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A bit of history. Roaring 40s
• A lot is 

invested in 
nuclear physics


• Great 
advancements 
in nuclear 
physics


• QED is born - 
the first QFT


• A real boom in 
physics


• Serious 
consequences
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Furious 50s
Accelerators!  
PS at CERN
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Lots of experimental data -  
lack of theoretical explanation

Screaming 60s

• QED is there - but the same 
approach does not work with the 
other fundamental forces


• Weak interaction breaks CP 
symmetry - what are the force 
carriers?


• Accelerators keep delivering -> 
particle zoo keeps growing. What 
are the fundamental constituents? 


• What's the nature of the strong 
force?
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• The particle zoo is tamed by the 
eightfold way and quarks 
(but what breaks quark mass 
symmetry?)


• Yang-Mills gauge fields idea from 
1954 is reapplied to strong fields  


• Quarks have an colour quantum 
number and interact through SU(3)-
symmetric gauge field  


• Massless force carriers assume 
asymptotic freedom and 
confinement 


• There is no general mathematical 
solution to the Yang-Mills fields 
problem up until now

Screaming 60s

An nice way to earn $  for 
the theorists from CMI

106

The theorists take over - it starts to come together for the strong force
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https://www.claymath.org/millennium-problems/yang%E2%80%93mills-and-mass-gap


• Short-range nature of weak 
interaction assumes massive 
charged bosons 


• SU(2)xU(1) unification proposed


• Massive neutral boson was 
required by this unification


• Massive -> gauge symmetry 
broken


• What breaks the symmetry here?

Screaming 60s
The theorists take over - it starts to come together for the weak force
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• Short-range nature of weak 
interaction assumes massive 
charged bosons 


• SU(2)xU(1) unification proposed


• Massive neutral boson was 
required by this unification


• Massive -> symmetry broken


• What breaks the symmetry here? 
Same answer as for the quarks.

Screaming 60s
The theorists take over - it starts to come together

The Higgs mechanism 
(by Brout-Englert-Higgs-Hagen-
Guralnik-Kibble)

The Standard Model is born: 
SU(3)xSU(2)xU(1) 

The marriage of strong and 
electroweak gauge fields. 
Looks cool. Is it true though? 
Experiment is to tell.

9



Experiments catch up

• 1973 - neutral current interaction 
(Gargamelle)


• UA1 and UA2 discover W and Z 
in 1983


• And finally...

The Standard Model
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What is happening now?
We have discovered all of the SM particles, are we done?

• Observation of production modes and decay 
channels predicted by the Standard Model 


• Precision measurements of the SM input 
parameters


• Precision tests of the SM predictions


• A lot of physics is still to observe and to 
understand
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Top physics: 
 no hadronization 

heaviest known particle
t → Wb

The Standard Model
Investigated from every side
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Electroweak physics: 
 interactions 

precise tool to probe SM 
(really complicated in the hadron-
dominated LHC environment)

W/Z/γ

Electrodynamics: 
light-by-light scattering

The next talk  
by Luka Selem ->  
measurement of WZ 
polarization 
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Electroweak physics: 
 interactions 

precise tool to probe SM 
(really complicated in the hadron-
dominated LHC environment)

W/Z/γ

Electrodynamics: 
light-by-light scattering

Higgs physics: 
¿The particle we see in the 
detector = particle predicted by 
the SM? 

Talk by Mario Sessini ->  
is Higgs boson indeed so 
hopelessly scalar as the 
SM predicts?

Arnaud Maury has tried to 
parametrise an off-shell H->4l  
X-section using ML 
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Electroweak physics: 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precise tool to probe SM 
(really complicated in the hadron-
dominated LHC environment)

W/Z/γ
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light-by-light scattering

Higgs physics: 
¿The particle we see in the 
detector = particle predicted by 
the SM? 

