Dark energy as a probe of quantum gravity

Can we put quantum gravity theories under pressure with forthcoming dark energy dedicated surveys?

Based on a work done in collaboration with A. Barrau and C. Remevey

- Dark Energy is responsible for the acceleration of the Universe expansion
- Observed by different probes
 - → Type IA supernovae
 - → Cosmic Microwave Background (CMB)
 - → Baryon Acoustic Oscillations (BAO)
- Which fraction of the Universe is under the form of Dark Energy (DE)?

$$\Omega_{\Lambda}=0.6889\pm0.0056$$

Planck 2018: TT, TE, EE + lowE + Lensing + BAO

- What it teaches us
 - → Most of the energy in the Universe is **not** matter
 - → Most of the energy in the Universe is **not** gravitationally attractive!

First possibility: a cosmological constant

• Einstein equations:

Space-time geometry
$$\begin{array}{c|c} \mathcal{R}_{\mu\nu} - \frac{1}{2}\mathcal{R}g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu} & \underbrace{Energy}_{content} \\ \hline & \vdots \\ & \sim 10^{-43} \ll 1 \, \textit{Space-time is extremely}_{hard\ to\ distord} \end{array}$$

• Hypotheses:

Homogeneous and isotropic Universe + Ideal gas

• First Friedmann equation:

Universe dynamics
$$H^2(t) \equiv \left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \frac{8\pi G}{3} \left(\rho_{\rm rad}(t) + \rho_{\rm mat}(t)\right) - \frac{kc^2}{a^2(t)} + \frac{\Lambda c^2}{3}\right] \stackrel{Energy}{content}$$

$$\propto a(t)^{-4} \propto a(t)^{-3} \propto a(t)^{-2} \stackrel{\bullet}{\text{Constant}}$$

A cosmological constant would unavoidably dominate the energy content in an expanding Universe

First possibility: a cosmological constant

Stress-energy tensor conservation laws:

$$T^{\mu\nu}_{;\nu} = 0$$

Covariant derivative

Hypotheses:

Homogeneous and isotropic Universe + Ideal gas

• Continuity equation:

$$\dot{\rho}(t) = -3H(t) \left[\rho(t) + P(t) \right]$$
Energy density Pressure

Together with the first Friedmann equation

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left[\rho(t) + 3P(t) \right] + \frac{\Lambda c^2}{3}$$

A Universe dominated by $\Lambda>0$ undergoes an accelerated expansion with $\ddot{a}>0$

First possibility: a cosmological constant

■ Some related problems → open questions?

With a cosmological constant term, empty space is no longer flat!

 \rightarrow Tempting to interpret Λ as the vacuum energy density

Its interpretation in terms of QFT is « The worst prediction in the history of physics »

Is it really the case?

♦ Phase transitions

Phase transitions (such as the electroweak or QCD phase transitions) contribute to the vacuum energy

The vacuum energy cannot vanish before and after the phase transition!

◆ We live at a special moment in the Universe history

$$\Omega_{\Lambda} \sim \Omega_{\mathrm{matter}}$$
 « Coincidence problem »

An other possibility: generated by a scalar field dynamics

« Quintessence models »

• How?

Reminder:
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left[\rho(t) + 3P(t) \right] + \frac{\Lambda c^2}{3}$$

Instead of $\Lambda > 0$, vanishing cosmological constant and a matter content which satisfies:

$$w(t) = \frac{P(t)}{\rho(t)} < -\frac{1}{3}$$
 $\Rightarrow \ddot{a}(t) > 0$ Accelerated expansion

An other possibility: generated by a scalar field dynamics

« Quintessence models »

How?

Reminder:
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left[\rho(t) + 3P(t) \right] + \frac{\Lambda c^2}{3}$$

Instead of $\Lambda > 0$, vanishing cosmological constant and a matter content which satisfies:

$$w(t) = \frac{P(t)}{\rho(t)} < -\frac{1}{3}$$
 $\Rightarrow \ddot{a}(t) > 0$ Accelerated expansion

