Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook

Study of a rare heavy-flavoured particle decay at FCC-*ee* including τ particles in the final state

Tristan Miralles

25th of June

Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook

2 Topological reconstruction method

3 Analysis without backgrounds of $B^0 \rightarrow K^* \tau^+ \tau^-$ reconstruction

4 Backgrounds

Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook
•				
Objectives				

- Study of the rare heavy-flavoured decay $B^0 \rightarrow K^* \tau^+ \tau^-$ at FCC-ee
- Which one is not observed due to a weak SM prediction branching fraction $\mathcal{O}(10^{-7})$
- Electroweak penguin decay process
- Use of a specific channels : $\tau \to \pi \pi \pi \nu$ and $K^* \to K \pi$
- 10 particles in final states $(K, 7\pi, \nu, \bar{\nu})$
- 2 neutrinos which are not detected
- Goal : explore the feasability of the measurement and give the requirements on a detector to study $B^0 \rightarrow K^* \tau^+ \tau^-$

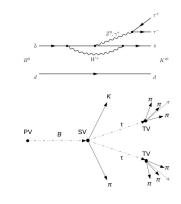


Figure – Quark-level transition and decay topology

Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook
	\odot			
Neutrinos				

To fully reconstruct the *B* invariant-mass we need :

- Momentum of all final particles (including neutrinos)
- The knowledge of the decay lengths together with the tau mass can be used to determine the missing coordinates
- We use energy-momentum conservation at tertiary (or τ decay) vertex with respect to τ direction

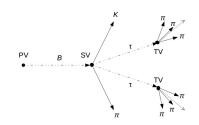
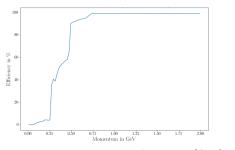


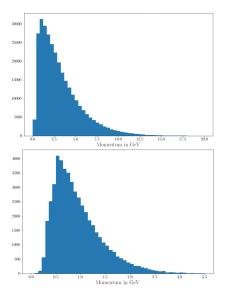
Figure – The dotted lines represent the non-reconstructed particles. The plain lines are the particles that can be reconstructed in the detector.

$$egin{aligned} & p_{
u_{ au}}^{\perp} = -p_{\pi_t}^{\perp} \ & p_{
u_{ au}}^{\parallel} = rac{((m_{ au}^2 - m_{\pi_t}^2) - 2p_{\pi_t}^{\perp,2})}{2(p_{\pi_t}^{\perp,2} + m_{\pi_t}^2)}.p_{\pi_t}^{\parallel} \pm rac{\sqrt{(m_{ au}^2 - m_{\pi_t}^2)^2 - 4m_{ au}^2 p_{\pi_t}^{\perp,2}}}{2(p_{\pi_t}^{\perp,2} + m_{\pi_t}^2)}.E_{\pi_t}. \end{aligned}$$

Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook
	00			
Selection rule				

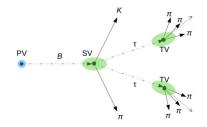
There is a quadratic ambiguity on each neutrinos momentum's!


- \rightarrow The ambiguities propagate to tau and B reconstruction
- ightarrow 4 possibilities by taking all +/- combination for the two neutrinos
- \Rightarrow A selection rule is needed to choose the right possibility


 \longrightarrow From the energy-momentum conservation for *B* decay, we have a condition between our 2 tau's and the *K*^{*} with respect to the *B* direction

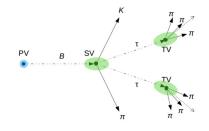
$$p_{\tau_{-}^{+}} = -\frac{\vec{p}_{K_{+}}^{\perp} \cdot \vec{e}_{\tau_{-}^{+}}}{1 - (\vec{e}_{\tau_{+}^{+}} \cdot \vec{e}_{B})^{2}} - p_{\tau_{+}^{-}} \cdot \frac{\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{\tau_{+}^{-}} - (\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{B})(\vec{e}_{\tau_{+}^{-}} \cdot \vec{e}_{B})}{1 - (\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{B})^{2}}$$

- 100000 events are generated (Pythia, EvtGen) for $B^{0} \rightarrow K^{*}\tau^{+}\tau^{-} \Rightarrow$ at least 100000 B^{0} are expected
- Momentum resolution (FCC IDEA, Delphes) → not all the charged particles of the signal final state can be reconstructed
- The efficiency drops at low momenta
- Average momentum of the charge final state particles is modest because of the large multiplicity of the signal decay
- The minimum momentum of the pions from tau particles is less than a GeV



