Case studies at LPNHE

Sukyung KIM (intern), Bogdan Malaescu, LP

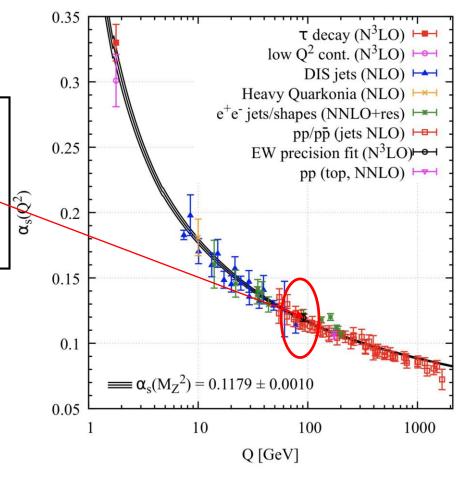
- · 2 case studies (Snowmass LoIs)
 - Perspectives for high-precision $\alpha_{\rm S}(m_{\rm Z}^2)$ determinations from future e +e- measurements at FCC-ee
 - High-precision $\alpha_s(m_Z^2)$ determinations from future FCC-ee e +e- \rightarrow hadrons data below the Z peak
- People involved
 - B. Malaescu, LP
 - Sukyung KIM: M2 Internship March-June on FCC
 - · Postulate for PhD: 2/3 ATLAS, 1/3 FCC Today not funded

α_s evaluation from hadronic Z decays

Theoretical prediction available at N³LO

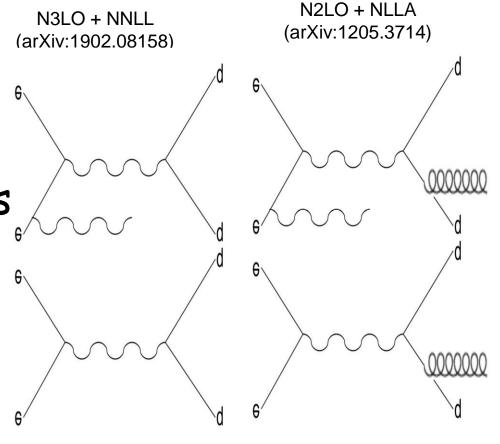
- Better convergence of perturbative series & less non-perturbative

corrections wrt precise determination at lower scales (eg τ decays)

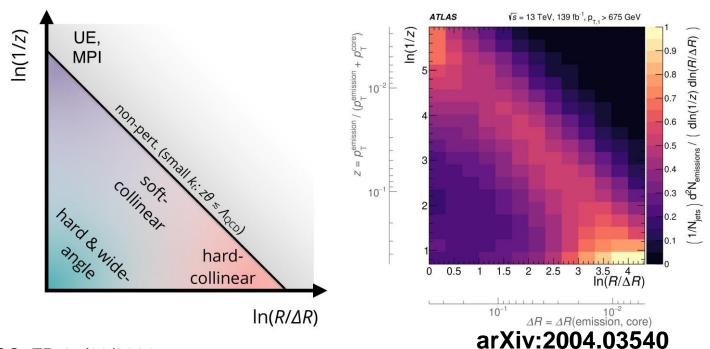

Used for "reference value"

Determinations at other energies evolved @

m_z scale & then compared to test the RGE


from QCD

 Need to study acceptance & reconstruction efficiency etc. -> optimize detector design


α_S evaluation from (ISR) jet production

- Sensitivity to a₅
 - eg from 3/2 jet ratios
 - Or jet rates wrt total hadronic Xsec
- High luminosity -> large evts samples with collinear/large angle ISR γ
 - allows to scan $\int s'$ with same detector & collider conditions
- Need to study
 - Jet and photon energy calibration and resolution
 - Acceptance & recons. efficiency -> optimizing detector design
 - Should be able to target $\delta a_s / a_s < 1\%$

Jet substructure opportunities

- Algos/methods developed -> study jet substructure at LHC
 - Important for understanding QCD effects inside jets, jet tagging (e.g. boosted top,H→bb), NP searches
- Precision studies possible also in clean FCC-ee environment

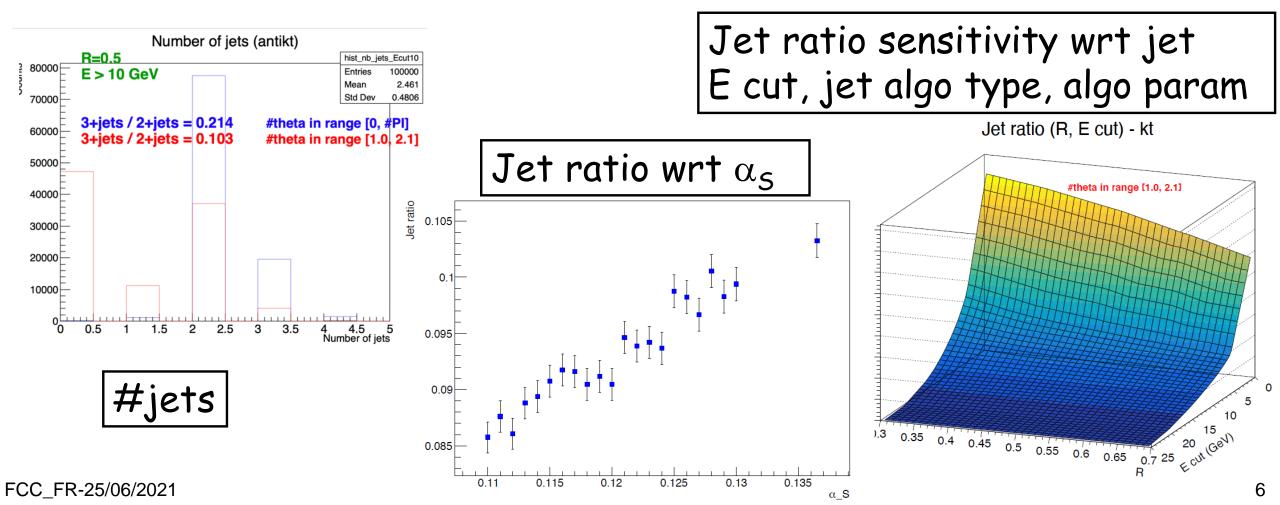
ANR deposited (ATLAS, FCC)

- 1 PostDoc requested
 Positive feedback from 2nd round

FCC FR-25/06/2021

Framework

Studies performed in official FCCSW framework


- · Generation
 - Pythia e+e- -> Z -> qq at $s^{1/2}$ = m_Z (Pythia was the only generator fully integrated in EDM for FCC)
 - Mimic Higher order & α_{S} values via FSR
- Fast simulation
 - Delphes with IDEA simulation
- Analysis
 - Official python code (developed for top studies)
 - Integrates various jets reconstruction algorithms
 - Ad-hoc C++ code on .root files

FCC_FR-25/06/2021

First results

Observable: #evts w/ at least 3jets / #evts w/ at least 2 jets

• Directly sensitive to α_{s}

Next

- Jet ratio 3/2
 - Redo study with Higher orders generators
 - Herwig not running in FCCSW (today)
 - Sherpa OK but interface to FCCSW not working (today) Madgraph
 - Quantify effects of parameters
 - Jet energy cut, jet algorithm used (type & parameters)
 - Evaluate detector parameters on α_s precision extraction
 - · Granularity, energy resolution
- Running α_{S} with ISR
 - Studies with Pythia ongoing
 - Just started to use KKMCee
 - · Implementation in FCCSW OK -Ongoing