• For a scalar field:

$$S_{\phi} = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right] \xrightarrow{FLRW} \begin{cases} T_0^0 = \rho_{\phi} = \frac{1}{2} \dot{\phi}^2 + V(\phi) \\ T_j^i = -P_{\phi} \delta_j^i = -\left[\frac{1}{2} \dot{\phi}^2 - V(\phi) \right] \delta_j^i \end{cases}$$

$$\Rightarrow w(t) = \frac{\frac{1}{2}\dot{\phi}^2 - V(\phi)}{\frac{1}{2}\dot{\phi}^2 + V(\phi)} \xrightarrow{\frac{1}{2}\dot{\phi}^2 \ll V(\phi)} w(t) = \frac{\frac{1}{2}\dot{\phi}^2 - V(\phi)}{\frac{1}{2}\dot{\phi}^2 + V(\phi)} \simeq -1$$

• This « slow-roll » regime is already a success for describing primordial inflation

Requirement:
$$\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$$

 $\rightarrow \frac{\text{\# Plateau-like }}{\text{shaped potentials}}$

Example: Starobinsky potential

$$V(\phi) = \frac{3m^2}{32\pi} \left(1 - e^{-\sqrt{\frac{16\pi}{3}}\phi} \right)^2$$
$$m = 2.51 \times 10^{-6} \text{m}_{\text{Pl}}$$

• This « slow-roll » regime is already a success for describing primordial inflation

Requirement:
$$\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$$

$$\rightarrow \frac{\text{``Plateau-like ''}}{shaped\ potentials}$$

Example: Starobinsky potential

$$V(\phi) = \frac{3m^2}{32\pi} \left(1 - e^{-\sqrt{\frac{16\pi}{3}}\phi} \right)^2$$
$$m = 2.51 \times 10^{-6} \text{m}_{\text{Pl}}$$

◆ The Universe dynamics also slows-down the scalar field Klein-Gordon equation in an isotropic and homogeneous FLRW Universe:

$$\ddot{\phi}(t) + 3H(t)\dot{\phi}(t) + \frac{dV(\phi(t))}{d\phi(t)} = 0 \qquad H(t) \equiv \frac{\dot{a}(t)}{a(t)}$$
Hubble friction

 \rightarrow Important for primordial inflation because $H \simeq$ Inflation energy scale

• This « slow-roll » regime is already a success for describing primordial inflation

Requirement:
$$\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$$

$$\rightarrow \frac{\text{``Plateau-like ''}}{shaped\ potentials}$$

Example: Starobinsky potential

$$V(\phi) = \frac{3m^2}{32\pi} \left(1 - e^{-\sqrt{\frac{16\pi}{3}}\phi} \right)^2$$
$$m = 2.51 \times 10^{-6} \text{m}_{\text{Pl}}$$

◆ The Universe dynamics also slows-down the scalar field Klein-Gordon equation in an isotropic and homogeneous FLRW Universe:

$$\ddot{\phi}(t) + 3H(t)\dot{\phi}(t) + \frac{dV(\phi(t))}{d\phi(t)} = 0 \qquad H(t) \equiv \frac{\dot{a}(t)}{a(t)}$$
Hubble friction

- \rightarrow Important for primordial inflation because $H \simeq$ Inflation energy scale
- ◆ Simplest models with only one scalar field are in very good agreement with data (Almost) scale invariant primordial scalar power spectrum, no deviations from gaussian hypothesis, ... BUT: Only toy models, less motivated by high energy physics → Need for more complex models?

This « slow-roll » regime is already a success for describing primordial inflation

Requirement:
$$\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$$
 $\Rightarrow \begin{subarray}{c} & Plateau\text{-}like \\ & shaped potentials \end{subarray}$

$$V(\phi) = \frac{3m^2}{32\pi} \left(1 - e^{-\sqrt{\frac{16\pi}{3}}\phi} \right)^2$$
$$m = 2.51 \times 10^{-6} \text{m}_{\text{Pl}}$$

◆ The Universe dynamics also slows-down the scalar field Klein-Gordon equation in an isotropic and homogeneous FLRW Universe:

$$\ddot{\phi}(t) + 3H(t)\dot{\phi}(t) + \frac{dV(\phi(t))}{d\phi(t)} = 0 \qquad H(t) \equiv \frac{\dot{a}(t)}{a(t)}$$

 \rightarrow Important for primordial inflation because $H \simeq$ Inflation energy scale

Hubble friction

- ◆ Simplest models with only one scalar field are in very good agreement with data (Almost) scale invariant primordial scalar power spectrum, no deviations from gaussian hypothesis, ... BUT: Only toy models, less motivated by high energy physics → Need for more complex models?
- BUT: additional difficulties when trying to apply the same method for DE
 The process needs to start at late times, Hubble friction is much much lower, ...

