Study of surface properties of heavy atomic nuclei

Da Costa Philippe

PhD supervisor : K. Bennaceur

Working group: K. Bennaceur, M. Bender, J. Meyer

Institut de physique des deux infinis (IP2I)

21 octobre 2021

Table of contents

Introduction

- 1.1 Problematic
- 2.2 Variational principle in a nutshell

2 Study of surface properties

- 2.1 Why surface properties so important?
- 2.2 Goal of the study

3 Results

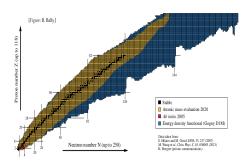
- 3.1 Penalty function
- 3.2 Fission barriers
- 3.3 Normal deformation
- 3.4 Super deformation
- 3.5 Mass of doubly magic nuclei

Conclusion

Introduction

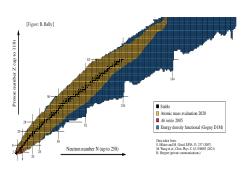
1.1) Problematic

Nuclear structure is the study of system with N quantum body in interaction. Thus its treatment is non trivial and we will face some difficulties such as :



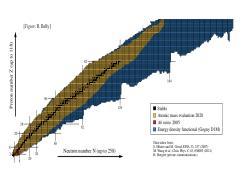
1.1) Problematic

Nuclear structure is the study of system with N quantum body in interaction. Thus its treatment is non trivial and we will face some difficulties such as:



 Effective potentiel unknown a priori; 0000

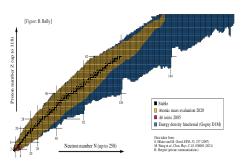
Nuclear structure is the study of system with N quantum body in interaction. Thus its treatment is non trivial and we will face some difficulties such as :



- Effective potentiel unknown a priori;
- · Ambiguity for the choice of experimental data for constraining the interaction:

Introduction •000

Nuclear structure is the study of system with N quantum body in interaction. Thus its treatment is non trivial and we will face some difficulties such as:



- Effective potentiel unknown a priori;
- · Ambiguity for the choice of experimental data for constraining the interaction:
- Numerical resolution cost non negligible.

1.2) Variational principle in a nutshell

In the variational approach (HF or HFB) we want to minimize the energy which is a function of the wave-function.

1.2) Variational principle in a nutshell

In the variational approach (HF or HFB) we want to minimize the energy which is a function of the wave-function.

$$E[|\psi\rangle] = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \Longrightarrow \delta E[|\psi\rangle] = 0$$

1.2) Variational principle in a nutshell

In the variational approach (HF or HFB) we want to minimize the energy which is a function of the wave-function.

$$E[|\psi\rangle] = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \Longrightarrow \delta E[|\psi\rangle] = 0$$

We can also perform this variation with constraint as a quadrupole deformation for example:

$$\delta \langle \hat{H} - \lambda (\langle \hat{Q}_{20} \rangle - Q_{20})^2 \rangle = 0$$

ullet Finite-range interaction (Gogny) $ightarrow \sum_{k=1,2} e^{-rac{(r_1-r_2)^2}{\mu_k^2}}$

1.2) Variational principle in a nutshell Effective interaction

- Finite-range interaction (Gogny) $\rightarrow \sum e^{-\frac{(r_1-r_2)^2}{\mu_k^2}}$
- Contact interaction (Skyrme) $\rightarrow \delta(r_1 r_2)$

$$\begin{split} V_{\mathrm{Sky}} &= \boldsymbol{t_0} \left(1 + \boldsymbol{x_0} P^{\sigma} \right) \delta(\vec{r}) \\ &+ \frac{1}{2} \, \boldsymbol{t_1} \left(1 + \boldsymbol{x_1} P^{\sigma} \right) \left[\overleftarrow{k}^2 \delta(\vec{r}) \, + \delta(\vec{r}) \, \overrightarrow{k}^2 \right] \\ &+ \boldsymbol{t_2} \left(1 + \boldsymbol{x_2} P^{\sigma} \right) \overleftarrow{k} \cdot \delta(\vec{r}) \overrightarrow{k} \\ &+ \frac{1}{6} \, \boldsymbol{t_3} \left(1 + \boldsymbol{x_3} P^{\sigma} \right) \rho_0^{\alpha} \delta(\vec{r}) \\ &+ \mathrm{i} \, \underline{W_0 \sigma_{12}} \cdot \overleftarrow{k} \times \delta(\vec{r}) \, \overrightarrow{k} \end{split}$$

