ν_{b,w}-stability on the bounded derived category of coherent sheaves on X for (b, w) ∈ ℝ × ℝ^{>0}.
- BMT conjectured a Bogomolov-Gieseker type inequality involving ch₃ for ν_{b,w}-semistable objects.
- The conjecture is now known to hold for many threefolds such as \mathbb{P}^3 or the quintic 3-fold, \ldots
- We only need a weakening of BMT conjecture, denoted by BG.
- Assume X is a Calabi-Yau 3-fold: $K_X \cong \mathcal{O}_X$ and $H^1(X, \mathcal{O}_X) = 0$.

• For $\alpha \in K(X)$, consider the moduli space $\mathcal{M}_{H}^{ss}(\alpha)$ and $\mathcal{M}_{H}^{st}(\alpha)$ of *H*-Gieseker (semi)stable sheaves of class α .

- For $\alpha \in K(X)$, consider the moduli space $\mathcal{M}_{H}^{ss}(\alpha)$ and $\mathcal{M}_{H}^{st}(\alpha)$ of *H*-Gieseker (semi)stable sheaves of class α .
- For characters α with $\mathcal{M}_{H}^{ss}(\alpha) = \mathcal{M}_{H}^{st}(\alpha)$, Donaldson and Thomas defined the invariants

$$J(lpha) := \int_{[\mathcal{M}^{st}_{H}(lpha)]^{\mathrm{vir}}} 1 \ \in \ \mathbb{Z}.$$

- For $\alpha \in K(X)$, consider the moduli space $\mathcal{M}_{H}^{ss}(\alpha)$ and $\mathcal{M}_{H}^{st}(\alpha)$ of *H*-Gieseker (semi)stable sheaves of class α .
- For characters α with $\mathcal{M}_{H}^{ss}(\alpha) = \mathcal{M}_{H}^{st}(\alpha)$, Donaldson and Thomas defined the invariants

$$J(lpha) \, := \, \int_{[\mathcal{M}^{st}_{H}(lpha)]^{\mathrm{vir}}} 1 \; \in \; \mathbb{Z}.$$

Joyce and Song defined generalized Donaldson-Thomas invariants

 $J(\alpha) \in \mathbb{Q}$

for all $\alpha \in K(X)$, which 'counts' *H*-Gieseker semistable sheaves of class α ,

- For $\alpha \in K(X)$, consider the moduli space $\mathcal{M}_{H}^{ss}(\alpha)$ and $\mathcal{M}_{H}^{st}(\alpha)$ of *H*-Gieseker (semi)stable sheaves of class α .
- For characters α with $\mathcal{M}_{H}^{ss}(\alpha) = \mathcal{M}_{H}^{st}(\alpha)$, Donaldson and Thomas defined the invariants

$$J(lpha) \, := \, \int_{[\mathcal{M}^{st}_{H}(lpha)]^{\mathrm{vir}}} 1 \; \in \; \mathbb{Z}.$$

Joyce and Song defined generalized Donaldson-Thomas invariants

 $J(\alpha) \in \mathbb{Q}$

for all $\alpha \in K(X)$, which 'counts' *H*-Gieseker semistable sheaves of class α , with the following properties:

9 $J(\alpha) \in \mathbb{Q}$ is unchanged by deformation of the Calabi-Yau 3-fold X.

- For $\alpha \in K(X)$, consider the moduli space $\mathcal{M}_{H}^{ss}(\alpha)$ and $\mathcal{M}_{H}^{st}(\alpha)$ of *H*-Gieseker (semi)stable sheaves of class α .
- For characters α with $\mathcal{M}_{H}^{ss}(\alpha) = \mathcal{M}_{H}^{st}(\alpha)$, Donaldson and Thomas defined the invariants

$$J(lpha) \, := \, \int_{[\mathcal{M}^{st}_{H}(lpha)]^{\mathrm{vir}}} 1 \; \in \; \mathbb{Z}.$$

Joyce and Song defined generalized Donaldson-Thomas invariants

 $J(\alpha) \in \mathbb{Q}$

for all $\alpha \in K(X)$, which 'counts' *H*-Gieseker semistable sheaves of class α , with the following properties:

- **1** $J(\alpha) \in \mathbb{Q}$ is unchanged by deformation of the Calabi-Yau 3-fold X.
- **2** If $\tau, \tilde{\tau}$ are two (weak) stability conditions on X, there is an explicit change of stability condition formula giving $J^{\tau}(\alpha)$ in terms of the $J^{\tilde{\tau}}(\beta)$.

