

TRACKER GEOMETRY OPTIMIZATION AND TRACKING PERFORMANCE AT THE FUTURE CIRCULAR COLLIDER AT CERN

Nathan LORBER

under the supervision of

Jeremy ANDREA

Auguste **BESSON**

Short tkLayout recap (introduced in the IDEA presentation)

- Description of our CLD implementation, a full-silicon, pixelonly tracker
- Material budget and resolution comparison between tkLayout model and literature predictions

Study of the impact of material budget, sensor resolution, layers number and radius on the performances of the tracker

A reference tracker: CLD

 Faculté

 de physique et ingénierie

 Université de Strasbourg

A reference tracker: CLD

IPHC Institut Pluridisciplinaire Hubert CURIEN Hasbourg

averaged by layer and implemented

as Si-equivalent on modules

A reference tracker: CLD

+20% material budget (sensors, cooling, support...)

- Error margins: Calculated without correlation (formula in backup)
 - Driven down statically with numerous tracks
 - Persistent \rightarrow correlation between runs, worth further exploring

lubert CURIE

Lowering the local resolution

Single-layer vertex detector or double-layer trackers

lubert CURIER

9

Smaller beam pipe radius

Significant improvements on impact parameter resolution, especially at low momentum

Conclusions

- Design choices are highly dependent on the momentum of the particles whose detection we favor
- For low-momentum particles, reducing the material budget can be very interesting. Ways to achieve this may include lower local resolution or single-layer detectors
- Reducing the beam pipe and vertex detector radii is a promising direction, with some technological prerequisites (ladder width, sensor time resolution...)

Side notes: tkLayout

- Promising tool, fast and modular
- Could benefit from being even more flexible: change of coordinates, plots in ϕ ...
- Even some potential as an educational tool, but needs to be better documented and more user-friendly

Backup

Institut Pluridisciplinaire Hubert CURIEN

tkLayout CLD configuration file excerpt

@include SimParms	reso
	reso
BeamPipe Pipe {	
radius 15.0	Lave
thickness 1.2	Lave
radLength 0.0034014	
intLength 0.0028504	
}	}
	Laye
Tracker VXD {	
bigDelta 0.0	ı
smallDelta 0.0	Lave
zOverlan 0.0	
nhiOverlan 0 0	
rOverlan 0 0	}
etaCut 2 6	}
trackingTags VYD Tracker	Endcap V
Barral VVD R J	@inc
	bigD
liumLayers 5 Singlude Divel VVD B of a	smal
Qinclude Pixel_VXD_B.crg	numD
@include Material_VXD_B.ctg	plot
bigDelta 1.0	phiS
innerRadius 17.0	inne
outerRadius 112.0	oute
plotColor 3	modu
outerZ 125.0	modu
length 12.5	reso
phiSegments 2	reso
<pre>startZMode moduleedge</pre>	Disk
isTilted false	
moduleType VXDPXL	
resolutionLocalX 0.003	
resolutionLocalY 0.003	

lutionLocalX 0.003 lutionLocalY 0.003 1 { radius 18 } 2 { radius 37.5 } 3 { radius 57.5 } 1 { vidth 12.5 numberRods 10 2 { width 21 numberRods 12 3 { width 24 numberRods 16 XD_D { lude Pixel_VXD_D.cfg lude Material_VXD_D.cfg elta 0.5 lDelta 0.5 isks 3 Color 4 egments 12 rŽ 160 rZ 300 Radius 101 LeShape wedge leType VXDPXL lutionLocalX 0.003 lutionLocalY 0.003 1 { innerRadius 24 Ring 1 { waferDiameter 19 Ring 2 {

Disc designs

Disc designs found in the literature

VS

Design implemented in tkLayout

Cable mapping

Error Propagation

General formula:
$$f = \frac{A}{B}$$
 $\sigma_f = \sqrt{\left(\frac{\Delta A}{B}\right)^2 + \left(\frac{A\Delta B}{B^2}\right)^2}$

$$\sigma_{d_0} = \sqrt{\left(\frac{\Delta \delta d_{0_{test}}}{\delta d_{0_{ref}}}\right)^2 + \left(\frac{(\delta d_{0_{test}})(\Delta \delta d_{0_{ref}})}{(\delta d_{0_{ref}})^2}\right)^2}$$

$$\sigma_p = \sqrt{\left(\frac{\Delta\delta p_{test}}{\delta p_{ref}}\right)^2 + \left(\frac{(\delta p_{test})(\Delta\delta p_{ref})}{(\delta p_{ref})^2}\right)^2}$$

