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The talk is based on:

- Joint project with Richard Thomas
@ [FT1] Curve counting and S-duality, arXiv:2007.03037

e [FT2] Rank r DT theory from rank 0, arXiv:2103.02915
e [FT3] Rank r DT theory from rank 1, arXiv:2108.02828

- [F] Explicit formulae for rank zero DT invariants and the OSV
conjecture, arXiv:2203.10617
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© Setup

© Weak Bridgeland stability conditions
© !dea of proof

@ Wall-crossing formulae
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o Let (X,0(1)) be a smooth polarised complex projective threefold, H :=
c1(0(1)).
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o Let (X,0(1)) be a smooth polarised complex projective threefold, H :=

c1(0(1)).
@ The p-slope of a coherent sheaf £ on X is

2 .
pn(E) = 4 G i cho(E) 20,
+oo if cho(E) =0.

e E € Coh(X) is puy-(semi)stable if 0 # E' C E, un(E") (<) uu(E/E’).

4/22



Let (X, O(1)) be a smooth polarised complex projective threefold, H :=
c1(0(1)).
The p1;-slope of a coherent sheaf E on X is

2 .
pn(E) = 4 G i cho(E) 20,
+oo if cho(E) =0.

E € Coh(X) is up-(semi)stable if 0 £ E' C E, un(E") (<) pu(E/E").
Any py-semistable sheaf E satisfies

Ap(E) = (chy(E).H?)? — 2H3 cho(E) chy(E).H > 0.
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e Bayer-Macri-Toda generalised p14-stability on Coh(X) to vy, ,-stability
on the bounded derived category of coherent sheaves on X for (b, w) €
R x R>0.
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@ BMT conjectured a Bogomolov-Gieseker type inequality involving chs
for vp, ,-semistable objects.
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e Bayer-Macri-Toda generalised p14-stability on Coh(X) to vy, ,-stability
on the bounded derived category of coherent sheaves on X for (b, w) €
R x R>0.

@ BMT conjectured a Bogomolov-Gieseker type inequality involving chs
for vp, ,-semistable objects.

@ The conjecture is now known to hold for many threefolds such as P3
or the quintic 3-fold, ...

@ We only need a weakening of BMT conjecture, denoted by BG.

@ Assume X is a Calabi-Yau 3-fold: Kx = Ox and H(X,Ox) = 0.
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Rank r DT Theory

e For a € K(X), consider the moduli space M3$5(«) and M3i(cr) of
H-Gieseker (semi)stable sheaves of class .
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Rank r DT Theory

e For a € K(X), consider the moduli space M3$5(«) and M3i(cr) of
H-Gieseker (semi)stable sheaves of class .

o For characters o with M3j(a) = M3j(«r), Donaldson and Thomas
defined the invariants

J(a) ::/ 1 € Z
MG (a)]v

@ Joyce and Song defined generalized Donaldson-Thomas invariants

J(a) €Q

for all @ € K(X), which ‘counts’ H-Gieseker semistable sheaves of class
a, with the following properties:
@ J(«a) € Q is unchanged by deformation of the Calabi-Yau 3-fold X.

@ If 7,7 are two (weak) stability conditions on X, there is an explicit
change of stability condition formula giving J™(«) in terms of the J7(3).
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Rank r DT Theory from rank 1

Theorem 1.1 (Feyzbakhsh-Thomas)

Let (X,0x(1)) be a Calabi-Yau 3-fold satisfying the conjectural BMT in-
equality BG. Then for fixed v € K(X) of rank > 0,

J(V) = F(J(al), J(Ozz), 50 )

is a universal polynomial in invariants J(«;), with all «; of rank 1. If X
also satisfies the MNOP conjecture then we can replace the J(c;) by the
Gromov-Witten invariants of X.

v
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Weak Stability Conditions

@ The py-slope of a coherent sheaf E on X is

chi(E).H?> .
pn(E) = { oy if cho(E) 70,
400 if cho(E) =0.

@ Denote the maximum slope in the Harder-Narasimhan filtration by
u;(E) and minimum by ., (E).
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Weak Stability Conditions

The puyy-slope of a coherent sheaf E on X is

chi(E).H?> .
pn(E) = { oy if cho(E) 70,
400 if cho(E) =0.