Dark Energy models

<u>1st class:</u> Freezing models

• Freezing models: « The motion of the field slows down because the potential flattens at low redshifts »

BUT: The energy density of the scalar field must remain subdominant in most of cosmological history and only emerge at late times

One possibility: scaling freezing models

 ρ_{ϕ} mimics the background energy density

 $\frac{\rho_b}{\rho_\phi} = \text{cste} \longrightarrow \text{Whatever the initial conditions are!}$

But, in this regime: $w_{\phi} = w_b \longrightarrow \begin{cases} = 0 > -1/3 \text{ for cold matter} \\ = 1/3 > -1/3 \text{ for radiation} \end{cases}$

No acceleration of the expansion

• Exit from scaling regime:

Tracking solutions that acts as **attractors** and drive w towards w < -1/3 Existence condition: $\Gamma(\phi(t)) \equiv V(\phi(t)) V''(\phi(t)) / \left[V'(\phi(t))\right]^2 > 1$, $\forall t$

Example of associated scalar-field potential

$$V(\phi) = V_1 e^{-\lambda_1 \phi} + V_2 e^{-\lambda_2 \phi}, V_1, V_2, \lambda_1, \lambda_2 = \text{cstes}$$

Dark Energy models

2nd class: Thawing models

- Thawing models:
- ◆ The field is frozen due to the Hubble cosmic friction for most of the cosmic history
- With the decrease (in time) of H, friction becomes subdominant and a non-zero kinetic term develops
 - \Rightarrow The field begins to roll and w evolves away from -1 at late times!

(But has to remain weak to account for data)

• Example of associated scalar-field potential

$$V(\phi) = V_0 \left(1 + \cos(\sqrt{2}\phi/f) \right) \quad with \ V_0, \ f = cstes$$

Big forthcoming experiments will bring part of a solution

Vera Rubin Observatory

- ♦ US-lead project
- ◆ First light in 2023, survey in 2024
- ◆ **Telescope:** 8.4m primary mirror focal length 10.3 m, 9.6 deg² field of view
- ◆ Camera: 3.2 Gigapixels (CCD)
- The LSST (the survey): ≃ 18000 deg²
 20 billions galaxies
 During 10 years
 In six filters (from UV to near IR)
 Cadence optimized for transients
 - → SNIa machine!
- ◆ Data: 20 TB/night (= 4200 DVD/night) 15 PB database after 10 years

• Big forthcoming experiments will bring part of a solution

Vera Rubin Observatory

- ◆ US-lead project
- ♦ First light in 2023, survey in 2024
- ◆ **Telescope:** 8.4m primary mirror focal length 10.3 m, 9.6 deg² field of view
- ◆ Camera: 3.2 Gigapixels (CCD)
- The LSST (the survey): ≃ 18000 deg²
 20 billions galaxies
 During 10 years
 In six filters (from UV to near IR)
 Cadence optimized for transients
 - → SNIa machine!
- ◆ Data: 20 TB/night (= 4200 DVD/night) 15 PB database after 10 years

Euclid

- ◆ European-lead project (ESA)
- ◆ Launch scheduled in fall 2022
- ◆ Telescope: 1.2m focal length 24.5m
- ◆ Instruments: visible-light camera near-infrared spectrometer
- The survey: ≈ 15000 deg²
 2 billions galaxies
 During 6.5 years (at least)
 Filters: 1 broad optical band
 (550 -900 nm) + 3 IR (920 2000 nm)
 + NIR spectroscopy (1100 2000 nm)
- ◆ Data: ~ some tens of PB until 100 PB as an upper limit after 6 years

• Big forthcoming experiments will bring part of a solution

Vera Rubin Observatory

- ◆ US-lead project
- ◆ First light in 2023, survey in 2024
- ◆ **Telescope:** 8.4m primary mirror focal length 10.3 m, 9.6 deg² field of view
- ◆ Camera: 3.2 Gigapixels (CCD)
- The LSST (the survey): ≃ 18000 deg²
 20 billions galaxies
 During 10 years
 In six filters (from UV to near IR)
 Cadence optimized for transients
 - → SNIa machine!
- ◆ Data: 20 TB/night (= 4200 DVD/night) 15 PB database after 10 years