1.2) Variational principle in a nutshell Penalty function

The parameters of a functional has to be adjusted by minimizing a penalty function built from a series of constraints:

$$\chi^2(\mathbf{p}) = \sum_{i=1}^{n_{\mathrm{obs}}} \frac{(\mathcal{O}_i(\mathbf{p}) - \mathcal{O}_i^{\mathrm{target}})^2}{\Delta \mathcal{O}_i^2}$$

with

- p : Parameters of the model;
- $\mathcal{O}_i(\mathbf{p})$: Calculated observable (pseudo-obersvable);
- $\mathcal{O}_i^{\mathrm{target}}$: Targeted value for the observable (pseudo-obersvable);
- $\Delta \mathcal{O}_i$: Adopted tolerance.

1.2) Variational principle in a nutshell Penalty function

The parameters of a functional has to be adjusted by minimizing a penalty function built from a series of constraints:

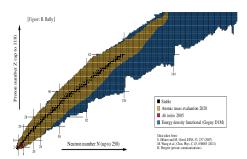
$$\chi^2(\mathbf{p}) = \sum_{i=1}^{n_{\mathrm{obs}}} \frac{(\mathcal{O}_i(\mathbf{p}) - \mathcal{O}_i^{\mathrm{target}})^2}{\Delta \mathcal{O}_i^2}$$

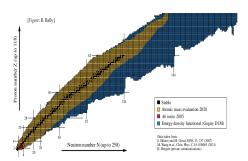
with

- p : Parameters of the model;
- $\mathcal{O}_i(\mathbf{p})$: Calculated observable (pseudo-obersvable);
- $\mathcal{O}_i^{\mathrm{target}}$: Targeted value for the observable (pseudo-obersvable);
- $\Delta \mathcal{O}_i$: Adopted tolerance.

We can then build the penarity function as a sum of different compronents :

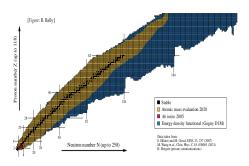
$$\chi^2 = \chi^2_{\rm inm} + \chi^2_{\rm pol} + \chi^2_{\rm BE} + \ldots + \chi^2_{\rm rad}, \label{eq:chi_pol}$$





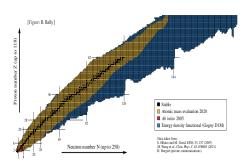
• Most of the nuclei are deformed;

2.1) Why surface properties so important?



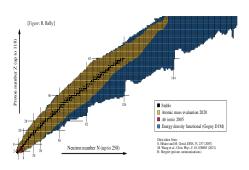
- Most of the nuclei are deformed;
- Isomeric states, shape coexistence;

2.1) Why surface properties so important?



- Most of the nuclei are deformed;
- Isomeric states, shape coexistence;
- Fission barriers;

2.1) Why surface properties so important?



- Most of the nuclei are deformed;
- Isomeric states, shape coexistence;
- Fission barriers;
- Rotationnal bands.

2.1) Why surface properties so important? Until now?

Several attempts to reproduce nuclear surface properties : SkM* 1, D1S² and UNEDEE2³.

^{1.} J. Bartel et al. Nuclear Physics A, 386(1), 79-100 (1982).

^{2.} J.F. Berger, M. Girod and D.Gogny, Comp. Phys. Comm., 63 (1991) 365.

^{3.} M. Kortelainen et al., Phys. Rev. C 89, 054314 (2014).

^{4.} R. Jodon, M. Bender, K. Bennaceur, and J. Meyer, Phys. Rev. C 94, 024335 (2016).

2.1) Why surface properties so important? Until now?

Several attempts to reproduce nuclear surface properties : SkM* 1, D1S² and UNEDEE2³.

SLy5s1⁴ Able to reproduce a lot of heavy nuclei properties.

Not really good for mass residuals...