Theorem 1.1 (Feyzbakhsh-Thomas)

Let $(X, \mathcal{O}_X(1))$ be a Calabi-Yau 3-fold satisfying the conjectural BMT inequality BG. Then for fixed $v \in K(X)$ of rank ≥ 0 ,

$$J(v) = F(J(\alpha_1), J(\alpha_2), \dots)$$

is a universal polynomial in invariants $J(\alpha_i)$, with all α_i of rank 1. If X also satisfies the MNOP conjecture then we can replace the $J(\alpha_i)$ by the Gromov-Witten invariants of X.

• The μ_H -slope of a coherent sheaf E on X is

$$\mu_H(E) := \begin{cases} \frac{ch_1(E).H^2}{ch_0(E)H^3} & \text{if } ch_0(E) \neq 0, \\ +\infty & \text{if } ch_0(E) = 0. \end{cases}$$

• Denote the maximum slope in the Harder-Narasimhan filtration by $\mu_H^+(E)$ and minimum by $\mu_H^-(E)$.

• The μ_H -slope of a coherent sheaf E on X is

$$\mu_H(E) := \begin{cases} \frac{ch_1(E).H^2}{ch_0(E)H^3} & \text{if } ch_0(E) \neq 0, \\ +\infty & \text{if } ch_0(E) = 0. \end{cases}$$

- Denote the maximum slope in the Harder-Narasimhan filtration by $\mu_{H}^{+}(E)$ and minimum by $\mu_{H}^{-}(E)$.
- Let $\mathcal{D}(X) \coloneqq D^b \operatorname{Coh}(X)$. For any $b \in \mathbb{R}$, define

$$\mathcal{A}(b)\coloneqq ig\{E^{-1} \stackrel{d}{ o} E^0 \; \colon \; \mu^+_H(\operatorname{ker} d) \leq b \, , \; \mu^-_H(\operatorname{cok} d) > big\} \subset \mathcal{D}(X)$$

 T. Bridgeland showed that A(b) is the heart of a bounded t-structure on D(X).

Weak Bridgeland stability conditions

• For $w > \frac{b^2}{2}$, define the slope

$$\nu_{b,w}(E) = \begin{cases} \frac{ch_2(E).H-w ch_0(E)H^3}{ch_1^b(E).H^2} & \text{if } ch_1^b(E).H^2 \neq 0, \\ +\infty & \text{if } ch_1^b(E).H^2 = 0 \end{cases}$$

where $ch_1^b(E).H^2 = ch_1(E).H^2 - bH^3 ch_0(E).$

• If $E \in \mathcal{A}(b)$, then $ch_1^b(E).H^2 \ge 0$.

Weak Bridgeland stability conditions

• For $w > \frac{b^2}{2}$, define the slope

$$\nu_{b,w}(E) = \begin{cases} \frac{ch_2(E).H-w ch_0(E)H^3}{ch_1^b(E).H^2} & \text{if } ch_1^b(E).H^2 \neq 0, \\ +\infty & \text{if } ch_1^b(E).H^2 = 0 \end{cases}$$

where $ch_1^b(E).H^2 = ch_1(E).H^2 - bH^3 ch_0(E).$

• If
$$E \in \mathcal{A}(b)$$
, then $ch_1^b(E).H^2 \ge 0$.

- We say $E \in \mathcal{D}(X)$ is $\nu_{b,w}$ -(semi)stable if and only if
 - $E[k] \in \mathcal{A}(b)$ for some $k \in \mathbb{Z}$, and
 - For all non-trivial subobjects $F \hookrightarrow E[k]$ in $\mathcal{A}(b)$, we have

$$\nu_{b,w}(F) (\leq) \nu_{b,w}(E[k]/F)$$

 $\bullet \ \nu_{b,w}\mbox{-stability satisfies Harder-Narasimhan property.}$

Figure: (b, w)-plane & walls for an object $E \in \mathcal{D}(X)$

• Wall and Chamber Decomposition:

For any fixed $v \in K(X)$, there exists a set of line $\{\ell_i\}_{i \in I}$ in \mathbb{R}^2 such that the segments $\ell_i \cap U$ (called "walls") are locally finite and satisfy

- The v_{b,w}-(semi)stability of any E ∈ D(X) of class v is unchanged as (b, w) varies within any connected component (called a "chamber") of U \ ∪_{i∈I} ℓ_i.
- ② For any wall $\ell_i \cap U$ there is a strictly $\nu_{b,w}$ -semistable object $E \in \mathcal{D}(X)$ of class v along the wall ℓ_i which is unstable in one of the adjacent chambers.

