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The curse of dimensionality when dealing with many-body quantum systems

A quantum system composed of N d-dimensional subsystems has dimension dN .
−→ Exponential growth of the dimension with the number of subsystems.
However, ‘physically relevant’ states of many-body quantum systems are often well approximated
by so-called tensor network states (TNS), which form a small subset of the global state space.

Tensor network state construction on (Cd )⊗N :
Take a graph G with N vertices and L edges.
Put at each vertex v a tensor |χv 〉 ∈ Cd ⊗ (Cq)⊗δ(v) to get a tensor |χ̃G〉 ∈ (Cd )⊗N ⊗ (Cq)⊗2L.
Contract together the indices of |χ̃G〉 associated to a same edge to get a tensor |χG〉 ∈ (Cd )⊗N .

degree of v

pure state on (Cd )⊗N (up to normalization)

−→ If δ(v) 6 r for all v , then such state is described by at most Nqr d parameters (linear in N).

• •

• •
• •

G with 6 vertices and 7 edges
• •

• •
• •

|χ̃G〉 ∈ (Cd )⊗6⊗ (Cq)⊗14
• •

• •
• •

|χG〉 ∈ (Cd )⊗6

d-dimensional indices: physical indices. q-dimensional indices: bond indices.

In this talk: The underlying graph G is a regular lattice in dimension 1 or 2.
−→ |χG〉 is a matrix product state (MPS) or a projected entangled pair state (PEPS).

Cécilia Lancien Typical correlations and entanglement in random tensor network states Journée théorie CPTGA – September 27 2021 3



The curse of dimensionality when dealing with many-body quantum systems

A quantum system composed of N d-dimensional subsystems has dimension dN .
−→ Exponential growth of the dimension with the number of subsystems.
However, ‘physically relevant’ states of many-body quantum systems are often well approximated
by so-called tensor network states (TNS), which form a small subset of the global state space.

Tensor network state construction on (Cd )⊗N :
Take a graph G with N vertices and L edges.
Put at each vertex v a tensor |χv 〉 ∈ Cd ⊗ (Cq)⊗δ(v) to get a tensor |χ̃G〉 ∈ (Cd )⊗N ⊗ (Cq)⊗2L.
Contract together the indices of |χ̃G〉 associated to a same edge to get a tensor |χG〉 ∈ (Cd )⊗N .

degree of v

pure state on (Cd )⊗N (up to normalization)

−→ If δ(v) 6 r for all v , then such state is described by at most Nqr d parameters (linear in N).

• •

• •
• •

G with 6 vertices and 7 edges
• •

• •
• •

|χ̃G〉 ∈ (Cd )⊗6⊗ (Cq)⊗14
• •

• •
• •

|χG〉 ∈ (Cd )⊗6

d-dimensional indices: physical indices. q-dimensional indices: bond indices.

In this talk: The underlying graph G is a regular lattice in dimension 1 or 2.
−→ |χG〉 is a matrix product state (MPS) or a projected entangled pair state (PEPS).

Cécilia Lancien Typical correlations and entanglement in random tensor network states Journée théorie CPTGA – September 27 2021 3



The curse of dimensionality when dealing with many-body quantum systems

A quantum system composed of N d-dimensional subsystems has dimension dN .
−→ Exponential growth of the dimension with the number of subsystems.
However, ‘physically relevant’ states of many-body quantum systems are often well approximated
by so-called tensor network states (TNS), which form a small subset of the global state space.

Tensor network state construction on (Cd )⊗N :
Take a graph G with N vertices and L edges.
Put at each vertex v a tensor |χv 〉 ∈ Cd ⊗ (Cq)⊗δ(v) to get a tensor |χ̃G〉 ∈ (Cd )⊗N ⊗ (Cq)⊗2L.
Contract together the indices of |χ̃G〉 associated to a same edge to get a tensor |χG〉 ∈ (Cd )⊗N .

degree of v

pure state on (Cd )⊗N (up to normalization)

−→ If δ(v) 6 r for all v , then such state is described by at most Nqr d parameters (linear in N).

