

Measuring the CKM angle γ in open charmed B decays at LHCb

HALIME SAZAK

LABORATOIRE DE PHYSIQUE DE CLERMONT-FERRAND (LPC) $OCT\ 20^{TH}$, 2021

Contents

- The LHCb Experiment
- Motivation
- \blacksquare γ Combination by LHCb
- Analysis for the γ Measurement
 - $\blacksquare B_s \rightarrow D^{0(*)} \phi$
 - $\blacksquare B^- \rightarrow D^0 K^{*-}$
- LHCb Upgrade –SciFi Tracker
- Conclusion

LHCb: Large Hadron Collider Beauty Experiment

- \blacksquare General purpose of spectrometer in the forward direction covering $2 < \eta < 5$
- Goal: Designed for the precision measurements of particles with beauty and charm sector in particular CP violation and search for indirect evidence of New Physics
- Precise particle identification and reconstruction
- Physics program involves Flavour physics, EW, exotic and heavy ions...

Center of mass energy:

Run 1 (7-8 TeV collisions) (2011-2012) Run 2 (13 TeV collisions) (2015-2018)

Luminosity collected:

$$\mathcal{L}_{inst} = 4 \times 10^{32} cm^{-2} s^{-1}$$

• 3 (Run 1) + 6 (Run 2) fb^{-1}

MOTIVATION

- The weak phase γ is the least accurately measured constraint of the CKM Unitarity Triangle.
- Measuring it precisely is one of the key goal of the Flavour Physics.
- \mathbf{y} can be measured from the processes mediated
 - Only angle easily accessible at **Tree-level** (direct measurement)
 - theoretically clean
 - "Standard Candle" of the Standard Model
 - Sensitivity determine by the interference between **favoured** $b\rightarrow c$ and **suppressed** $b\rightarrow u$ quark transitions in the tree level.
 - Loop-level (indirect measurement) sensitive to NP

Unitarity Triangle Measurement

- Discrepancy between these will indicate "New Physics"
- Many different channels to study the sensitivity on γ
- The decay modes we use for γ measurement:
 - $egin{aligned} ullet B_{\mathcal{S}}^0 &
 ightarrow D^{(*)0} oldsymbol{\phi}(K^+K^-), D^{(*)0} ext{ decays to } K^-\pi^+\pi^0 \end{aligned}$
 - $B^- o DK^{*-}$ where K^{*-} decays to $K^-\pi^0$ (with GLW/ADS method)

NP

Loop only

[CKMFitter]

y Combination by LHCb

- \bullet Most precise determination of γ from a single experiment
- Different B modes agree at 2σ level
- B_S^0 decays in Run 1 and Run 2 analysis [LHCb-CONF-2020-003]
 - Constraint on $\gamma \sim 20^{\circ}$ level of precision
- Yields of D^0 modes can be used to study γ
 - $D^0 \to h^- h^+$, $D^0 \to K^- \pi^- \pi^+ \pi^+$, $D^0 \to K^- \pi^+ \pi^0$
- Combination of Unitarity Triangle angle p measurements of the LHCb
 - New average : $\gamma = (67 \pm 4)^{\circ}$ [LHCb-CONF-2020-003] (direct measurement)

 $\gamma = (65.7^{+0.9}_{-2.7})^{\circ}$ (indirect measurement)

1. $B_s \rightarrow D^{0(*)} \phi$ Analysis

- The precise measurement of the γ angle through the $B_s^0 \to D^{(*)0} \phi(KK)$, where D-meson decay modes are: $K\pi$, $K\pi\pi\pi$, $K\pi\pi^0$, KK, $K\pi\pi^0$, $K\pi^0$, K
- The sensitivity on γ obtained $\sim 8^{\circ}$ to 19° with Run1 & Run2 dataset
- Can proceed by leading-order interfering Feynman diagrams

 \blacksquare Yields from the D^0 -> $K\pi\pi^0$ sub-decay mode used to study γ

Chinese Phys. C 45 023003 (2021)

- \blacksquare Combined other sub-decay modes $(K\pi, K\pi\pi\pi, KK, \pi\pi)$ studied by Chinese colleagues to improve its sensitivity.
- Goal: Optimize the $B_S \to D^{0(*)}\phi$ channel to obtain a very high purity and the most abundant signal of $B_S \to D^0\phi$ to achive the best sensitivity on γ