@ Denote the maximum slope in the Harder-Narasimhan filtration by
u;(E) and minimum by ., (E).
Let D(X) := DPCoh(X). For any b € R, define

A(b) = {ET L E% . pit(kerd) < b, pp(cokd) > b} C D(X)

T. Bridgeland showed that A(b) is the heart of a bounded t-structure
on D(X).
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Weak Bridgeland stability conditions

o Forw > %2, define the slope

ch?(E).H2

cha(E)-Howeho(E)HP i cpb(E) 12 £
vpw(E) = 7
bw(E) oo if chb(E).H>=0

where ch?(E).H? = chy(E).H? — bH3 chy(E).
o If E € A(b), then ch?(E).H? > 0.
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Weak Bridgeland stability conditions

o Forw > %2, define the slope

chy(E).H—wcho(E)H? . b 2
vpw(E) = 2 Chf'(E)-Hg it chi(E).H" 70,
’ +00 if ch?(E).H>=0

where ch?(E).H? = chy(E).H? — bH3 chy(E).
o If E € A(b), then ch?(E).H? > 0.

o We say E € D(X) is v, ,~(semi)stable if and only if

o E[k] € A(b) for some k € Z, and
o For all non-trivial subobjects F — E[k] in A(b), we have

V,w(F) (S) vo,u (EK]/F)

° v, ,~stability satisfies Harder-Narasimhan property.
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Weak Stability Conditions

51 U
0>

A\
oy

Figure: (b, w)-plane & walls for an object E € D(X)
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Weak Stability Conditions

e Wall and Chamber Decomposition:
For any fixed v € K(X), there exists a set of line {¢;};c; in R? such
that the segments ¢; N U (called “walls™) are locally finite and satisfy

@ The v, ,-(semi)stability of any E € D(X) of class v is unchanged as
(b, w) varies within any connected component (called a “chamber") of
U\Uje, 4

@ For any wall ¢; N U there is a strictly v ,,-semistable object E € D(X)
of class v along the wall ¢; which is unstable in one of the adjacent
chambers.
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e Wall and Chamber Decomposition:
For any fixed v € K(X), there exists a set of line {¢;};c; in R? such
that the segments ¢; N U (called “walls™) are locally finite and satisfy

@ The v, ,-(semi)stability of any E € D(X) of class v is unchanged as
(b, w) varies within any connected component (called a “chamber") of
U\Uje, 4

@ For any wall ¢; N U there is a strictly v ,,-semistable object E € D(X)
of class v along the wall ¢; which is unstable in one of the adjacent
chambers.

Conjecture 2.1 (Bogomolov-Gieseker inequality (Bayer-Macri-Toda))

Any v, ,~semistable E € D(X) satisfies

0< Qow(E) = (CF—-2GG )w+ (3GG — GG )b+ (2C —3G1G),

where C; := ch;(E).H3~'
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Weak Stability Conditions

BMT Conjecture has been proved in the following cases:

e X is projective space P3 [Macri], the quadric threefold [Schmidt] or,
more generally, any Fano threefold of Picard rank one [Li],

@ X an abelian threefold [Maciocia-Piyaratne], a Calabi-Yau threefold of
abelian type, a Kummer threefold [Bayer-Macri-Stellari], or a product
of an abelian variety and P" [Koseki],

X with nef tangent bundle [Koseki],
X is a quintic threefold [Li],

X is Calabi-Yau threefold of complete intersection of quadratic and
quartic hypersurfaces [Liu]

@ X is a general weighted hypersurface in the weighted projective spaces
P(1,1,1,1,2) or P(1,1,1,1,4) [Koseki.
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Joyce-Song wall

o Fix a class
v=(r,D,8,m) € H2*(X,Q)

with r > 0.
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@ An object E € A(b) of class v is v} ,-semistable for b < p(v) and
w > 0 if and only it is a tilt-semistable sheaf.
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2 3
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Joyce-Song wall

Fix a class
v=(r,D,B,m) € H*(X,Q)
with r > 0.
An object E € A(b) of class v is v -semistable for b < p(v) and

w > 0 if and only it is a tilt-semistable sheaf.
For n>> 0, take any section s: Ox(—n) — E and consider cok(s),

E — cok(s) = Ox(—n)[1]
n? n3
vy = ch(cok(s)) = (r -1, D+nH, B — ?H2, m+ 6H3>

There is a line £ 5 in R? such that for (b, wy) € €45 N U:
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Joyce-Song wall

o Fix a class
v={(r,D,3, m)e H*(X,Q)
with r > 0.

@ An object E € A(b) of class v is v} ,-semistable for b < p(v) and
w > 0 if and only it is a tilt-semistable sheaf.