\Rightarrow almost 50% of B^0 reconstructed

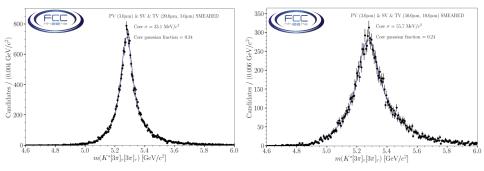
Study of a rare heavy-flavoured particle decay at FCC-ee including au particles in the final state


Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook
		00000000		
Transverse, longi	tudinal smearing and observable			

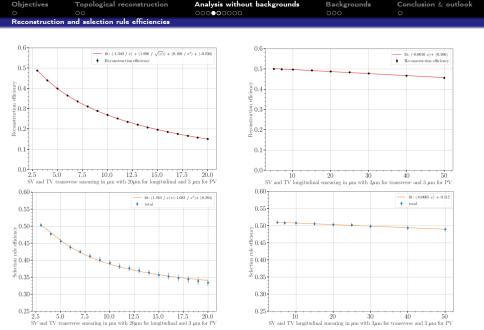
- No vertex resolution → use of a smearing to simulate a resolution effect on the vertices
- PV : 3D normal law of 3 µm width (conveniently)
- SV & TV → ellipsoid (decaying particle direction as reference) :
 - longitudinal
 - transverse
- Investigate those resolution impact on several quantities
- Fixed resolution taken with reference normal law

Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook
		00000000		
Transverse, longi	itudinal smearing and observable			

- No vertex resolution → use of a smearing to simulate a resolution effect on the vertices
- PV : 3D normal law of 3 µm width (conveniently)
- SV & TV → ellipsoid (decaying particle direction as reference) :
 - longitudinal
 - transverse
- Investigate those resolution impact on several quantities
- Fixed resolution taken with reference normal law



Observable


- B⁰ invariant mass
- Fit : Opportunistic three-Gaussian function model
- Fit performed with zfit

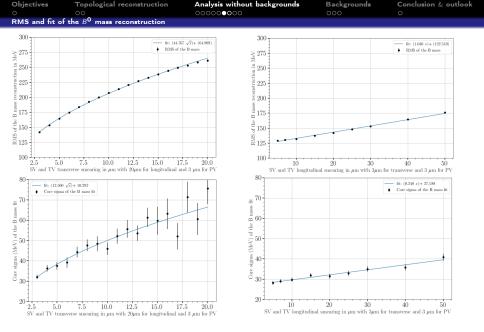
\Rightarrow investigate vertices resolution impact on efficiencies, RMS and model

 B^0 mass distribution for the correct solution with (left) $20/3 \,\mu$ m resolution (asymptotic goal) and (right) $50/10 \,\mu$ m (less ambitious goal) \Rightarrow vertex resolution is probably the most demanding requirement on the detector

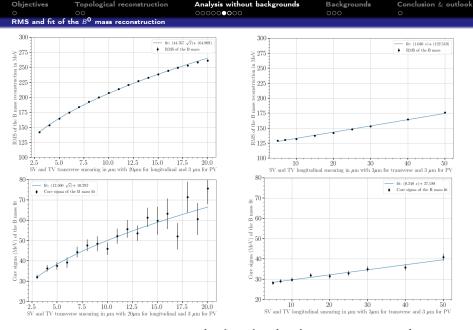
Objectives Topological reconstruction 0 00 Reconstruction and selection rule efficiencies Analysis without backgrounds

Backgrounds

Conclusion & outlook


Reconstruction efficiency

- Top left as function of transverse smearing and top right as function of longitudinal smearing
- Maximum of 50%
- Strong dependence with transverse smearing :
 - fall of 35%
 - fit with 4 free parameter
- Weak dependence with longitudinal smearing :
 - fall of 5%
 - linear fit
- 60 pseudo-experiments are used


Selection rule efficiency

- Bottom left as function of transverse smearing and bottom right as function of longitudinal smearing
- Maximum of 50%
- Strong dependence with transverse smearing :
 - fall of 16%
 - fit with 3 free parameter
- Weak dependence with longitudinal smearing :
 - fall of 2%
 - linear fit
- Always a weak efficiency \rightarrow use the truth right right solution in the following

 \Rightarrow transverse resolution has more impact than longitudinal resolution

Tristan Miralles

\Rightarrow transverse resolution is the key parameter!