- Preliminary analysis for $B_S \to D^{0(*)} \phi$, $D^{0(*)} \to K^- \pi^+ \pi^0$ studied with MC, DATA Run1 (2011-2012) and DATA Run2 (2015-2016-2017) (not including 2018)
- lacksquare Datasets and selections used for the $B^0_{\mathcal S} o D^{(*)0}oldsymbol\phi$ analysis for γ measurement
 - Monte Carlo Run 1 (2011 2012) + Run 2 (2015-2018)
 - DATA Run 2 (2015-2018)
 - Stripping + trigger + pre-selections + PID Cut + MVA Cut
- Re-optimize the selection on $B_s o D^{0(*)}(K^-\pi^+\pi^0)\phi(K^+K^-)$
 - Deal with $D^{0(*)} o K^-\pi^+\pi^0$
 - Pre-selections & MVA on $B_s o D^{0(*)}(K^-\pi^+\pi^0)\phi(K^+K^-)$

- ullet Selection of sub-decay mode $D^0 o K^-\pi^+\pi^0$ is complicated because of neutral pion π^0
 - Large backgrounds studied: Resolved $\pi^0 \to \gamma \gamma$ separately in ECAL

• MC simulation:

- Amplitude model from E691 Experiment and confirmed by CLEO-C
- involving resonant Spin-1 particles (K^{*0} (horizontal), K^{*-} (vertical), ρ^+ (anti-diagonal))

ullet MVA Method: BDT to select π^0 (Selections)

 Dalitz weight, photon asymmetry, photon tranverse energy, probability for photons to be not electrons or hadrons to reduce the background

lacktriangle Optimization of the π^0

- Signal Efficiency 85%
- Background Rejection 80%

- Pre-selections on $B_s \to D^{0(*)} \phi$ re-optimized to improve the statistical significance and to reduce the background [Phys. Rev. D 98, 071103(R)(2018)]
- Final selection MLP MVA giving the best optimization used to remove the combinatorial background
 - Topological and kinematic variables
- Particle identification(PID) cuts for all tracks are applied

-			
Candi	dates	Criteria	
Do	Invariant mass	[1765.0 , 1965.0] MeV/c ²	
B ^o	Invariant mass	[5.1 , 6.0] GeV/c ²	
0		5	
π ⁰		[116.0 , 160.0] MeV/c ²	
Do	Vertex χ² / nDof	> < 6 to < 4	
	BPVIPCHI2	> 20	
Do	$SDB = \frac{z_D - z_B}{\sqrt{\sigma_{ZD}^2 + \sigma_{ZB}^2}}$	> 3 to ~ 1.25 (RUN1)	
	•	> 3 to ~ 1.05 (RUN2) Charmless decay	
B ^o	Vertex χ² / nDof	< 4	
	BPVIPCHI2 $cos(heta_{dira})$ (BPVDIRA)	< 4 > 0.99995	
D*- (2010) veto		$m_{D_{\pi}}-m_{D} \not\in [140.621$, $150.221]$ MeV/c²	
PID requirements for D ^o daughters (RICHs Identification)			
* π	$ProbNN_{\pi} \times (1 - ProbNN_{K}) \times (1 - ProbNN_{p})$	▶ 2%	
* K.	$ProbNN_K \times (1 - ProbNN_{\pi}) \times (1 - ProbNN_{p})$	> 0.02% to 5%	
A 2	: Min_Bdau_CHI2IP	Input variable: B_IPChi2_OWNPV	
0.6	Background 50 0.6 50 50 50 50 50 50 50 50 50 50 50 50 50	70 0.75 NS 0.25	
NP (N-1)	TO (N/L) 0.4	(N) 0.5 (N)	
0.3	0.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		
0.1	0.1		
2	Min_Bdau_CHI2IP Min_Bdau_PT Tvar	** -8 -6 -4 -2 0 ** 2 3 4 5 6 7 8 9 10 ** 5 6 7 B_IPChi2_OWNPV D_dau_log_min_CHI2IP D_	
Input variable:	Input variable: DVtxProb Input variable: D0_IPChi2_OWNPV Section 1.5 Section	Input variable: D_dau_CosTheta Input variable: D0mass_const	
6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.0 / N.D 0.32	0.00 P	
P (NL)	1.5 P (N/L) 0.2 P (N/L) 0.2 P (N/L) 0.2	(V) 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2	THE PART OF THE PA	4 0.008 0.00	
1	0.5	0.004	
0 2/4/4	0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 3 4 5 6 7 8 9 10	0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 165017001750180018501900195020002050	

D0 IPChi2 OWNPV

- Two-dimensional fit to m(DKK)
- Signal models
 - $\triangleright B_s \rightarrow D^{0(*)}\phi$: Breit-wigner convoluted with Crystall-Ball

- Measured yields
 - The signal rate is improved !!!