• •

• •
• •

G with 6 vertices and 7 edges
• •

• •
• •

|χ̃G〉 ∈ (Cd )⊗6⊗ (Cq)⊗14
• •

• •
• •

|χG〉 ∈ (Cd )⊗6

d-dimensional indices: physical indices. q-dimensional indices: bond indices.

In this talk: The underlying graph G is a regular lattice in dimension 1 or 2.
−→ |χG〉 is a matrix product state (MPS) or a projected entangled pair state (PEPS).

Cécilia Lancien Typical correlations and entanglement in random tensor network states Journée théorie CPTGA – September 27 2021 3



Motivations behind TNS and related questions

A TNS representation is thought to be a mathematically tractable description of the state of a
system composed of many subsystems having a certain geometry and subject to interactions
respecting this geometry.

Example: Being a TNS is (conjectured to be) approximately equivalent to being a ground state of
a gapped local Hamiltonian (Hastings, Landau/Vazirani/Vidick...)

composed of terms which act non-trivially only on nearby sites
spectral gap lower bounded by a constant independent of N

−→ In condensed-matter physics, TNS are used as Ansatz in computations: optimization over a
manageable number of parameters, even for large N.

General question: Among the various qualitative intuitions about TNS, which ones are at least
true generically? And can quantitative statements be made about the generic case?

Idea: Sample a TNS at random and study the characteristics that it exhibits with high probability.
In particular, what is its typical amount of correlations and entanglement?
Regime we are interested in: large d ,q, ideally any N.
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A simple model of random translation-invariant MPS

N particles on a circle

• • • • •

N

Pick a tensor |χ〉 ∈ Cd ⊗ (Cq)⊗2 whose entries are independent
complex Gaussians with mean 0 and variance 1/dq.
Repeat it on all sites and contract neighboring q-dimensional indices.
−→ Obtained tensor |χN〉 ∈ (Cd )⊗N : random translation-invariant
MPS with periodic boundary conditions (typically almost normalized).

d
qq

|χ〉=
d
∑

x=1

q
∑

i,j=1
gxij |xij〉

1-site tensor

N

|χN〉=
d
∑

x1,...,xN=1

( q
∑

i1,...,iN=1
gx1 iN i1 · · ·gxN iN−1 iN

)
|x1 · · ·xN〉

Associated transfer operator : T : Cq⊗Cq → Cq⊗Cq , obtained by contracting the d-dimensional
indices of |χ〉 and |χ̄〉.

T =
d
∑

x=1

( q
∑

i,j,k ,l=1
gxij ḡxkl |ik〉〈jl|

)
= 1

d

d
∑

x=1
Gx ⊗ Ḡx

The Gx ’s are independent q×q matrices whose entries are independent complex Gaussians
with mean 0 and variance 1/q.
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A simple model of random translation-invariant PEPS

MN particles on a torus

• • • • •
• • • • •
• • • • •

N

M

Pick a tensor |χ〉 ∈ Cd ⊗ (Cq)⊗4 whose entries are independent
complex Gaussians with mean 0 and variance 1/dq2.
Repeat it on all sites and contract neighboring q-dimensional indices.
−→ Obtained tensor |χMN〉 ∈ (Cd )⊗MN : random translation-invariant
PEPS with periodic boundary conditions (typically almost normalized).

dq
q

q
q

|χ〉=
d
∑

x=1

q
∑

i,j,i ′,j ′=1
gxiji ′ j ′ |xiji ′j ′〉

1-site tensor
M

|χM〉 ∈ (Cd ⊗Cq⊗Cq)⊗M

1-column tensor

Associated transfer operator : TM : (Cq⊗Cq)⊗M → (Cq⊗Cq)⊗M , obtained by contracting the
d-dimensional indices of |χM〉 and |χ̄M〉.

TM = 1
dM qM

d
∑

x1,...,xM=1

q
∑

i1,j1,...,iM ,jM=1
Gx1 iM i1 ⊗ Ḡx1 jM j1 ⊗·· ·⊗GxM iM−1 iM ⊗ ḠxM jM−1 jM

The Gxij ’s are independent q×q matrices whose entries are independent complex Gaussians
with mean 0 and variance 1/q.
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Correlations in a TNS

MPS: M = 1. PEPS: M > 1.
A,B observables on (Cd )⊗M , i.e. on 1 site for an MPS
and on 1 column of M sites for a PEPS.
Goal: Quantify the correlations between the outcomes of
A and B, when performed on ‘distant’ sites or columns.