Neutrino physics: 
• Interacts only weakly

• very small mass 

Flavour physics: 
• mixings and couplings

• symmetry violation

• matter-antimatter 

asymmetry 
 

{
Halime Sazak will tell us 
about the measurement of 
the CKM angle  
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Investigated from every side
Top physics: 

 no hadronization 
heaviest known particle
t → Wb

The Standard Model

Electroweak physics: 
 interactions 

precise tool to probe SM 
(really complicated in the hadron-
dominated LHC environment)

W/Z/γ

Electrodynamics: 
light-by-light scattering

Higgs physics: 
¿The particle we see in the 
detector = particle predicted by 
the SM? 

Neutrino physics: 
• Interacts only weakly

• very small mass 

QCD physics: 
• Strong interaction

• quarks + gluons

• bridging theoretical QCD 

objects (partons)  
and experiment (jets)


• Hadron physics  

Flavour physics: 
• mixings and couplings

• symmetry violation

• matter-antimatter 

asymmetry 
 

{
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What do we want to measure?
The Standard Model

 
Drell-Yang angular coefficients 

sin2 θW
AFB

 
Measurement of  and  

Comparison with SM electroweak 
fits (interplay top and Higgs)

mW
pW

T mW

Symmetry conservations  
e.g. lepton universality

 
jet production, top production 

cross-sections, splitting scales, jet 
substructure, QGP manifestations

αs

 
Direct and indirect measurement


?

mt

Couplings 
rare processes (multiboson, VBS, four tops, Higgs) 

differential x-sections, W/Z VBF
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αs

 
Direct and indirect measurement


?

mt

Couplings 
rare processes (multiboson, VBS, four tops, Higgs) 

differential x-sections, W/Z VBF

Océane Perrin will 
enlighten us about Higgs 
self-coupling measurement
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What do we want to measure?
The Standard Model

 
Drell-Yang angular coefficients 

sin2 θW
AFB

 
Measurement of  and  

Comparison with SM electroweak 
fits (interplay top and Higgs)

mW
pW

T mW

Symmetry conservations  
e.g. lepton universality

 
jet production, top production 

cross-sections, splitting scales, jet 
substructure, QGP manifestations

αs

 
Direct and indirect measurement


?

mt

Couplings 
rare processes (multiboson, VBS, four tops, Higgs) 

differential x-sections, W/Z VBF

New physics 
The SM was (and still is) a great 

theoretical success 
Shall we finally break it?
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The LHC
• 27 km 

circumference 
particle collider at 
CERN 


• Operates at 13 TeV 
center-of-mass 
energy (Run 2)


• Delivers 
unprecedented 
luminosity: 
Tevatron collected 
1  in 
2001-2005, LHC 
made 146  in 
2015-2018

fb−1

fb−1
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bunches of 
protons 
cross every 
25 ns


here you 
see 9 
collisions 
per bunch 
crossing
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~ 100 collisions per bunch crossing 
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Luminosity collected by the detectors 

• 1  at 13 TeV gives ~ 100k 


• Higher luminosity -> more events -> rare 
processes


• High pile-up -> aggressive radiation + systematics 

fb−1 W+ → e+ν

Nevents = σ(ECoM) × L

bad for the detector bad for precision measurements
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Typical collision is like 
The realm of QCD


• A couple of partons have a 
hard scattering


• Other partons can interact 
via soft scattering


• Radiation


• Hadronization


• Fragmentation


• Multiple interactions
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The realm of QCD


• A couple of partons has a hard 
scattering


• Other partons can interact via soft 
scattering


• Radiation


• Hadronization


• Fragmentation


• Multiple interactions


• Oyster final states are quite 
common (scraping them them out 
of the detector is the true reason 
for Run 3 delay)


Typical collision is like 
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The CMS  
detector

Multi-purpose


Onion-like


Has 4 main subsystems:


• Inner detector


• ECal


• HCal


• Muon chambers
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The ATLAS  
detector

Multi-purpose


Onion-like


Has 4 main subsystems:
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• EM Calorimeter


• Hadronic Calorimeter


• Muon detectors
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The ATLAS  
detector
Multi-purpose


Onion-like


Has 4 main subsystems:


• Inner detector


• EM Calorimeter


• Hadronic Calorimeter


• Muon detectors

Arnaud Maury is to share 
his developments in 
tracking algorithms 
improvement 34



What do we 
see?