^{1.} J. Bartel et al. Nuclear Physics A, 386(1), 79-100 (1982).

^{2.} J.F. Berger, M. Girod and D.Gogny, Comp. Phys. Comm., 63 (1991) 365.

^{3.} M. Kortelainen et al., Phys. Rev. C 89, 054314 (2014).

^{4.} R. Jodon, M. Bender, K. Bennaceur, and J. Meyer, Phys. Rev. C 94, 024335 (2016).

2.2) Goal of the study

Work in colaboration with M. Bender and J. Meyer. The aim of the study focuses on 3 points :

Work in colaboration with M. Bender and J. Meyer. The aim of the study focuses on 3 points :

• Having a good description of ²⁴⁰Pu isomer;

Work in colaboration with M. Bender and J. Meyer. The aim of the study focuses on 3 points :

- Having a good description of ²⁴⁰Pu isomer;
- Being able to describe ¹⁸⁰Hg fission barrier with an oblate groud state;

Work in colaboration with M. Bender and J. Meyer. The aim of the study focuses on 3 points:

- Having a good description of ²⁴⁰Pu isomer:
- Being able to describe ¹⁸⁰Hg fission barrier with an oblate groud state;
- Improving binding energies predictions of nuclei compared to SLy5s1 interaction.

2.2) Goal of the study How to treat this problem?

3 changes on the fit protocol:

2.2) Goal of the study How to treat this problem?

3 changes on the fit protocol:

 \bullet Different value for $a_{\rm surf}^{\rm MTF}$ [16.0;20.0] MeV;

3 changes on the fit protocol:

- Different value for $a_{\text{surf}}^{\text{MTF}}$ [16.0;20.0] MeV;
- Different recipies of center of mass correction 1F2F, 1T2F, 1T2T;

3 changes on the fit protocol:

- Different value for $a_{\text{surf}}^{\text{MTF}}$ [16.0;20.0] MeV;
- Different recipies of center of mass correction 1F2F, 1T2F, 1T2T;
- Different values for the effective mass $m_0^*/m = 0.70, 0.80, 0.85$.

We can separate the energy density into 4 component :

2.2) Goal of the study Effective interaction

We can separate the energy density into 4 component :

$$E_{\rm ph} = E_{\rm kin} + E_{\rm Sky} + E_{\rm Coulomb} + E_{\rm corr}$$

2.2) Goal of the study Effective interaction

We can separate the energy density into 4 component:

$$E_{\rm ph} = E_{\rm kin} + E_{\rm Skv} + E_{\rm Coulomb} + E_{\rm corr}$$

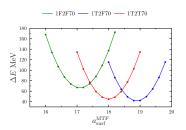
 $E_{\rm corr}$ is limited to the correction of the cm :

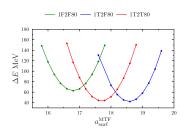
$$E_{\rm cm} = -\frac{\langle \mathbf{P}^2 \rangle}{2Am} = -\left(\sum_i \frac{\langle \mathbf{p_i}^2 \rangle}{2Am} + \sum_{i < j} \frac{\langle \mathbf{p_i} \cdot \mathbf{p_j} \rangle}{Am}\right)$$

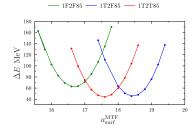
With **P** the sum of the impulsions of the *A* nucleons in the nucleus.

$$E_{cm}^{(1)} = \sum_{i} \frac{\langle \mathbf{p_i}^2 \rangle}{2Am} \qquad \qquad E_{cm2}^{(2)} = \sum_{i < j} \frac{\langle \mathbf{p_i} \cdot \mathbf{p_j} \rangle}{Am}$$

3.1) Penalty function



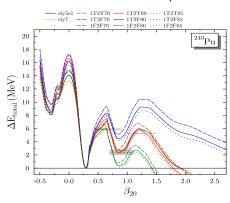




 χ^2 as a function of $a_{
m surf}^{
m MTF}$

3.2) Fission barriers

Calculation are compared with SLy5s1 and SLy7⁵ interaction.