A

A : Cd → Cd

M

A

A : (Cd )⊗M → (Cd )⊗M

Compute the value on the TNS |χMN〉 of the observable A⊗ I⊗k ⊗B⊗ I⊗N−k−2, i.e.

vχ(A,B,k) := 〈χMN |A⊗ I⊗k ⊗B⊗ I⊗N−k−2|χMN〉.
Compare it to the product of the values on |χMN〉 of A⊗ I⊗N−1 and I⊗k+1⊗B⊗ I⊗N−k−2, i.e.

vχ(A)vχ(B) := 〈χMN |A⊗ I⊗N−1|χMN〉〈χMN |B⊗ I⊗N−1|χMN〉.
by translation-invariance of |χMN〉

Correlations in the TNS |χMN〉: γχ(A,B,k) :=
∣∣vχ(A,B,k)− vχ(A)vχ(B)

∣∣.
Question: Do we have γχ(A,B,k) −→

k�N→∞
0? And if so, at which speed?

A B

N

k

A B
?'

N�k�1
×
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Main result: random TNS typically exhibit fast exponential decay of correlations

Intuition: For any TNS |χMN〉 ∈ (Cd )⊗MN , the correlations between two 1-site or 1-column
observables decay exponentially with the distance separating the two sites or columns, i.e. there
exist C(χ),τ(χ) > 0 such that, for any k � N and any observables A,B on (Cd )⊗M ,

γχ(A,B,k) 6 C(χ)e−τ(χ)k‖A‖∞‖B‖∞.

Correlation length in the TNS |χMN〉: ξ(χ) := 1/τ(χ).

Our main result (informal)

For random translation-invariant MPS and PEPS with periodic boundary conditions this intuition is
generically true, with a short correlation length.

going to 0 as d ,q grow
with probability going to 1 (exponentially) as d ,q grow

Two ways of proving this: (suited to different dimensional regimes)
Show that the transfer operator associated to the random TNS generically has a large
(upper) spectral gap.
Show that the parent Hamiltonian of the random TNS generically has a large (lower)
spectral gap.

going to 1 as d ,q grow

going to 1 as d ,q grow
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Correlation length in a TNS and spectrum of its transfer operator

|χMN〉 ∈ (Cd )⊗MN an MPS (M = 1) or a PEPS (M > 1).
T its associated transfer operator on (Cq⊗Cq)⊗M .
By reading diagrams representing vχ(A,B,k), vχ(A), vχ(B)
‘horizontally’ instead of ‘vertically’, its correlation function can
be re-written as:

γχ(A,B,k) =
∣∣Tr

(
ÃT k B̃T N−k−2)−Tr

(
ÃT N−1)Tr

(
B̃T N−1)∣∣ .

A

A : Cd → Cd

A

Ã : Cq⊗Cq → Cq⊗Cq

Important consequence:
Denote by λ1(T ) and λ2(T ) the largest and second largest eigenvalues of T (with multiplicities).
There exists C(T ) > 0 such that, setting ε(T ) = |λ2(T )|/|λ1(T )|, we have

γχ(A,B,k) 6 C(T )ε(T )k‖A‖∞‖B‖∞.

−→ Correlations between two 1-site or 1-column observables decay exponentially with the
distance separating the two sites or columns, at a rate | log ε(T )|, i.e. ξ(χ) = 1/| log ε(T )|.

Question: For a random transfer operator T what are the typical values of |λ1(T )| and |λ2(T )|?
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Typical spectral gap of the transfer operator of a random MPS

Theorem [Typical spectral gap of the random MPS transfer operator T ]

There exist constants c,C > 0 such that, for any d ,q ∈ N,

P
(
|λ1(T )|> 1− C√

d
and |λ2(T )|6 C√

d

)
> 1−e−cq .

Corollary [Typical correlation length in the random MPS |χN〉]
There exist constants c,C′ > 0 such that, for any d ,q,N ∈ N,

P
(

ξ(χ) 6
C′

log d

)
> 1−e−cq .