@ For n>> 0, take any section s: Ox(—n) — E and consider cok(s),

E — cok(s) = Ox(—n)[1]

n2 n3
vy = ch(cok(s)) = (r -1, D+nH, g 7H2, m+ 6H3>
@ There is a line £ 5 in R? such that for (bg, wo) € €45 N U:
any tilt-semistable sheaf E of class v is v, ,,-semistable, and
it has the same v, ,-slope as Ox(—n)[1].
= (s is a wall for objects of class v,, which is called Joyce-Song wall.
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Joyce-Song wall

E and Ox(}n)[1] have the/same slope

A\
o

Figure: Walls for objects of class v,
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Joyce-Song wall

@ BMT conjecture implies the existence of a line ¢¢ such that there is no
Vb, w-semistable object of class v, for (b, w) below /.
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Joyce-Song wall

@ BMT conjecture implies the existence of a line ¢¢ such that there is no
Vb, w-semistable object of class v, for (b, w) below /.

o If r = 1, there is no wall for class v, above £ s, so the cokernel of a
Joyce-Song pair is slope-semistable, i.e. the map

V: JS,(v) x Picg(X) — Mx H(va).

which sends ((Ic ® T,s),L) to cok(s) ® L is well-defined.

15/22



Joyce-Song wall

@ BMT conjecture implies the existence of a line ¢¢ such that there is no
Vb, w-semistable object of class v, for (b, w) below /.

o If r = 1, there is no wall for class v, above £ s, so the cokernel of a
Joyce-Song pair is slope-semistable, i.e. the map

V: JS,(v) x Picg(X) — Mx H(va).
which sends ((Ic ® T,s),L) to cok(s) ® L is well-defined.

- By analysing the destabilising factors along other possible walls for
class v, below £ s, we have shown that there is no wall below £ s.

15/22



Joyce-Song wall

@ BMT conjecture implies the existence of a line ¢¢ such that there is no
Vb, w-semistable object of class v, for (b, w) below /.

o If r = 1, there is no wall for class v, above £ s, so the cokernel of a
Joyce-Song pair is slope-semistable, i.e. the map

V: JS,(v) x Picg(X) — Mx H(va).

which sends ((Ic ® T,s),L) to cok(s) ® L is well-defined.

- By analysing the destabilising factors along other possible walls for
class v, below £ s, we have shown that there is no wall below £ s.
Thus any slope-semistable sheaf of class v, is the cokernel of a Joyce-
Song pair and the map V is bijective.

15/22



Joyce-Song wall

@ BMT conjecture implies the existence of a line ¢¢ such that there is no
Vb, w-semistable object of class v, for (b, w) below /.

o If r = 1, there is no wall for class v, above £ s, so the cokernel of a
Joyce-Song pair is slope-semistable, i.e. the map

V: JS,(v) x Picg(X) — Mx H(va).

which sends ((Ic ® T,s),L) to cok(s) ® L is well-defined.

- By analysing the destabilising factors along other possible walls for
class v, below £ s, we have shown that there is no wall below £ s.
Thus any slope-semistable sheaf of class v, is the cokernel of a Joyce-
Song pair and the map V is bijective.

@ If r > 1, there could be walls above and below the JS wall.
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Higher rank

Given (b,w) € U and a v, ,-semistable object F € A(b) of class v,. If
b < u(F), then F is a sheaf.
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@ The proof is by induction on the rank r:
o If r =1, the JS wall is the only wall for v,.
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Higher rank

Given (b,w) € U and a v, ,-semistable object F € A(b) of class v,. If
b < u(F), then F is a sheaf.

@ The proof is by induction on the rank r:

o If r =1, the JS wall is the only wall for v,.

o If r > 1 and H7Y(F) # 0, then F gets destabilised by a sequence
Fi < F — F, where one of the F; is a sheaf and the other one is an
object of type v, with rank smaller than r — 1:

2 3
ch(F}) = (H, D'+ nH. B = ZHm' + "6H3)

where D’.H?, 8’.H and m'’ lie in bounded intervals determined by D.H?,
B.H and m.
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Walls in higher rank

@ There are two types of walls for sheaves of class v, other than JS-wall.
Let
E1 — E —» E2

be a destabilising sequence along a wall /.
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Walls in higher rank

@ There are two types of walls for sheaves of class v, other than JS-wall.
Let
E1 — E —» E2

be a destabilising sequence along a wall /.

@ Type (1) The destabilising objects Ej, E, are sheaves and ¢ lies in the
“safe areas” of E; and Es.