• The particle has to 
live long enough to 
reach the detector


• Most of the particles 
of interest (W/Z/H, 
quarks, gluons) we 
reconstruct from 
their decay products 
and emissions 
(leptons, photons, 
hadrons)  
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Lepton 
detection

• Electrons create an 
electromagnetic 
shower and mostly 
die in the EM 
calorimeter. 
Reconstructed from 
the tracker and EMCal


• Muons normally 
penetrate the 
detector. 
Reconstructed from 
the tracker and muon 
spectrometer.
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Photons 
detection

• Photons create an 
electromagnetic 
shower and end 
their short (but 
glorious) life in the 
EM calorimeter right 
next to the 
electrons. Photons 
are not seen in the 
tracker.
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Hadron 
detection

• Charged hadrons are 
seen in the tracker


• All hadrons are seen 
in the EMCal + 
HadCal
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Jets
• A complex object 

that we have to deal 
with in experiment


• The confinement 
does not allow us to 
see coloured 
objects.


• In a desperate 
attempt to cover 
their naked colour, 
hot coloured objects 
create an avalanche 
of particles that 
eventually 
hadronizes. 
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Jets
• In the detector we see a 

collimated shower of hadrons, 
leptons and photons
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b-quarks                tau leptons            neutrinos

• weak decay of the b-
quark is suppressed, 
so it travels a bit 
->displaced vertex


• extremely important 
for top and Higgs

• much heavier than 
electrons and muons


• decays into a jet, but a 
smaller one

• neutrinos are invisible


• measured indirectly by 
computing the missing 
ET from momentum 
conservation  
( )ΣpT = 0
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b-quarks                tau leptons            neutrinos

• weak decay of the b-
quark is suppressed, 
so it travels a bit 
->displaced vertex


• extremely important 
for top and Higgs

• much heavier than 
electrons and muons


• decays into a jet, but a 
smaller one

• neutrinos are invisible


• measured indirectly by 
computing the missing 
ET from momentum 
conservation  
( )ΣpT = 0

Yajun He has 
studied the ways to 
tag bb events in 
boosted regime 
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Monte-Carlo calibration
Everyday routine of the LHC analysers

• Modern MC generators encode the best of our theoretical knowledge, 
calculated to incredible precision


• The detector and its interaction with generated particles is modelled very 
well


• Residual inconsistencies remain


• Corrected via data-driven corrections

Typical (and simple) situation:  
the Z vertex position distribution is not 
modelled properly.  
We derive corrections from the data and 
set the distribution right.
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Everyday routine of ATLAS analysers
• Modern MC generators encode the best of our theoretical knowledge, 

calculated to incredible precision


• The detector and its interaction with generated particles is modelled very 
well


• Residual inconsistencies remain


• Corrected via data-driven corrections

Juan Salvador TAFOYA VARGAS 
knows how to correct electron 
energies in the EMCal

Romain BOUQUET was 
able to derive b-jet 
energy scale corrections

Monte-Carlo calibration
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So far the SM reigns supreme in the LHC domain 
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Particle zoo is growing, well domesticated now 
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Conclusions
• The ball is now on the experimental side (personal opinion)


• Probe the limits of the SM and look beyond - it's up to us


• The upcoming ATLAS/CMS upgrades will push the limits of what can be 
observed for the SM processes 

• Even better PDF fits and tunes 


• New analysis algorithms (including ML)


• Improved precision of the theoretical predictions/MC


Most evident sources of improvements

47



Conclusions
• The ball is now on the experimental side (personal opinion)


• Probe the limits of the SM and look beyond - it's up to us


• The upcoming ATLAS/CMS upgrades will push the limits of what can be 
observed for the SM processes 

Merci!
Thank you!
Дякую! 
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Backup
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