Remark: Similar results obtained on slightly different models, with T composed of independent
Haar unitaries (Hastings, Pisier) or blocks of a Haar unitary (González-Guillén/Junge/Nechita).
Motivation: Construction of quantum expanders. This Gaussian model provides a new example.

Proof idea: Approximate first eigenvector for T : maximally entangled state |ψ〉 ∈ Cq⊗Cq .
Observing that |λ1(T )|> |〈ψ|T |ψ〉| and |λ2(T )|6 ‖T (I−|ψ〉〈ψ|)‖∞, we show that:

1 E|〈ψ|T |ψ〉|= 1 and E‖T (I−|ψ〉〈ψ|)‖∞ 6 C/
√

d (Gaussian moment computations).
2 These two quantities have a small probability of deviating from their average (local version of

Gaussian concentration inequality).

by minimax principle for singular values, doing as if T were Hermitian
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Typical spectral gap of the transfer operator of a random PEPS

Assumption (?): The dimensions d and q grow polynomially with the number of sites M.
More precisely: d ,q satisfy d 'Mα and q 'Mβ with α > 8 and (α + 1)/3 < β < (α−2)/2.

Theorem [Typical spectral gap of the random PEPS transfer operator TM ]

There exist constants c,C > 0 such that, for any M ∈ N and d ,q ∈ N satisfying (?),

P
(
|λ1(TM )|> 1− C

Mα/2−1−β
and |λ2(TM )|6 C

Mα/2−1−β

)
> 1−e−cM3β−α

.

Corollary [Typical correlation length in the random PEPS |χMN〉]
There exist constants c,C′ > 0 such that, for any N > M ∈ N and d ,q ∈ N satisfying (?),

P
(

ξ(χ) 6
C′

(α/2−1−β) log M

)
> 1−e−cM3β−α

.

Main issue: Results are valid only in the regime where d ,q grow polynomially with M.
−→ Enforce this scaling by blocking: Redefine 1 site as being a sublattice of log M sites.

Proof idea: Some kind of recursion procedure that uses the MPS results as building blocks.
Approximate first eigenvector for TM : |ψ〉⊗M ∈ (Cq⊗Cq)⊗M .
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Outline

1 Background and motivations

2 Random MPS and PEPS: construction and statement of the main questions & results

3 Typical correlation length in a random TNS through typical spectral gap of its transfer operator

4 Typical correlation length in a random TNS through spectral gap of its parent Hamiltonian

5 Open questions and perspectives
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Parent Hamiltonian of a TNS

Parent Hamiltonian of a TNS: local Hamiltonian which has the TNS as ground state. The latter is
unique in the injectivity regime (Cirac/Pérez-García/Verstraete/Wolf).

the 1-site tensor, viewed as a map from bond space to physical space, is injective

MPS

χ : (Cq)⊗2→ Cd

PEPS

χ : (Cq)⊗4→ Cd

Fact: If the parent Hamiltonian of a TNS is gapped above its ground state energy then the
correlations between two observables on subregions decay exponentially with the distance
separating the two subregions. This follows from the Lieb-Robinson (LR) bound (Hastings/Koma...)
or the detectability lemma (Aharonov/Arad/Landau/Vazirani...).

Question: What is the typical spectral gap of a random parent Hamiltonian?

Parent Hamiltonian of our random TNS:
The random MPS |χN〉, resp. PEPS |χMN〉, is almost surely injective for d > q2, resp. d > q4.
In this regime, its parent Hamiltonian H is a 2-local frustration-free Hamiltonian whose unique
ground state is |χN〉, resp. |χMN〉. the global minimizer minimizes each term

each term acts non-trivially on 2 neighboring sites
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Typical spectral gap of the parent Hamiltonian of a random TNS

Theorem [Typical spectral gap of the random MPS or PEPS parent Hamiltonian H]

There exist constants c,C > 0 such that, for any N ∈ N and
any d ,q ∈ N satisfying d > qa+ε, for some ε > 0,

P
(

∆(H) > 1− C

qε/2

)
> 1−e−cqb

.

MPS case: a = 4, b = 2.
PEPS case: a = 14, b = 4.

