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The Standard Model success story

* Not just a formula on a mug...
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The Standard Model success story

- A complete theory to describe Standard Model of Elementary Particles

elementary particles and their oy R
interactions: T — —
- fermions: three families with *= > y |7 ¢ |7 t '@ |' H
matter + antimatter, Ieft/rlght up charm top gluon ' higgs

components with different ) () e
interactions @ IO |IF® || @ i

- g au g e b osons: car ry down strange bottom photon
interaction, associated with Ty Y ey Warrremn W a-prre
symmetry group - @O I® @ || @

- nggS boson: (Only) Scalar electron muon tau {‘Zboson l
particle, associated with mass
generation mechanism 5 = Y& LV Lvo W
through symmetry breaking neutino || neurino | | neutino | | W bosON

- Can be used to predict any process after a finite set of measurements to
determine 25 parameters (renormalizable theory)
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The Standard Model success story

Standard Model Production Cross Section Measurements Status: July 2018
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- Ever-growing set of measurements at LHC consistent with SM:
over wide range of energies, final states...
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The Standard Model success story

Standard Model Production Cross Section Measurements Status: July 2018
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- Ever-growing set of measurements at LHC consistent with SM:
over wide range of energies, final states...
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Some experimental tensions

- Several results available in the last years with
inconsistent with SM

measurements
prediction

- Possible causes:

- statistical fluctuations
- flawed SM predictions
- experimental biases

- nhew physics

=> often source of a bunch of arXiv theory

papers following public results
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The Standard Model flaws

- Still need 25 parameters (assuming massive
Dirac neutrinos): is SM the new epicycle?

- Many unanswered fundamental questions:
- why three families of fermions?
- any lepton/quark connection? 1
- why the CP asymmetry? why none in QCD? ‘a\
- why the SU(3)xSU(2)xU(1) gauge ¥

symmetry?

- are neutrinos Dirac or Majorana?
- why such a large mass hierarchy?

fermion masses

dre se be - Many BSM models on
ue Ce te the market to try to
v, —eieV5 0V3 ce HeTe address those
B S e e (O e e L (O e O G (0 [ i (| questions
ueV meV eV keV MeV GeV TeV
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Standard Model and gravitation

- Gravitation not described within SM (nor in any QFT derived from it):
Einstein’s equations not renormalizable

- Several experimental evidences of dark matter (which does not interact
through strong or EM interaction): new BSM particle? interactions with
SM particles?

- -rotational unldciw

(km/s)

S so000 100000
distance from center [light years]

- Dark energy (= cosmological constant) not

PLANE

embedded in SM either: link with Higgs vev? and oysters
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BSM models

- Broadly two kinds of approaches for possible BSM studies

- Model-dependent approach: try to start from a complete theory, which
embeds the SM + addresses some SM flaws or unanswered questions

- Example of supersymmetry:
- SM + extended particle content
- potential DM candidate
- solves naturalness problem
(= unnatural fine-tuning in
Higgs mass quantum
corrections)

- Needs to make sure that existing
measurements do not contradict
model predictions: non-
observation of proton decay or
flavor-changing neutral currents
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BSM as an Effective Field Theory

- Model-independent approach: treats the SM as a low-energy Effective
Field Theory (EFT) of some unknown UV-complete theory

- Study SM-scale low-energy perturbations introduced by new operators
with a generic parametrised Lagrangian

_ (5) D= 5 4 1 (6) VD=6
Lsmerr = Lsm + + A Z O, + 2 ZC- O +
- 1 d=5 operator (= Majorana’s neutrmos) + 2499 d-6 operators!
Not all of them respect SM accidental symmetries (B-L conservation,
lepton flavour universality...) => assumptions sometimes made to restrict
numbers of operators by imposing some symmetries

- Treatment valid as long
as energy-scale of
processes « A = scale of
new physics: see Fermi’s
theory example

n

Fermi’s theory W-boson exchange
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BSM search in low-energy observables