Objectives Topological reconstruction \circ $\circ \circ$ RMS and fit of the B^0 mass reconstruction Analysis without backgrounds

Backgrounds

Conclusion & outlook

RMS

- Top left as function of transverse smearing and top right as function of longitudinal smearing
- RMS is a characteristic quantity of the distribution, in dependant to any fit
- Strong dependence with transverse smearing :
 - increase of 150 MeV
 - square root fit
- Weak dependence with longitudinal smearing :
 - increase of 50 MeV
 - linear fit

Core sigma

- Bottom left as function of transverse smearing and bottom right as function of longitudinal smearing
- Sigma of the narrower Gaussian of the model
- Strong dependence with transverse smearing :
 - increase of 50 MeV
 - square root fit
- Weak dependence with longitudinal smearing :
 - increase of 10 MeV
 - linear fit
- Big uncertainties because 10 pseudo-experiments are used

 \Rightarrow transverse resolution is the key parameter !

Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook
		000000000		
Vertices relative	importance			

With $3\,\mu m$ (PV), $20\,\mu m - 3\,\mu m$ (longitudinal-transverse for SV & TV) :

Configuration	Reconstruction efficiency (%)	Selection rule efficiency (%)	B ⁰ mass RMS (MeV)	Fit core sigma (MeV)
PV, SV, TV off	87.31 ± 0.15	93.56 ± 0.12	16.66 ± 0.06	$\textbf{4.23} \pm \textbf{0.09}$
PV on / SV, TV off	87.31 ± 0.15	69.51 ± 0.22	16.66 ± 0.06	$\textbf{4.23} \pm \textbf{0.09}$
PV, SV on / TV off	55.51 ± 0.22	56.13 ± 0.30	123.42 ± 0.52	25.75 ± 0.80
PV, TV on / SV off	57.23 ± 0.22	66.51 ± 0.28	112 ± 0.47	22.62 ± 0.60

 \bullet Secondary vertex \rightarrow main driver of the overall performance

• Primary vertex \rightarrow marginal impact

Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook
		00000000		
Expected number	r of events			

The knowledge of the reconstruction efficiency allows us to compute the expected number of B^0 decays reconstructed at FCC-ee :

 $\mathcal{N}_{K^*\tau\tau\to K7\pi2\nu} = \mathcal{N}_Z.BR(Z\to b\bar{b}).2f_d.BR(K^*\tau\tau).BR(\tau\to\pi\pi\pi\nu)^2.BR(K^*\to K\pi).\epsilon_{reco}$

Where :

• $N_7 = 5 \times 10^{12}$ the expected number of Z produced

•
$$BR(Z \rightarrow b\bar{b}) = 0.1512$$

- $f_d = 0.43$ the hadronisation term
- $BR(K^*\tau\tau) = 1.30 \times 10^{-7}$ the SM predicted branching fraction

•
$$BR(\tau \rightarrow \pi\pi\pi\nu) = 9.31 \times 10^{-2}$$

•
$$BR(K^* \rightarrow K\pi) = 0.69$$

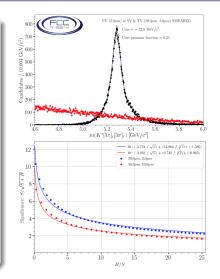
• $\epsilon_{reco} = 0.25 \ (0.5 \times 0.5)$ for a smearing $3 \ \mu m/20 \ \mu m$

$$\Rightarrow \mathcal{N}_{K^*\tau\tau \to K7\pi 2\nu} \approx 130$$

Note : could be improved a bit by taking in addition other channels for τ : $\tau \to \pi \pi \pi \pi^0 \nu$ for example \to potential factor two

Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook
			000	
Backgrounds ide	ntification			

- Signal event $B^0 \to K^* \tau^+ \tau^-$ necessary to validate reconstruction method and provides building blocks of the resolution performance
- Goal : showing that dominant backgrounds could be rejected
- The reconstruction leads to search the final state : $K7\pi$
- Relevant backgrounds are the ones with a similar final states


Next step \Rightarrow build a table of the possible backgrounds with the visible BF and the list of additional missing particle (in addition of the two ν 's) for each of them