Mode	$B_S^0 \to D^0 \phi$	$B_S^0 \to D^{(*)0} \phi$
$K^-\pi^+$ (Run1) [https://arxiv.org/pdf/2008.00668.pdf]	58	34
$K^-\pi^+\pi^0$ (Run1+Run2) (Preliminary study)	90.1 ±10.01	91.0 ± 20.0
$K^-\pi^+\pi^0$ (Run1+Run2) NEW RESULTS	141 ±13	176 ±20

Time for the γ measurement!

2. $B^- \rightarrow D^0 K^{*-}$ Analysis

$B^- o D^0 K^{*-}$ Analysis

- Analysis on more conventional decay of $B^- \to D^0 K^{*-}$ and $K^{*-} \to K_s \pi^-$ has been done with RunI&RunII (2015-2016) data by A. Nandi & S. Malde(Oxford) & V. Tisserand [arXiv:1709.05855]
- The second part of the thesis will be to measure γ angle measurement with the decay of $B^- o D^0 K^{*-}$, where $K^{*-} o K^- \pi^0$
 - Only difference dealing with π^0
- Preliminary analysis on $K^{*-} \to K^- \pi^0$ done with Run1 & Run 2(not included 2018)
- With current analysis to be used and improved
 - Full datasets
 - Same physics, i.e. r_B , δ_B
 - Selection optimisation(Pre-selections, MVA)
 - Efficieny measurement
 - Work on uncertainties
- Significance will be improved!

Decay mode	B^- yield	B^+ yield
$B^{\pm} \to D(K^{\pm}\pi^{\mp})K^{*\pm}$	996 ± 34	1035 ± 35
$B^{\pm} \rightarrow D(K^+K^-)K^{*\pm}$	134 ± 14	121 ± 13
$B^{\pm} \to D(\pi^{+}\pi^{-})K^{*\pm}$	45 ± 10	33 ± 9
$B^{\pm} \rightarrow D(K^{\mp}\pi^{\pm})K^{*\pm}$	1.6 ± 1.9	19 ± 7

$$R_{CP+} = 1.18 \pm 0.08 \pm 0.01$$

 $A_{CP+} = 0.08 \pm 0.06 \pm 0.01$

Statistical significance

 4.2σ

[LHCb-PAPER-2017-030]

$B^- \to D^0 K^{*-}$ Analysis

- \blacktriangleright Measurements of all observables combined to determine r_{B} , δ_{B} , γ
- Blue contour from the analysis of $B^- o D^0 K^{*-}$ and $K^{*-} o K_S \pi^-$ [LHCb-PAPER-2017-030]
- Red contour from the preliminary analysis on $K^{*-} \to K^- \pi^0$
- Figure 3. Green zone correspond to the combination of two decay modes
- Precise determination of γ at 2σ level
- $F_{*} K^{*-}
 ightarrow K^{-} \pi^{0}$ Promising decay to study further
- To be improved with full dataset

LHCb Upgrade

Scintillating Fibre Tracker (SciFi)

Scintillating Fiber Tracker (SciFi)

Motivation:

Increase the instantaneous luminosity $(4.10^{32}cm^{-2}s^{-1} \rightarrow 2.10^{33}cm^{-2}s^{-1})$ and the data taking rate from 1MHz to 40MHz

Hard to cope with faster data-taking with IT and OT

Inner (IT) and Outer Tracker(OT) replaced by a single technology:
SciFi tracker = scintillating fibres with SiPM readout

Scintillating Fiber Tracker (SciFi)

Participate the construction and the commisioning of the new Scintillating Fibres (SciFi) tracker project.

especially assembly of the SciFi readout box

Contribute to the online monitoring and simulation of the behaviour of the environment sensors that monitor the changes of electronics readout box

> 6/12 C-Frames transported to the cavern.

Photos by S. Jacobsen – 101st LHCb Week

Fibre Module

Conclusions

- \triangleright Efficiency and the systematics studies on $B_S \to D^{0(*)}(K^-\pi^+\pi^0)\phi$ have been finalized
- Currently working on:
 - \triangleright Combine with the other sub-decay modes($K\pi, K\pi\pi\pi, KK, \pi\pi$) and measure the γ angle
 - Soon to be published
- Measurement of γ through $B^- \to D^0 K^{*-}$ ($K^{*-} \to K^- \pi^0$) is in preparation
- Final transport for the C-Frames will be end of January.

Thank You For Your Attention!