@ Type (2) One of the destabilising objects is a tilt-semistable sheaf and
the other one is of type v, for lower rank.
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Wall-crossing formulae

@ Assume (X, Ox(1)) is a smooth complex projective Calabi-Yau 3-fold:
KX = OX and Hl(Ox) =0.
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@ Assume (X, Ox(1)) is a smooth complex projective Calabi-Yau 3-fold:
KX = OX and Hl(OX) =0.

e By applying Joyce's Ringel-Hall algebra technology to any (b, w) € U
and a class a € K(X) with v, () < 400, we can define

Jb’W(Oé) c Q

which ‘counts’ vy, ,,-semistable objects of class .

@ Wall-crossing formula: suppose (b, w") and (b, w™) are points on two
sides of a wall for class a.

Jb7W+(Oz) =

Jb,W* (Ol) + Z C+,—(a13"'7am)HJb,W* (ai)'
m>2, ai,...,am € C(A(b)), i=1
SOl i =y v wg ()=, (@) Vi
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Joyce-Song wall

@ When m = 2,

C —(a1,a2) + Cp (g, 1) = (—1)X*2) "y (ay, ).
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Joyce-Song wall

@ When m = 2,

Ci—(01,02) + Ci (02, 01) = (—1)X@0) (0, a).

o Let (b, w) be points just above and below /5.
Jb,w*(Vn) = Jb,w*(vn) +( )X(v m)-1 ( (”)) Jb,OO(V) : #H2(XaZ)tors ...

We have included one of the m = 2 terms with a, ap = v, [O(—n)[1]].

There is no wall for objects of class v either on or above f;5, so
Jb,w— (V) = Jb,OO(V)'

Ibw— [(’)(—n)[l]] = # Picy(X) = #H?*(X, Z)tors -

o All other terms involve only Jp, ,— () where 0 < rank(a;) < r —1.
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Wall-crossing formulae

e From (b, w?), after passing finitely many walls we can reach below /¢
or large volume limit w > 0. Hence there is a universal formula

Jbwt(Vn) = Fpwt(Iboo(i)) in classes a;j with 0 < rank (o) < rank (v,)
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Wall-crossing formulae

e From (b, w?), after passing finitely many walls we can reach below /¢
or large volume limit w > 0. Hence there is a universal formula

Jbwt(Vn) = Fpwt(Iboo(i)) in classes a;j with 0 < rank (o) < rank (v,)

@ The JS wall-crossing formula yields a universal formula

me(v) = F(pro(ﬁj)) with 0 < rank(ﬁj) <r—-1Vj.

e For any class a € K(X) with non-negative rank,

Iboo(a) = J(a) + Fo(J(ak)) with 0 < rank(ay) < rank(a) V.
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Rank 2 class v = (2, H, 3, ) when Pic(X) = Z.H

@ Along any wall for class v, except JS wall: one of the destabilising
factors Ej is of rank 1 and the other E;'s for i > 1 are all of rank zero.
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factors Ej is of rank 1 and the other E;'s for i > 1 are all of rank zero.

Ch2(E,‘)H - Chz(Ej)H

® Since oy = chy(E;) 2

for i,j > 1, we have x(E;, Ej) = 0.
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Rank 2 class v = (2, H, 3, ) when Pic(X) = Z.H

@ Along any wall for class v, except JS wall: one of the destabilising
factors Ej is of rank 1 and the other E;'s for i > 1 are all of rank zero.

ChQ(E,')H - Chz(Ej)H

® Since oy = chy(E;) 2

for i,j > 1, we have x(E;, Ej) = 0.

DT(oy.2)im S g Xy P ke
ek(1,0, -3, —m) e M, ,

Av,n = DT(vavz) : H exp ((_1)Xa Xo J(a) XkyBZm)
a=(0, kH, 8, m) € K(X)
0< k<n
ZA <nlts)
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Rank 2 class v = (2, H, 3, ) when Pic(X) = Z.H

@ Along any wall for class v, except JS wall: one of the destabilising
factors Ej is of rank 1 and the other E;'s for i > 1 are all of rank zero.

ChQ(E,')H - Chz(Ej)H

® Since oy = chy(E;) 2

for i,j > 1, we have x(E;, Ej) = 0.

DT(oy.2)im S g Xy P ke
ek(1,0, -3, —m) e M, ,

Av,n = DT(vavz) : H exp ((_1)Xa Xo J(a) XkyBZm)
a=(0, kH, 8, m) € K(X)
0< k<n
ZA <nlts)

Theorem 4.1 (F)

n2H2 ~ n3H3 —1 X(OX(_")7V)+1

The coefficient ofx"+1y57 2 7z %6 in the series WAW, is

equal to J(v).
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Thank youl!
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