• Wall and Chamber Decomposition:

For any fixed $v \in K(X)$, there exists a set of line $\{\ell_i\}_{i \in I}$ in \mathbb{R}^2 such that the segments $\ell_i \cap U$ (called "walls") are locally finite and satisfy

- The ν_{b,w}-(semi)stability of any E ∈ D(X) of class v is unchanged as (b, w) varies within any connected component (called a "chamber") of U \ ∪_{i∈l} ℓ_i.
- ② For any wall $\ell_i \cap U$ there is a strictly $\nu_{b,w}$ -semistable object $E \in \mathcal{D}(X)$ of class v along the wall ℓ_i which is unstable in one of the adjacent chambers.

Conjecture 2.1 (Bogomolov-Gieseker inequality (Bayer-Macri-Toda))

Any $\nu_{b,w}$ -semistable $E \in \mathcal{D}(X)$ satisfies

$$0 \leq Q_{b,w}(E) = (C_1^2 - 2C_0C_2)w + (3C_0C_3 - C_1C_2)b + (2C_2^2 - 3C_1C_3),$$

where $C_i := ch_i(E) \cdot H^{3-i}$.

BMT Conjecture has been proved in the following cases:

- X is projective space \mathbb{P}^3 [Macri], the quadric threefold [Schmidt] or, more generally, any Fano threefold of Picard rank one [Li],
- X an abelian threefold [Maciocia-Piyaratne], a Calabi-Yau threefold of abelian type, a Kummer threefold [Bayer-Macri-Stellari], or a product of an abelian variety and Pⁿ [Koseki],
- X with nef tangent bundle [Koseki],
- X is a quintic threefold [Li],
- X is Calabi-Yau threefold of complete intersection of quadratic and quartic hypersurfaces [Liu]
- X is a general weighted hypersurface in the weighted projective spaces $\mathbb{P}(1, 1, 1, 1, 2)$ or $\mathbb{P}(1, 1, 1, 1, 4)$ [Koseki].

• Fix a class

$$\mathsf{v} = (r, D, \beta, m) \in H^{2*}(X, \mathbb{Q})$$

with r > 0.

• Fix a class

$$\mathsf{v} = (r, D, \beta, m) \in H^{2*}(X, \mathbb{Q})$$

with r > 0.

 An object E ∈ A(b) of class v is ν_{b,w}-semistable for b < μ(v) and w ≫ 0 if and only it is a tilt-semistable sheaf.

• Fix a class

$$\mathsf{v} = (r, D, \beta, m) \in H^{2*}(X, \mathbb{Q})$$

with r > 0.

- An object E ∈ A(b) of class v is ν_{b,w}-semistable for b < μ(v) and w ≫ 0 if and only it is a tilt-semistable sheaf.
- For $n \gg 0$, take any section $s \colon \mathcal{O}_X(-n) \to E$ and consider $\operatorname{cok}(s)$,

$$E
ightarrow \operatorname{cok}(s)
ightarrow \mathcal{O}_X(-n)[1]$$
 $v_n := \operatorname{ch}(\operatorname{cok}(s)) = \left(r - 1, \ D + nH, \ eta - rac{n^2}{2}H^2, \ m + rac{n^3}{6}H^3
ight)$

• Fix a class

$$\mathsf{v} = (r, D, \beta, m) \in H^{2*}(X, \mathbb{Q})$$

with r > 0.

