

Measurement of Higgs Boson Mass at FCC-ee

Olivier SALIN Third year Fundamental Physics student

Internship Tutor : Nicolas Morange

June 2021

Outline

- I. Higgs Factory
- II. Background processes
- III. Background rejection
- IV. Channel Z $\rightarrow e^+e^-$
- V. Higgs Decay

VI. Measurement of the Higgs Boson mass

Higgs Factory

Background processes

Background rejection (1/3)

Criteria for background rejection

Basic selection	$M_{rec} \in [120.140] \text{ GeV}$ $M_z \in [86.96] \text{ GeV}$ $p_T^Z > 20 \text{ GeV}$	Based on Ang's studies			
Kinematic selection Aim : use only Z decay in selection	Basic selection $ p_z^Z < 40 \text{ GeV}$ $\theta \in [0.5, 2.5] \text{ rad}$ $\cos(acol) \in [-0.9, -0.48]$ $ \Delta \phi < 2.7 \text{ rad}$	$\begin{array}{l} \mbox{Variables studied following ILC analysis} \\ \mbox{Cut values chosen by eye on distributions} \\ \mbox{θ : polar angle of the lepton pair} \\ \mbox{Acollinearity : angle beteen the two leptons} \\ \mbox{$\Delta\phi$: angle between the two leptons in the transerve plane} \end{array}$			
Leading photon selection	Basic selection $p_T^{\gamma} < 20 \text{ GeV}$	Expected to greatly reduce $e^+e^- \rightarrow Z\gamma$			
Missing energy selection	Basic selection $p_T^{\gamma} < 20 \text{ GeV}$ $ Mp_z < 10 \text{ GeV}$ $Mp_T < 20 \text{ GeV}$	Expected to greatly reduce $e^+e^- \rightarrow Z\gamma$ $e^+e^- \rightarrow WW$ Expected to reject Higgs decays that contain neutrinos (i.e. select Higgs \rightarrow visible)			

Background rejection (2/3)

Cutflow

Z-> μ + μ -, Lumi = 5 /ab , simulated:10^7	ZH	ZZ	WW	Ζγ	Signal/Bkg	Significance
					rapport	S/V(S+B)
Cross section (pb)	0.201037	1,35899	16,4385	4,6		
Total number of events	1005185	6794950	82192500	23000000	5.	
Number of µ+µ-	30084	434051	1044740	18295492	0%	7
Basic selection	18484	19612	16512	39288	25%	60
Kinematic selection	11815	9896	9674	18696	31%	53
Leading photon selection	17350	17265	15879	2139	49%	76
Missing energy	12133	4168	8,2	719	248%	93

- Kinematic selection : reject good fraction of background processes, but reject a lot of signal
- Leading photon selection : reject $e^+e^- \rightarrow Z\gamma$ due to ISR, good S/B with large signal statistics
- Missing energy selection : reject all background process, excellent S/B but non inclusive measurement

Background rejection (3/3)

Plots of M_{rec} for each selection

Missing energy selection

Leading photon selection

Kinematic selection

Channel Z $\rightarrow e^+e^-$

Cutflow with the same cut

30084 in the $\mu^+\mu^-$ channel

Z->e+e- , Lumi = 5 /ab , simulated:10^7	ZH	ZZ	WW	Ζμ+μ-	Signal/Bkg	Significance
					rapport	S/sqrt(S+B)
Cross section (pb)	0.201037	1,35899	16,4385	4,6		
Total number of events	1005185	6794950	82192500	23000000		
Number of e+e-	23915	344811	827193	13169358	0%	6
Basic selection	14629	15832	14005	33189	23%	52
Kinematic selection	9413	8134	7841	15584	30%	47
Leading photon selection	13718	13844	13471	2168	47%	66
Missing energy	9503	3306	8	634	241%	82

S/B similar for Z $\rightarrow \mu^+\mu^-$ and Z $\rightarrow e^+e^-$

2 problems :

- Fewer electrons than expected → isolation criteria in DELPHES card very tight

 → checked by varing isolation cut pTRatioMax (pTR) from 23915 (pTR=0,12) → 26642 (pTR=0,25)
- Electron resolution too good → Bremsstrahlung not taken into account in DELPHES

 → can be emulated by degrading the resolution (smearing of the electrons)

Higgs decay

HIGGS BR PHOTON SELECTION

21.389

3,76%

gg

8,40%

μμ-

0,02%

5.69%

Ζγ 0,07%

YY

0,00%

■ cc ■ bb = μμ ■ ττ = gg = γγ ■ Zγ ■ ZZ = WW

bb

57,89%

bb

HIGGS BR MISSING ENERGY

SELECTION

■ cc = bb = μμ = ττ = gg = γγ = Zγ = ZZ = WW

WW 14% ZZ ZV 3%

11%

0%

YY.

0%

π 2%

Significant fraction of W,Z,τ decays contain neutrinos

Measurement of the Higgs boson mass (1/2)

Fit Model

Use Ang's fitting program to evaluate the uncertainty on the mass measurement in the different selections

Fitting function :

Signal : Two-Sided Crystal Ball Background : Second Order Polynomial

Measurement of the Higgs boson mass (2/2)

Uncertainty in the measurement of the mass for each selection

	basic selection	kinematic selection	photon selection	Missing energy
mean (GeV)	125,303	125,307	125,296	125,314
Uncertainty (MeV)	6,6	10,1	6,2	4,9
S/B	25%	31%	49%	248%
Signal ZH	18484	11815	17350	12133

- The uncertainty in the mass decreases when S/B increases while keeping large signal statistics
- Improvement in uncertainty down to 4.9 MeV when removing backgrounds using missing momentum selections
- Bias of 300 MeV in all cases to be removed by calibration of the fitting method

Conclusion

The currently most precise measurement of the uncertainty in the Higgs boson mass is $\Delta m_H = 140 \text{ MeV}$ (by CMS)

At FCC-ee simulation, using missing energy selection

- Reduces greatly the background processes
- The uncertainty in the Higgs boson mass is down to $\Delta m_H = 4,9$ MeV
- Affect Higgs decay \rightarrow not suitable for inclusive σ_{ZH} measurement
- The precision of the measurement of the mass can be improved by using ZH with $Z \rightarrow e^+e^-$ channel

Next step is to improve the reconstruction of the electrons :

- Requires smearing of the electron to have a more realistic resolution
- Requires loosening the isolation criteria in DELPHES in order to have the expected reconstruction efficiency