Proof idea: Show that the projectors composing H typically almost commute, by constructing
(from the 2-site tensors) operators which are typically approximating them and almost commuting.
Technical tool: A Wishart matrix with large parameter (suitably re-scaled) is typically close to I.

Corollary [Typical correlation length in the random MPS |χN〉 or PEPS |χMN〉]
There exist constants c,C′ > 0 such that, for any N ∈ N and
any d ,q ∈ N satisfying d > qa+ε, for some ε > 0,

P
(

ξ(χ) 6
C′

ε log q

)
> 1−e−cqb

.

MPS case: a = 4, b = 2.
PEPS case: a = 14, b = 4.

Proof idea: The detectability lemma only gives a rough upper bound. The tighter one relies on a
refined LR bound (Haah/Hastings/Kothari/Low), which is suited to the case where the terms
composing the parent Hamiltonian have small commutators.
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Open questions

Typical spectral gap of random transfer operators: Could the results in the PEPS case
be improved so that d ,q growing polynomially with M is not needed?
With our current proof techniques, exponents could be optimized but no way of getting rid of
this limitation.

Typical spectral gap of random parent Hamiltonians: Can the validity regime d > qa be
improved to a = 2 for MPS and a = 4 for PEPS?
Our proofs are likely to be suboptimal, and there is no a priori obstruction to being able to go
from the ‘super injectivity’ to the injectivity regime.

Instead of constructing a ground state at random and then studying the spectral properties
of the corresponding local translation-invariant Hamiltonian, what about directly constructing
the Hamiltonian at random (Movassagh, Lemm)?

What about other models of random TNS? For instance:
• Different distribution of the 1-site random tensor: not unitarily-invariant, with some symmetries...
−→ Typical properties of TNS having a local symmetry.

• Different geometry of the graph: higher-dimensional regular lattice, tree...
−→ AdS/CFT correspondence: random TNS on hyperbolic graphs reproduce conjectured
formulas (Hayden/Nezami/Qi/Thomas/Walter/Yang + work in progress with Michael Walter).
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Our proofs are likely to be suboptimal, and there is no a priori obstruction to being able to go
from the ‘super injectivity’ to the injectivity regime.

Instead of constructing a ground state at random and then studying the spectral properties
of the corresponding local translation-invariant Hamiltonian, what about directly constructing
the Hamiltonian at random (Movassagh, Lemm)?

What about other models of random TNS? For instance:
• Different distribution of the 1-site random tensor: not unitarily-invariant, with some symmetries...
−→ Typical properties of TNS having a local symmetry.

• Different geometry of the graph: higher-dimensional regular lattice, tree...
−→ AdS/CFT correspondence: random TNS on hyperbolic graphs reproduce conjectured
formulas (Hayden/Nezami/Qi/Thomas/Walter/Yang + work in progress with Michael Walter).
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Perspective: what about estimating the typical amount of entanglement?

Observation: The amount of bipartite entanglement in a TNS can be upper bounded in terms of
the bond dimension. Indeed, for any subregion having L boundary edges and V bulk vertices, its
entanglement entropy is at most L log q, which is usually much smaller than V log d .

entropy of reduced state area law
(boundary dimension qL)

volume law
(bulk dimension dV )

But what about the amount of genuinely multipartite entanglement?

Geometric measure of entanglement (GME) of a pure state |ϕ〉 ∈ (Cd )⊗N :

E(ϕ) :=− log sup
{
|〈φ1⊗·· ·⊗φN |ϕ〉|2 : |φ1〉, . . . , |φN〉 ∈ Cd pure states

}
.

Fact: E(ϕ) = 0 iff |ϕ〉 is separable. And we always have E(ϕ) 6 (N−1) log d .
faithful entanglement measure for pure states

Known: For |ϕ〉 ∈ (Cd )⊗N a uniformly distributed random pure state, when d or N is large,
E(ϕ) = (N−1) log d− log(N log N) + O(1) with high probability (Aubrun/Szarek).
−→ Such a random pure state is typically close to ‘maximally entangled’.

Question: What is the generic amount of GME in a random TNS?
MPS case: E(χN) is typically of order (N−1) log min(d ,q) (work in progress with Ion Nechita).
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