- An object E ∈ A(b) of class v is ν_{b,w}-semistable for b < μ(v) and w ≫ 0 if and only it is a tilt-semistable sheaf.
- For $n \gg 0$, take any section $s \colon \mathcal{O}_X(-n) \to E$ and consider $\operatorname{cok}(s)$,

$$E
ightarrow \operatorname{cok}(s)
ightarrow \mathcal{O}_X(-n)[1]$$
 $v_n \coloneqq \operatorname{ch}(\operatorname{cok}(s)) = \left(r - 1, \ D + nH, \ eta - rac{n^2}{2}H^2, \ m + rac{n^3}{6}H^3
ight)$

• There is a line ℓ_{JS} in \mathbb{R}^2 such that for $(b_0, w_0) \in \ell_{JS} \cap U$: any tilt-semistable sheaf E of class v is ν_{b_0, w_0} -semistable, and

• Fix a class

$$\mathsf{v} = (r, D, \beta, m) \in H^{2*}(X, \mathbb{Q})$$

with r > 0.

- An object E ∈ A(b) of class v is ν_{b,w}-semistable for b < μ(v) and w ≫ 0 if and only it is a tilt-semistable sheaf.
- For $n \gg 0$, take any section $s \colon \mathcal{O}_X(-n) \to E$ and consider $\operatorname{cok}(s)$,

$$E
ightarrow \operatorname{cok}(s)
ightarrow \mathcal{O}_X(-n)[1]$$
 $v_n \coloneqq \operatorname{ch}(\operatorname{cok}(s)) = \left(r - 1, \ D + nH, \ eta - rac{n^2}{2}H^2, \ m + rac{n^3}{6}H^3
ight)$

• There is a line ℓ_{JS} in \mathbb{R}^2 such that for $(b_0, w_0) \in \ell_{JS} \cap U$: any tilt-semistable sheaf E of class v is ν_{b_0, w_0} -semistable, and it has the same ν_{b_0, w_0} -slope as $\mathcal{O}_X(-n)[1]$.

• Fix a class

$$\mathsf{v} = (r, D, \beta, m) \in H^{2*}(X, \mathbb{Q})$$

with r > 0.

- An object E ∈ A(b) of class v is ν_{b,w}-semistable for b < μ(v) and w ≫ 0 if and only it is a tilt-semistable sheaf.
- For $n \gg 0$, take any section $s \colon \mathcal{O}_X(-n) \to E$ and consider $\operatorname{cok}(s)$,

$$E
ightarrow \operatorname{cok}(s)
ightarrow \mathcal{O}_X(-n)[1]$$
 $v_n := \operatorname{ch}(\operatorname{cok}(s)) = \left(r - 1, \ D + nH, \ eta - rac{n^2}{2}H^2, \ m + rac{n^3}{6}H^3
ight)$

 There is a line ℓ_{JS} in ℝ² such that for (b₀, w₀) ∈ ℓ_{JS} ∩ U: any tilt-semistable sheaf E of class v is ν_{b₀,w₀}-semistable, and it has the same ν_{b₀,w₀}-slope as O_X(-n)[1].
 ⇒ ℓ_{JS} is a wall for objects of class v_n which is called Joyce-Song wall.

Figure: Walls for objects of class v_n

• BMT conjecture implies the existence of a line ℓ_f such that there is no $\nu_{b,w}$ -semistable object of class v_n for (b, w) below ℓ_f .

- BMT conjecture implies the existence of a line ℓ_f such that there is no $\nu_{b,w}$ -semistable object of class v_n for (b, w) below ℓ_f .
- If r = 1, there is no wall for class v_n above ℓ_{JS} ,

- BMT conjecture implies the existence of a line ℓ_f such that there is no $\nu_{b,w}$ -semistable object of class v_n for (b, w) below ℓ_f .
- If r = 1, there is no wall for class v_n above ℓ_{JS} , so the cokernel of a Joyce-Song pair is slope-semistable, i.e. the map

 Ψ : $JS_n(v) \times Pic_0(X) \rightarrow M_{X,H}(v_n)$.

which sends $((I_C \otimes T, s), L)$ to $cok(s) \otimes L$ is well-defined.

- BMT conjecture implies the existence of a line ℓ_f such that there is no $\nu_{b,w}$ -semistable object of class v_n for (b, w) below ℓ_f .
- If r = 1, there is no wall for class v_n above ℓ_{JS} , so the cokernel of a Joyce-Song pair is slope-semistable, i.e. the map

 Ψ : $JS_n(v) \times Pic_0(X) \rightarrow M_{X,H}(v_n)$.

which sends $((I_C \otimes T, s), L)$ to $cok(s) \otimes L$ is well-defined.

