Precision bounds on composite Higgs models at the FCC-ee

Andrés Pinto

supervisor: Giacomo Cacciapaglia, Ph.D co-supervisor: Aldo Deandrea, Ph.D

June 25, 2021

Composite Higgs models (CHM)

• The Standard Model (SM) is an effective field theory. Many new models arise: Supersymmetry, Composite Higgs Models, etc.

Composite Higgs models (CHM)

- The Standard Model (SM) is an effective field theory. Many new models arise: Supersymmetry, Composite Higgs Models, etc.
- In composite models, the Higgs boson is a bound state of a new strong force with confinement scale $\sim 1 \text{TeV}$.

Composite Higgs models (CHM)

- The Standard Model (SM) is an effective field theory. Many new models arise: Supersymmetry, Composite Higgs Models, etc.
- In composite models, the Higgs boson is a bound state of a new strong force with confinement scale $\sim 1 \text{TeV}$.
- The CHM provides an interesting phenomenology that could be tested at future colliders.

The FCC-ee and pseudo-scalars

 \longrightarrow The FCC-ee will be a goldmine to study the TeraZ phase with around $\sim 10^{12}$ visible Z bosons.

 \longrightarrow The FCC-ee will be a goldmine to study the TeraZ phase with around $\sim 10^{12}$ visible Z bosons.

 \longrightarrow The composite models allow the existence of pseudo-scalars and provide a high predictive power.

The FCC-ee and pseudo-scalars

 \longrightarrow The FCC-ee will be a goldmine to study the TeraZ phase with around $\sim 10^{12}$ visible Z bosons.

 \longrightarrow The composite models allow the existence of pseudo-scalars and provide a high predictive power.

 \rightarrow New results (arXiv:2104.11064v1) showed the viability of studying pseudo-scalars at the FCC-ee and also the prediction of its mass and decay constant for different luminosities.

WZW ^Y S^A

 \longrightarrow The FCC-ee will be a goldmine to study the TeraZ phase with around $\sim 10^{12}$ visible Z bosons.

 \longrightarrow The composite models allow the existence of pseudo-scalars and provide a high predictive power.

 \rightarrow New results (arXiv:2104.11064v1) showed the viability of studying pseudo-scalars at the FCC-ee and also the prediction of its mass and decay constant for different luminosities.

 \rightarrow The Electroweak precision tests (EWPTs) could shed some light in the nature of the new particles either composite models or elementary models (Work done).

Objective

Construction of an effective model, with a scalar singlet, to model light composite scalars

Objective

Construction of an effective model, with a scalar singlet, to model light composite scalars

• Extension of the SM by adding a complex scalar field (cxSM).

Objective

Construction of an effective model, with a scalar singlet, to model light composite scalars

- Extension of the SM by adding a complex scalar field (cxSM).
- Connect the new particles with the electroweak (EWK) sector by analyzing the decays with the Partial Widths (PWs).

Objective

Construction of an effective model, with a scalar singlet, to model light composite scalars

- Extension of the SM by adding a complex scalar field (cxSM).
- Connect the new particles with the electroweak (EWK) sector by analyzing the decays with the Partial Widths (PWs).
- Looking for signs of new physics in the EWPTs (oblique parameters) in the cxSM for the FCC-ee.

The decays $a \to Z\overline{Z}, Z\gamma, W^{\pm}W^{\mp}$

0 2 VLF SU(2) doublets Ψ , χ

The decays $a \to ZZ, Z\gamma, W^{\pm}W^{\mp}$

- 2 VLF SU(2) doublets Ψ , χ
- **2** 1 VLF SU(2) doublet Ψ + 1 VLF SU(2) singlet A

The decays $a \to ZZ, Z\gamma, W^{\pm}W^{\mp}$

- **2** VLF SU(2) doublets Ψ , χ
- **2** 1 VLF SU(2) doublet Ψ + 1 VLF SU(2) singlet A
- **3** 1 VLF SU(2) triplet Ψ + 1 VLF SU(2) singlet χ

The decays $a \to ZZ, Z\gamma, W^{\pm}W^{\mp}$

- **2** VLF SU(2) doublets Ψ , χ
- **2** 1 VLF SU(2) doublet Ψ + 1 VLF SU(2) singlet A
- **3** 1 VLF SU(2) triplet Ψ + 1 VLF SU(2) singlet χ

The Partial Widths (PWs)

• The first scenario provides zero PWs for all the decays

The decays $a \to ZZ, Z\gamma, W^{\pm}W^{\mp}$

- **2** VLF SU(2) doublets Ψ , χ
- **2** 1 VLF SU(2) doublet Ψ + 1 VLF SU(2) singlet A
- **3** 1 VLF SU(2) triplet Ψ + 1 VLF SU(2) singlet χ

The Partial Widths (PWs)

- The first scenario provides zero PWs for all the decays
- O The second scenario provides non-zero PWs but independent of the VLFs hypercharges.