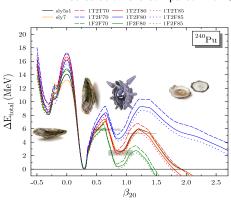
• Grey areas indicate experimental excitation energies and barriers height.

Fission barrier of ²⁴⁰Pu

^{5.} E. Chabanat, et al, ucl. Phys. A635 (1998) 231-256.

3.2) Fission barriers

Calculation are compared with SLy5s1 and SLy7⁶ interaction.

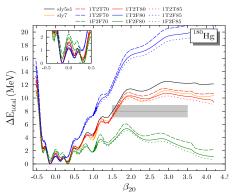


• Grey areas indicate experimental excitation energies and barriers height.

Fission barrier of ²⁴⁰Pu

^{6.} E. Chabanat, et al, ucl. Phys. A635 (1998) 231-256.

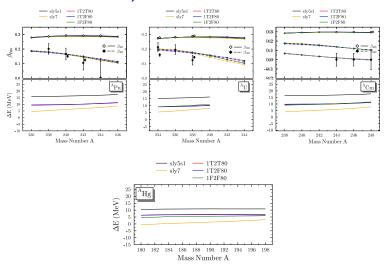
3.2) Fission barriers



- Grey areas indicate experimental excitation energies and barriers height;
- Experimentally, the ground state of is ¹⁸⁰Hg oblate.

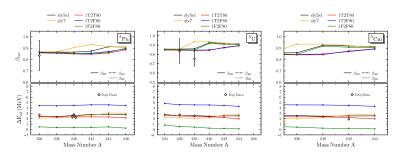
Fission barrier of ¹⁸⁰Hg

3.3) Normal deformation



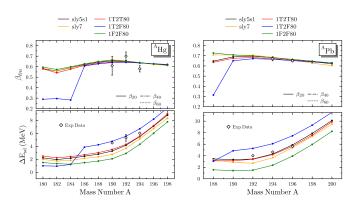
Lower panels: mass residuals of the calculated ground states

3.4) Super deformation for actinide



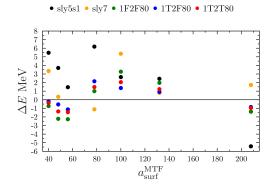
- Lower panel: excitation energy of the 0⁺ fission isomers of even-even Pu, U and Cm isotopes.
- Upper panel: calculated β_{20} , values, and experimental data for charge quadrupole deformation β_{20} for comparison.

Results of the interaction 00000000



- Lower panel : excitation energy of the 0⁺ band head of the superdeformed rotational bands of Hg and Pb isotopes.
- Upper panel : Deformation parameter $\beta_{lm} = \beta_{20}$, β_{40} , and β_{60} .

3.5) Mass of doubly magic nuclei



Mass rediduals of doubly magic nuclei : $\Delta E = E_{calc} - E_{exp}$

• Better description of nuclei masses;

- Better description of nuclei masses;
- Able to reproduce the oblate ground state of the ¹⁸⁰Hg;

- Better description of nuclei masses;
- Able to reproduce the oblate ground state of the ¹⁸⁰Hg;
- Description of the isomeric state of ²⁴⁰Pu.

- Better description of nuclei masses;
- Able to reproduce the oblate ground state of the ¹⁸⁰Hg;
- Description of the isomeric state of ²⁴⁰Pu.

Perspective:

• Study of more nuclei;

- Better description of nuclei masses;
- Able to reproduce the oblate ground state of the ¹⁸⁰Hg;
- Description of the isomeric state of ²⁴⁰Pu.

Perspective:

- Study of more nuclei;
- Adding tensor contribution;

- Better description of nuclei masses;
- Able to reproduce the oblate ground state of the ¹⁸⁰Hg;
- Description of the isomeric state of ²⁴⁰Pu.

Perspective:

- Study of more nuclei;
- Adding tensor contribution;
- Spin orbit N2LO;

- Better description of nuclei masses;
- Able to reproduce the oblate ground state of the ¹⁸⁰Hg;
- Description of the isomeric state of ²⁴⁰Pu.

Perspective:

- Study of more nuclei;
- Adding tensor contribution;
- Spin orbit N2LO;
- Covariant analysis.

Thanks for your attention.