- By analysing the destabilising factors along other possible walls for class v_n below ℓ_{JS} , we have shown that there is no wall below ℓ_{JS} .

- BMT conjecture implies the existence of a line ℓ_f such that there is no $\nu_{b,w}$ -semistable object of class v_n for (b, w) below ℓ_f .
- If r = 1, there is no wall for class v_n above ℓ_{JS} , so the cokernel of a Joyce-Song pair is slope-semistable, i.e. the map

 Ψ : $JS_n(v) \times Pic_0(X) \rightarrow M_{X,H}(v_n)$.

which sends $((I_C \otimes T, s), L)$ to $cok(s) \otimes L$ is well-defined.

- By analysing the destabilising factors along other possible walls for class v_n below ℓ_{JS} , we have shown that there is no wall below ℓ_{JS} . Thus any slope-semistable sheaf of class v_n is the cokernel of a Joyce-Song pair and the map Ψ is bijective.

- BMT conjecture implies the existence of a line ℓ_f such that there is no $\nu_{b,w}$ -semistable object of class v_n for (b, w) below ℓ_f .
- If r = 1, there is no wall for class v_n above ℓ_{JS} , so the cokernel of a Joyce-Song pair is slope-semistable, i.e. the map

 Ψ : $JS_n(v) \times Pic_0(X) \rightarrow M_{X,H}(v_n)$.

which sends $((I_C \otimes T, s), L)$ to $cok(s) \otimes L$ is well-defined.

- By analysing the destabilising factors along other possible walls for class v_n below ℓ_{JS} , we have shown that there is no wall below ℓ_{JS} . Thus any slope-semistable sheaf of class v_n is the cokernel of a Joyce-Song pair and the map Ψ is bijective.

• If r > 1, there could be walls above and below the JS wall.

Higher rank

Theorem 3.1

Given $(b, w) \in U$ and a $\nu_{b,w}$ -semistable object $F \in \mathcal{A}(b)$ of class v_n . If $b < \mu(F)$, then F is a sheaf.

Theorem 3.1

Given $(b, w) \in U$ and a $\nu_{b,w}$ -semistable object $F \in \mathcal{A}(b)$ of class v_n . If $b < \mu(F)$, then F is a sheaf.

• The proof is by induction on the rank r:

• If r = 1, the JS wall is the only wall for v_n .

Theorem 3.1

Given $(b, w) \in U$ and a $\nu_{b,w}$ -semistable object $F \in \mathcal{A}(b)$ of class v_n . If $b < \mu(F)$, then F is a sheaf.

- The proof is by induction on the rank r:
 - If r = 1, the JS wall is the only wall for v_n .
 - If r > 1 and $\mathcal{H}^{-1}(F) \neq 0$, then F gets destabilised by a sequence $F_1 \hookrightarrow F \twoheadrightarrow F_2$ where one of the F_i is a sheaf and the other one is an object of type v_n with rank smaller than r 1:

$$ch(F_j) = \left(r', D' + nH, \beta' - \frac{n^2}{2}H^2, m' + \frac{n^3}{6}H^3\right)$$

where $D'.H^2$, $\beta'.H$ and m' lie in bounded intervals determined by $D.H^2$, $\beta.H$ and m.

• There are two types of walls for sheaves of class *v_n* other than JS-wall. Let

$$E_1 \hookrightarrow E \twoheadrightarrow E_2$$

be a destabilising sequence along a wall ℓ .

• There are two types of walls for sheaves of class *v_n* other than JS-wall. Let

1

$$E_1 \hookrightarrow E \twoheadrightarrow E_2$$

be a destabilising sequence along a wall ℓ .

• Type (1) The destabilising objects E_1, E_2 are sheaves and ℓ lies in the "safe areas" of E_1 and E_2 .

• There are two types of walls for sheaves of class *v_n* other than JS-wall. Let

$$E_1 \hookrightarrow E \twoheadrightarrow E_2$$

be a destabilising sequence along a wall ℓ .

- Type (1) The destabilising objects E_1, E_2 are sheaves and ℓ lies in the "safe areas" of E_1 and E_2 .
- Type (2) One of the destabilising objects is a tilt-semistable sheaf and the other one is of type v_n for lower rank.