Objectives Top	pological recons		Analysis without backgrounds	Backgrounds ○●○	Conclusion & outlook O
Backgrounds identifie	cation				
Decay		BF (SM/meas.)	Intermediate decay	Visible BF	Additional missing particles
Decay mod $B^0 o K^*$		$1.30 imes10^{-7}$	$ au o \pi\pi\pi u$, $K^* o K\pi$	1.01×10^{-10}	
Backgrounds b $B^0 \rightarrow K^{*0} D_s^{(1)}$		$1.6 imes 10^{-3}$	$D_{s} \rightarrow \tau \nu$ $D_{s} \rightarrow \tau \nu, \pi \pi \pi n \pi^{0}$ $D_{s} \rightarrow \pi \pi \pi n \pi^{0}$	$\begin{array}{r} 3.64 \times 10^{-9} \\ 1.62 \times 10^{-7} \\ 7.21 \times 10^{-6} \end{array}$	$\begin{array}{c} 2\nu, (2\gamma/\pi^{0}) \\ \nu, n\pi^{0}, (2\gamma/\pi^{0}) \\ 2n\pi^{0}, (2\gamma/\pi^{0}) \end{array}$
Backgrounds b $B_s ightarrow K^{*0}D^{0}$		$4.6 imes10^{-4}$	$D ightarrow \pi\pi\pi\pi^{0}$ $D^{*} ightarrow D^{0}\pi, D\pi^{0}$ $D ightarrow \pi\pi\pi\pi^{0}$	3.50×10^{-9} 2.14×10^{-9}	ν, π^0 $\nu, 2\pi^0$
$B^0 \rightarrow K^{*0}D$	$(\tilde{s})^{-}_{s}$	3×10^{-5}	$\begin{array}{c} D^{0} \rightarrow 2\pi 2\pi \pi^{0} \\ D_{s} \rightarrow \tau \nu \\ D_{s} \rightarrow \pi \pi n \pi^{0} \end{array}$	$ \begin{array}{c} 1.69 \times 10^{-9} \\ \overline{1.23 \times 10^{-9}} \\ 5.47 \times 10^{-8} \end{array} $	$\begin{bmatrix} -\nu, 2\pi^{0}, 2\pi^{\pm} \\ 2\nu, (\gamma/\pi^{0}) \\ \nu, n\pi^{0}, (\gamma/\pi^{0}) \end{bmatrix}$

- Irreducible backgrounds are in red
- Most of these backgrounds are reducible with π^0 reconstruction in D decays
- Among them $B^0 \to K^{*0}D_sD_s$ with $D_s \to \pi\pi\pi\pi\pi^0$ is almost 10^5 times bigger than the signal must be considered first
- A priori irreducible backgrounds can be separated from signal by the topological method, thanks to the additional missing particle

Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook		
			000			
Semileptonic background						

- Backgrounds test with a semileptonic decay : $B^0 \rightarrow D^* \tau \nu$ (where D^* is perfectly reconstructed)
- Events available and quickly usable in our analysis as a proxy
- Clear separation of invariant mass distribution by topological method but long tails under signals
- How does vertex resolution act on the separation of the two : study of the significance of the signal peak comparing to the backgrounds for two resolution configuration
- Next step : realised the actual study in order with proper normalisation

Final goal : Simulation of the actual backgrounds and analysis of the events with the topological method

Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook
				•
Conclusion & out	look			

Conclusion

- Revisitation with a latest FCC sw of the proof of principle of the topological reconstruction
- Simulation of arbitrarily good vertex resolutions
- The transverse vertex resolution is the main driver of the overall performance
- The secondary vertex is the lever arm of the reconstruction
- Backgrounds are large (by order(s) of magnitude) w.r.t. signal

Objectives	Topological reconstruction	Analysis without backgrounds	Backgrounds	Conclusion & outlook	
				•	
Conclusion & outlook					

Conclusion

- Revisitation with a latest FCC sw of the proof of principle of the topological reconstruction
- Simulation of arbitrarily good vertex resolutions
- The transverse vertex resolution is the main driver of the overall performance
- The secondary vertex is the lever arm of the reconstruction
- Backgrounds are large (by order(s) of magnitude) w.r.t. signal

Outlook

- Simulation of the main backgrounds
- Examine the selection rule
- Proof of principle of the measurement