RATE

__COUNTING
<COUNTING RATE > T

- Many BSM theories exist and of course no single
experiment can probe them all

- Some low-energy observables sometimes more
sensitive to new physics that measurements at
the energy frontier: following Co60 Wu’'s
experiment, precise measurements of [ spectrum

can be sensitive to new physics
see Mohamad'’s and Sasha’s talk
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Dark matter searches

Collider
-Balls
e g —
SuperWIMPs mZillas C SM DM
o o o o Dla(:lszatltZrMals(:[GeV/cz] o " o " g
-Several models predict for dark matter 5
candidates with different properties: sterile 5
neutrinos, axions, weakly interactive massive oM ¢ DM
Indirect Detection
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o+ * Different ways to detect dark
matter particles

- Several generations of detectors
with increased sensitivity to
WIMPs: exploit nuclear recoil from
DM interaction, different
technologies to probe different

-« Massranges

WIMP-nucleon cross section [pb]

see Claudia’s talk
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BSM in colliders

- Lepton or hadron colliders have the advantage of a large spectrum of
possible interactions: can produce B hadrons with high luminosity

- B-factories at lepton colliders (Belle-Il at KEK) or b-physics experiments
at hadron colliders (LHCb at LHC)

- Probe new physics in loop diagrams: particles too
heavy to be directly observed can still impact decay
rates or angular properties of decay products

see Vlad'’s talk
B — D*nv
D* — D°m,
D° - Km
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see Linghua’s talk

- From search for a bump in mass spectrum,

tanp

produce heavy BSM resonances

CMS Preliminary

- Lepton or hadron colliders have the advantage of
a large spectrum of possible interactions: can

- Interpretation more or less involved depending
on number of free parameters in the model

35.9 b (13 TeV)

,,,,,
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BSM in colliders

..... el scr dilaced == |+ Given absence of clear evidence for BSM
m— charge ilepton epton . . .
T g =t | physics, LHC physicists have started to
W anythin . - - . .
R s Wonder if we might have missed it just

track lepton

because we’ve been blind to it

- Alternative techniques developed to
compensate for limitations of standard

kS %\ iy oton reconstruction techniques: large radius
displaced V d

‘‘‘‘
- LA
.
.

V‘ tracking, ECAL timing, LLP-jet tagging...

not pictured:
isplaced out-of-time decays

vertex conversion

- What if we don’t even have the
proper model yet to describe
new physics?
=> development of anomaly
detection using unsupervised

Machine Learning
see Louis’s talk

Detector cross-section
image credit: ATLAS
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Conclusion

- We know that the Standard Model is not the end of the story

- Several ways to describe physics Beyond the Standard Model: complete
models or SM as Effective Field Theory

to put the Standard Model in i ‘*:‘Jliu“
default: oF ('—j)".h....“ o
- low-energy observables r W
- dark matter searches
- intensity frontier
- energy frontier
=> each of them would deserve
an introduction of their own

I .
- Many avenues to explore to try e i, .ter %‘ P g =

40 [ penol )

* No convincing experimental evidence yet but who knows: sometimes
just need the right idea and right experiment, physics is your oyster!
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The naturalness problem

- Higgs mass quantum corrections s,,,2 A® !6 N\t 1 (9g2 + 39'2) - yt2 ]

quadratically sensitive to cut-off 3272 4
scale (= energy where SM breaks . .
down, at most Planck scale) dmy > m3 by ~1032
A
Ame ~ me In (ﬁ) - Not the case for fermions or gauge bosons,

A as corrections protected through chiral
AM;, ~ M, In (M_> symmetry or gauge symmetry
%%
- Motivation to consider BSM models where:
- new symmetry introduced to protect Higgs mass (SUSY)
- cut-off scale reduced wrt Planck scale (extra-dimensions for instance)
- composite Higgs (similar to pions with quark chiral-flavour symmetry)
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Supersymmetry

- Example of new symmetry: fermions-bosons symmetry, new SUSY
particles contributions to Higgs mass correction cancel SM ones