Euclid

- ◆ European-lead project (ESA)
- ◆ Launch scheduled in fall 2022
- ◆ Telescope: 1.2m focal length 24.5m
- ◆ Instruments: visible-light camera near-infrared spectrometer
- ◆ The survey: ~ 15000 deg²
 2 billions galaxies
 During 6.5 years (at least)
 Filters: 1 broad optical band
 (550 -900 nm) + 3 IR (920 2000 nm)
 + NIR spectroscopy (1100 2000 nm)
- ◆ Data: ~ some tens of PB until 100 PB as an upper limit after 6 years

Square Kilometer Array

- ◆ International project (more than 15 countries involved)
- ◆ Construction scheduled for 2021-2022 Science observations: late 20's
- ◆ Low-frequency telescope array: In Australia: ~130 000 antennas
- ◆ Mid-frequency telescope array: In South-Africa: 197 dish antennas
- ◆ Configuration based on interferometry: telescopes arranged in multiple spiral arms
- ◆ Data: Up to 700 PB / year!

• Big forthcoming experiments will bring part of a solution

Vera Rubin Observatory

- ◆ US-lead project
- ◆ First light in 2023, survey in 2024
- ◆ Telescope: 8.4m primary mirror focal length 10.3 m, 9.6 deg² field of view
- ◆ Camera: 3.2 Gigapixels (CCD)
- ◆ The LSST (the survey): ≈ 18000 deg²
 20 billions galaxies
 During 10 years
 In six filters (from UV to near IR)
 Cadence optimized for transients
 - → SNIa machine!
- ◆ Data: 20 TB/night (= 4200 DVD/night) 15 PB database after 10 years

Euclid

- ◆ European-lead project (ESA)
- ◆ Launch scheduled in fall 2022
- ◆ Telescope: 1.2m focal length 24.5m
- ◆ Instruments: visible-light camera near-infrared spectrometer
- ◆ The survey: ~ 15000 deg²
 2 billions galaxies
 During 6.5 years (at least)
 Filters: 1 broad optical band
 (550 -900 nm) + 3 IR (920 2000 nm)
 + NIR spectroscopy (1100 2000 nm)
- ◆ Data: ~ some tens of PB until 100 PB as an upper limit after 6 years

Square Kilometer Array

- ◆ International project (more than 15 countries involved)
- ◆ Construction scheduled for 2021-2022 Science observations: late 20's
- ◆ Low-frequency telescope array: In Australia: ~130 000 antennas
- ◆ Mid-frequency telescope array: In South-Africa: 197 dish antennas
- ◆ Configuration based on interferometry: telescopes arranged in multiple spiral arms
- ◆ Data: Up to 700 PB / year!

Upcoming complementary experiments in cosmology

Synergies for photo-z, weak lensing, cluster masses estimates, transient measurements ...

Swampland vs Landscape

- <u>Swampland</u>: Set of (apparently) consistent effective field theories that <u>cannot</u> be completed into string theory / quantum gravity at higher energies.
- <u>Landscape</u>: Set of (apparently) consistent effective field theories that <u>can</u> be completed into string theory / quantum gravity at higher energies.

Huge and very active area of research in string theory

Scheme borrowed from: An Introduction to the String Theory Swampland (Lectures for BUSSTEPP), Eran Palti, 2018

A Swampland criterion: The de-Sitter conjecture

• An effective theory for quantum gravity, i.e not in the swampland, should satisfy:

$$\lambda(\phi(t)) \equiv -\frac{V'(\phi(t))}{V(\phi(t))}$$

$$\lambda(\phi(t)) \equiv -\frac{V'(\phi(t))}{V(\phi(t))} \qquad |\lambda(\phi(t))| = \left| \frac{V'(\phi(t))}{V(\phi(t))} \right| > \lambda_c \sim \mathcal{O}(1) \qquad (In \ Planck \ units)$$

G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa (2018), arXiv:1806.08362

A Swampland criterion: The de-Sitter conjecture

• An effective theory for quantum gravity, i.e not in the swampland, should satisfy:

$$\lambda(\phi(t)) \equiv -\frac{V'(\phi(t))}{V(\phi(t))}$$

$$\lambda(\phi(t)) \equiv -\frac{V'(\phi(t))}{V(\phi(t))} \qquad |\lambda(\phi(t))| = \left| \frac{V'(\phi(t))}{V(\phi(t))} \right| > \lambda_c \sim \mathcal{O}(1) \qquad (In \ Planck \ units)$$