 Assume (X, O_X(1)) is a smooth complex projective Calabi-Yau 3-fold: K_X ≅ O_X and H¹(O_X) = 0.

- Assume (X, O_X(1)) is a smooth complex projective Calabi-Yau 3-fold: K_X ≅ O_X and H¹(O_X) = 0.
- By applying Joyce's Ringel-Hall algebra technology to any (b, w) ∈ U and a class α ∈ K(X) with ν_{b,w}(α) < +∞, we can define

$$J_{b,w}(\alpha) \in \mathbb{Q}$$

which 'counts' $\nu_{b,w}$ -semistable objects of class α .

- Assume (X, O_X(1)) is a smooth complex projective Calabi-Yau 3-fold: K_X ≅ O_X and H¹(O_X) = 0.
- By applying Joyce's Ringel-Hall algebra technology to any (b, w) ∈ U and a class α ∈ K(X) with ν_{b,w}(α) < +∞, we can define

$$J_{b,w}(\alpha) \in \mathbb{Q}$$

which 'counts' $\nu_{b,w}$ -semistable objects of class α .

 Wall-crossing formula: suppose (b, w⁺) and (b, w⁻) are points on two sides of a wall for class α.

$$J_{b,w^+}(\alpha) = J_{b,w^-}(\alpha) + \sum_{\substack{m \ge 2, \alpha_1, \dots, \alpha_m \in C(\mathcal{A}(b)), \\ \sum_{i=1}^m \alpha_i = \alpha, \nu_{b,w_0}(\alpha_i) = \nu_{b,w_0}(\alpha) \forall i}} C_{+,-}(\alpha_1, \dots, \alpha_m) \prod_{i=1}^m J_{b,w^-}(\alpha_i).$$

• When
$$m = 2$$
,

$$C_{+,-}(\alpha_1, \alpha_2) + C_{+,-}(\alpha_2, \alpha_1) = (-1)^{\chi(\alpha_1, \alpha_2) - 1} \chi(\alpha_1, \alpha_2).$$

• When *m* = 2,

$$C_{+,-}(\alpha_1, \alpha_2) + C_{+,-}(\alpha_2, \alpha_1) = (-1)^{\chi(\alpha_1, \alpha_2) - 1} \chi(\alpha_1, \alpha_2).$$

• Let (b, w^{\pm}) be points just above and below ℓ_{JS} .

$$J_{b,w^+}(v_n) = J_{b,w^-}(v_n) + (-1)^{\chi(v(n))-1} \chi(v(n)) \cdot J_{b,\infty}(v) \cdot \# H^2(X,\mathbb{Z})_{tors} + \dots$$

We have included one of the m = 2 terms with α_1 , $\alpha_2 = v$, $[\mathcal{O}(-n)[1]]$.

• There is no wall for objects of class v either on or above ℓ_{JS} , so $J_{b,w^-}(v) = J_{b,\infty}(v)$.

•
$$J_{b,w^{-}} ig[\mathcal{O}(-n)[1] ig] = \# \operatorname{Pic}_{0}(X) = \# H^{2}(X,\mathbb{Z})_{tors}$$
 .

• All other terms involve only $J_{b,w^-}(\alpha_i)$ where $0 \leq \operatorname{rank}(\alpha_i) \leq r - 1$.

From (b, w[±]), after passing finitely many walls we can reach below ℓ_f or large volume limit w ≫ 0. Hence there is a universal formula

 $J_{b,w^{\pm}}(v_n) = F_{b,w^{\pm}}(J_{b,\infty}(\alpha_i))$ in classes α_i with $0 \leq \operatorname{rank}(\alpha_i) \leq \operatorname{rank}(v_n)$

From (b, w[±]), after passing finitely many walls we can reach below ℓ_f or large volume limit w ≫ 0. Hence there is a universal formula

 $J_{b,w^{\pm}}(v_n) = F_{b,w^{\pm}}(J_{b,\infty}(\alpha_i))$ in classes α_i with $0 \leq \operatorname{rank}(\alpha_i) \leq \operatorname{rank}(v_n)$

• The JS wall-crossing formula yields a universal formula

 $J_{b,\infty}(\mathsf{v}) = F(J_{b,\infty}(\beta_j))$ with $0 \leq \operatorname{rank}(\beta_j) \leq r-1 \,\,\forall j.$