PARTICLES SPARTICLES
Quarks Leptons Squarks Sleptons
T 6 Q e o 6 6 ﬂ P Scalar partners of
fermions = sfermions
Top quark  Bottom quark Tau Neutrine v stop Sbottom Tou Sneutring vy
- Gl 08 0 @ 2 GoGd 0 O
Charm quark Strange quark Muon Neutrino vy, Charm squark Strange squark  Smuon Sneutrine v,

Mixing of fermion

e G O @ @ @@ 8 O rartners of gauge

Up quark Down quark  Electron  Neutrino v Up squark Down squark  Selectron  Sreutrino v, b O S O n S + H i g g S

& "\ bosons = neutralinos
D ooy W _ o ¥ a |+ charginos
2 2 G 0O @ @ @ 8 |Extended Higgs
o & ) sector (2HDM)
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Supersymmetry

« General SUSY extension of SM allows for proton decay unless extra
symmetry introduced, for instance R-parity = +1 for SM particles, -1 for
SUSY partners

- With R-parity: \32 8 T
- SUSY particles produced in pair ,f,/’ =~
- Lightest SUSY-particle (LSP) stable = X1 X1

=> possible DM candidate T~ i
I at
P
t

- R-parity violating SUSY models also
considered:
- allows for baryon (B) or lepton (L)
number violation (but not B-L)
- wide range of LSP lifetime possible
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Statistical break: limit settings

- Typical approach for BSM searches is to check if data are more
compatible with SM or BSM (often as a function of some parameters

associated to the model)

- Base tool for this is the likelihood i.e. the probability to observe a given
set of data assuming a particular theory (not the probability of a theory
given a particular set of data)

1

0.8

0.6

0.4

0.2

lII|lI[|III||I||IIl|

measurement
X=1

- Toy-example:

BSM theory has 1 unconstrained
parameter of interest y, SM =
H=1

+ extra-parameter > constrained
from auxiliary measurements =
systematics

Gaussian likelihood for
observable x (in general from fit
of multi-dim binned distribution)
Experiment = measure of x
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Statistical break: limit settings

i - Which value of p can | exclude
- = measurement considering my measurement
08—y x=1 x=17?
ye Convention: determine which
i values of u are such that
o4 P(x=1 | n) / P(x=1 | SM p=1) =
i profile likelihood ratio < y% (or z o)
0.2—
E Y — '51'fb' '(7'Te\'/)'+'1'97fb' ('8'Te\{)'+'35'9f'b'§'197TeV)
95| - I—4 -3 I—2 -1 0 1 2 3 4 5 é CMS Tgl\oﬂrr;lz(lgggted ]
301 — 13 TeV ]
[ —9.20 — 748 TeV ]
- For each value of y compute p.L.r. L AN

(+ profile systematics)
- Example from real analysis: A\ \ 3, ]
=0 excluded at 5.20 SN A R
0.65<u<1.9 95% confidence interval ‘ )

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

% o5 1 15 2 25 3 35

g=-2 log(p.l.r.)

MtiH

T. Strebler — JRJC021 22




Statistical break: limit settings

Oggr+ver (HH) [fb]

105: """""""""""""""""""" ]
- ATLAS Preliminary ~ — ObservedImit(9%CL) 4, ) jmjt on HH production cross-
_ \/§= 13 TeV, 139 fb_1 ---- Expected I!m!t (95% CL) : ) B ) )
A HH—>b6W [ Expected limit +16 section o (—lJ. IN previous
107 [ Expected limit +2¢ -
: B Thoory prediction : example) as a function of a
_ Y&  SM prediction 1 theory parameter xx
103§ F
T | + Observed limit computed using
T N | observed data, expected limit
- Observed: K, € [1.5,6.7] | computed using simulated data
- Expected: 1 € [-2.4,7.7] | generated from SM prediction
ol = Asimov dataset
‘10 8 6 4 2 0 2 4 6 8 10
LYY

- Using relation between o and x\ in the model, can translate 95% CL
exclusion limits on o into 95% CL interval on «)
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