G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa (2018), arXiv:1806.08362

Some reliability criteria for this conjecture:

- ◆ Maldacena-Nunez no-go theorem for supergravity: $|\lambda(\phi(t))| \ge \frac{6}{\sqrt{(d-2)(11-d)}}$ For a d-dimensional theory
- Compactification of Type IIA on Calabi-Yau manifolds: $|\lambda(\phi(t))| \gtrsim 2$ M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark (2007), arXiv:0711.2512
- arXiv:2004.00030

◆ Trans-Planckian Censorship Conjecture
$$\Rightarrow$$
 $|\lambda(\phi(t))| \ge \frac{6}{\sqrt{(d-1)(d-2)}} = \frac{2}{\sqrt{3}} \simeq 0.81$ (for $d=4$) D. Andriot, N. Cribiori, D. Erkinger (2020),

A Swampland criterion: The de-Sitter conjecture

• An effective theory for quantum gravity, i.e not in the swampland, should satisfy:

$$\lambda(\phi(t)) \equiv -\frac{V'(\phi(t))}{V(\phi(t))}$$
 $|\lambda(\phi(t))|$

$$\lambda(\phi(t)) \equiv -\frac{V'(\phi(t))}{V(\phi(t))} \qquad |\lambda(\phi(t))| = \left| \frac{V'(\phi(t))}{V(\phi(t))} \right| > \lambda_c \sim \mathcal{O}(1) \qquad (In \ Planck \ units)$$

G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa (2018), arXiv:1806.08362

Some reliability criteria for this conjecture:

- ◆ Maldacena-Nunez no-go theorem for supergravity: $|\lambda(\phi(t))| \ge \frac{6}{\sqrt{(d-2)(11-d)}}$ For a d-dimensional theory
- Compactification of Type IIA on Calabi-Yau manifolds: $|\lambda(\phi(t))| \gtrsim 2$ M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark (2007), arXiv:0711.2512
- arXiv:2004.00030

◆ Trans-Planckian Censorship Conjecture
$$\Rightarrow$$
 $|\lambda(\phi(t))| \ge \frac{6}{\sqrt{(d-1)(d-2)}} = \frac{2}{\sqrt{3}} \simeq 0.81$ (for $d=4$) D. Andriot, N. Cribiori, D. Erkinger (2020),

Questions:

- → What are the perspectives for the constraints set by the Vera Rubin observatory, Euclid and SKA on λ_c ?
- → Will those constraints be compatible with the de Sitter conjecture?

DOES THE OBSERVABLE UNIVERSE LIE IN THE SWAMPLAND?

Based on: A. Barrau, C. Renevey, K.M (2021), Astrophys.J. 912, arXiv:2101.02942

Main goal of this study:

Probe the de-Sitter conjecture exclusion power from the viewpoint of **future** surveys.

Two major implications

First: assume a parametrization for w(z)

First order of a Taylor development:

$$w(a(t)) = w_0 + (1-a(t))w_a$$
 $1+z(t) = \frac{a(t)}{a(t_{
m emission})}$

Measure the contemporary value of w(a(t))

Measure the deviation in time of w(a(t))

• Second: evaluate the theoretical uncertainties

Current constraints ---- (at 95% CL)

Contour plots based on a bayesian MCMC developed by T. Sprenger, M. Archidiacono, T. Brinckmann, S. Clesse and J. Lesgourgues, JCAP 1902,047 (2019), arXiv 1801.08331

Expected improvements (at 95% CL)

Our set of equations

Rewriting of the Friedmann and Klein-Gordon equations:

$$\frac{dw}{dt} = (w - 1) \left[3(1 + w) - \lambda \sqrt{3(1 + w)\Omega_{\phi}} \right] \quad \lambda(\phi(t)) \equiv -V'\phi(t)/V\phi(t)$$

$$\frac{d\Omega_{\phi}}{dt} = -3w\Omega_{\phi}(1 - \Omega_{\phi})$$

$$\frac{d\lambda}{dt} = -\sqrt{3(1 + w)\Omega_{\phi}}(\Gamma - 1)\lambda^{2}$$

$$\Gamma(\phi(t)) \equiv V(\phi(t))V''(\phi(t))$$

$$\lambda(\phi(t)) \equiv -V'\phi(t)/V\phi(t)$$

$$\Gamma(\phi(t)) \equiv V(\phi(t))V''(\phi(t))/\left[V'(\phi(t))\right]^2$$

Methodology

- → i) Choose a model (i.e a scalar field potential)
- → ii) Fix a value for the parameters entering the model
- \rightarrow iii) Set initial conditions for w, Ω_{ϕ} and λ $\xrightarrow{No \ big}$