The decays $a \to ZZ, Z\gamma, W^{\pm}W^{\mp}$

- **2** VLF SU(2) doublets Ψ , χ
- **2** 1 VLF SU(2) doublet Ψ + 1 VLF SU(2) singlet A
- **3** 1 VLF SU(2) triplet Ψ + 1 VLF SU(2) singlet χ

The Partial Widths (PWs)

- The first scenario provides zero PWs for all the decays
- The second scenario provides non-zero PWs but independent of the VLFs hypercharges.
- The third scenario provides non-zero PWs but depends on the VLFs hypercharges.

 \rightarrow The quantum fluctuations due to new physics (NP) can be determine by computing the so called oblique parameters S and T.

 \rightarrow The quantum fluctuations due to new physics (NP) can be determine by computing the so called oblique parameters S and T.

 \longrightarrow Taking into account VLF only, the contribution is zero,

$$S = 0, \quad T = 0.$$

 \rightarrow The quantum fluctuations due to new physics (NP) can be determine by computing the so called oblique parameters S and T.

 \longrightarrow Taking into account VLF only, the contribution is zero,

$$S = 0, \qquad T = 0.$$

 \longrightarrow The cxSM provides two mixed states that can contribute to S and T.

 \longrightarrow The VLF does not contribute to the oblique parameters but the mixed states do, therefore,

$$\Delta T_{\rm el} = -\frac{3}{8\pi \cos^2 \theta_W} (1 - \cos^2 \phi) \log \frac{m_{H_2}}{m_{H_1}},$$
$$\Delta S_{\rm el} = \frac{1}{6\pi} (1 - \cos^2 \phi) \log \frac{m_{H_2}}{m_{H_1}}.$$

where ϕ is the mixing angle, $m_{H_1} = 125$ GeV and $m_{H_2} \gg m_{H_1}$.

 \longrightarrow The VLF does not contribute to the oblique parameters but the mixed states do, therefore,

$$\Delta T_{\rm el} = -\frac{3}{8\pi\cos^2\theta_W} (1 - \cos^2\phi) \log\frac{m_{H_2}}{m_{H_1}},$$
$$\Delta S_{\rm el} = \frac{1}{6\pi} (1 - \cos^2\phi) \log\frac{m_{H_2}}{m_{H_1}}.$$

where ϕ is the mixing angle, $m_{H_1} = 125$ GeV and $m_{H_2} \gg m_{H_1}$. \longrightarrow If we consider the scalars as a composite state, we have,

$$\Delta T_{\rm co} = -\frac{3}{8\pi\cos^2\theta_W} (1 - \cos^2\theta)\log\frac{\Lambda}{m_h},$$
$$\Delta S_{\rm co} = \frac{1}{6\pi} (1 - \cos^2\theta)\log\frac{\Lambda}{m_h} + 2\sin^2\theta.$$

where θ is the compositeness angle, Λ the energy cut-off and $m_h = 125 \text{GeV}$.

The 2D likelihood

The mass and mixing angle for H_2

• The cxSM provides a rich phenomenology which could be tested at the FCC-ee in the TeraZ phase.

- The cxSM provides a rich phenomenology which could be tested at the FCC-ee in the TeraZ phase.
- The different scenarios proposed are able to provide partial widths that depend on the hypercharge values.

- The cxSM provides a rich phenomenology which could be tested at the FCC-ee in the TeraZ phase.
- The different scenarios proposed are able to provide partial widths that depend on the hypercharge values.
- The oblique parameters could shed some light on the nature of the pseudo-scalar for the elementary or composite models.

- The cxSM provides a rich phenomenology which could be tested at the FCC-ee in the TeraZ phase.
- The different scenarios proposed are able to provide partial widths that depend on the hypercharge values.
- The oblique parameters could shed some light on the nature of the pseudo-scalar for the elementary or composite models.
- The greater the mass of the second mixed state, the less is the mixing between the new complex field particles and the SM-Higgs boson.