From (b, w[±]), after passing finitely many walls we can reach below ℓ_f or large volume limit w ≫ 0. Hence there is a universal formula

 $J_{b,w^{\pm}}(v_n) = F_{b,w^{\pm}}(J_{b,\infty}(\alpha_i))$ in classes α_i with $0 \leq \operatorname{rank}(\alpha_i) \leq \operatorname{rank}(v_n)$

• The JS wall-crossing formula yields a universal formula

$$J_{b,\infty}(\mathsf{v}) = F(J_{b,\infty}(\beta_j))$$
 with $0 \leq \operatorname{rank}(\beta_j) \leq r-1 \,\,\forall \, j.$

• For any class $\alpha \in K(X)$ with non-negative rank,

 $J_{b,\infty}(\alpha) = J(\alpha) + F_{\alpha}(J(\alpha_k)) \text{ with } 0 \leq \operatorname{rank}(\alpha_k) < \operatorname{rank}(\alpha) \, \forall j.$

• Along any wall for class v_n except JS wall: one of the destabilising factors E_1 is of rank 1 and the other E_i 's for i > 1 are all of rank zero.

- Along any wall for class v_n except JS wall: one of the destabilising factors E_1 is of rank 1 and the other E_i 's for i > 1 are all of rank zero.
- Since $\frac{ch_2(E_i)H}{ch_1(E_i)H^2} = \frac{ch_2(E_j)H}{ch_1(E_i)H^2}$ for i, j > 1, we have $\chi(E_i, E_j) = 0$.

- Along any wall for class v_n except JS wall: one of the destabilising factors E_1 is of rank 1 and the other E_i 's for i > 1 are all of rank zero.
- Since $\frac{ch_2(E_i)H}{ch_1(E_i)H^2} = \frac{ch_2(E_j)H}{ch_1(E_j)H^2}$ for i, j > 1, we have $\chi(E_i, E_j) = 0$.

$$DT(x, y, z) := \sum_{e^{kH}(1, 0, -\beta, -m) \in M_{\nu, n}} I_{m, \beta} x^k y^{-\beta + \frac{1}{2}k^2 H^2} z^{-m - k\beta H + \frac{1}{6}k^3 H^3}.$$

$$A_{v,n} \coloneqq DT(x, y, z) \cdot \prod_{\substack{\alpha = (0, \, kH, \, \beta, \, m) \in K(X) \\ 0 < k \le n \\ \frac{\beta \cdot H}{kH^3} < \mu(\ell_{JS})}} \exp\left((-1)^{\chi_{\alpha}} \chi_{\alpha} J(\alpha) x^k y^{\beta} z^m\right)$$

- Along any wall for class v_n except JS wall: one of the destabilising factors E_1 is of rank 1 and the other E_i 's for i > 1 are all of rank zero.
- Since $\frac{ch_2(E_i)H}{ch_1(E_i)H^2} = \frac{ch_2(E_j)H}{ch_1(E_j)H^2}$ for i, j > 1, we have $\chi(E_i, E_j) = 0$.

$$DT(x, y, z) := \sum_{e^{kH}(1, 0, -\beta, -m) \in M_{\nu, n}} I_{m, \beta} x^k y^{-\beta + \frac{1}{2}k^2 H^2} z^{-m - k\beta H + \frac{1}{6}k^3 H^3}.$$

$$A_{\nu,n} \coloneqq DT(x, y, z) \cdot \prod_{\substack{\alpha = (0, \, kH, \, \beta, \, m) \in \mathcal{K}(X) \\ 0 < k \leq n \\ \frac{\beta + H}{kH^3} < \mu(\ell_{JS})}} \exp\left((-1)^{\chi_{\alpha}} \chi_{\alpha} J(\alpha) x^k y^{\beta} z^m\right)$$

Theorem 4.1 (F)

The coefficient of
$$x^{n+1}y^{\tilde{\beta}-\frac{n^2H^2}{2}}z^{\tilde{m}+\frac{n^3H^3}{6}}$$
 in the series $\frac{(-1)^{\chi(\mathcal{O}_X(-n),\nu)+1}}{\chi(\mathcal{O}_X(-n),\nu)}A_{\nu,n}$ is equal to $J(\nu)$.

Thank you!