- \rightarrow iv) Evaluate $|\lambda| = |V'/V|$ along the trajectory and keep its smallest value
- → v) To remain conservative, keep the highest of those lambda values (at fixed values of the parameters) within a 95% confidence level (CL) ellipse in the w₀ - w_a plane

For scaling freezing models

Scalar field potential:

$$V(\phi) = V_0 e^{-\lambda \phi}$$

	Pl. + SKA1	Pl. + LOSs + SKA1	Pl. + SKA2
67% CL	$ \lambda < 0.28$	$ \lambda < 0.17$	$ \lambda < 0.16$
95% CL	$ \lambda < 0.36$	$ \lambda < 0.22$	$ \lambda < 0.20$

Scalar field potential:

$$V(\phi) = V_1 e^{-\lambda_1 \phi} + V_2 e^{-\lambda_2 \phi}$$

For tracking freezing models

Scalar field potential:

$$V(\phi) = M^{4+\alpha}/\phi^{\alpha}, \ \alpha > 0$$

	Pl. + SKA1	Pl. + LOSs + SKA1	Pl. + SKA2
67% CL	$ \lambda < 0.16$	$ \lambda < 0.11$	$ \lambda < 0.11$
95% CL	$ \lambda < 0.21$	$ \lambda < 0.14$	$ \lambda < 0.15$

For thawing models

Scalar field potential:

$$V(\phi) = V_0 \cos(\phi/f)$$

	Pl. + SKA1	Pl. + LOSs + SKA1	Pl. + SKA2
67% CL	$ \lambda < 0.27$	$ \lambda < 0.17$	$ \lambda < 0.16$
95% CL	$ \lambda < 0.35$	$ \lambda < 0.22$	$ \lambda < 0.20$

Conclusion

Current observations: |V'/V| < 0.65 at 95% C.L.

(SNIa, CMB and BAO data) P. Agrawal, G. Obied, P. J. Steinhardt, C. Vafa (2018), arXiv:1806.09718

Conclusion

Current observations: |V'/V| < 0.65 at 95% C.L.

(SNIa, CMB and BAO data) P. Agrawal, G. Obied, P. J. Steinhardt, C. Vafa (2018), arXiv:1806.09718

or

• Main result:

Putting all the constraints together and always keeping the most conservative one:

	Planck + (Vera Rubin + Euclid) + SKA1	Planck + SKA2
At 67% C.L.	V'/V < 0.16	V'/V < 0.17
At 95% C.L.	V'/V < 0.22	V'/V < 0.20

Whereas String theory requires:

$$|V'/V| > \mathcal{O}(1)$$

(Under the assumption of the de-Sitter conjecture)

 $|V'/V| > 2/\sqrt{3} \simeq 0.81$

According to D. Andriot, et al. (2020), arXiv:2004.00030

Net improvement of the tension!

Prospects:

Evolution of the constraint on $|\lambda|$ with ameliorations of the sensitivities on w_0 or w_a

Conclusion

Drawbacks of this study

- → Depends on a specific parametrization for w(z)

 (Even though we picked the most commonly used and justified)
- → It exists a refined version of the de-Sitter conjecture

The one we used
$$\left|\frac{V'}{V}\right| > \lambda_c$$
 OR $\left|\frac{V''}{V}\right| < -\alpha_c$ (Does not change anything for tracking freezing and scaling freezing models as they always fail to satisfy the new condition)

- ightharpoonup The exact value of the minimal $|\lambda|$ authorized by the de-Sitter conjecture is still source of debate
- → This study lie in the context of quintessence models with one scalar field
- → Based on a conjecture

 But at this day not a single stable de-Sitter vacuum has been built in string theory!

Importance of the drawback

Weak

• The final world

The forthcoming Dark Energy surveys might put String Theory under serious pressure!