Mesurement of the Higgs self-coupling through same-charge di-leptons channel Journées de Rencontre des Jeunes Chercheurs

Océane PERRIN

Laboratoire de Physique de Clermont

20/10/2021

Introduction

The Standard Model

Introduction

François Englert

Robert Brout

Peter Higgs

Thomas Kibble

Gerald Guralnik

Carl Richard Hagen

3 / 25

 In 1964, 6 physicists proposed a mechanism granting mass to known particles and introduced a new particle:

" The Higgs boson or BEH boson "

- In 2012, a bosonic particle have been observed with a mass equals to 125GeV has been observed by ATLAS and CMS Collaborations at the LHC
- Since, physicists want to probe the various properties that we confer to the Higgs boson

Outline

- Introduction
- Contexts
- HH production at LHC
- Analysis
- Summary

What's the Higgs Field or Higgs boson?

A room, full of physicists quietly chattering

The star will produce a cluster of admirers Increasing its resistance of movement

Higgs Field

Higgs Field could be described with a Lagrangian:

$$L_H = (D_\mu \phi)^\dagger (D^\mu \phi) - \mu^2 \phi^\dagger \phi - \lambda (\phi^\dagger \phi)^2$$

Higgs Field potential after Symmetry breaking:

$$V = V_0 + \underbrace{\lambda \nu^2 h^2}_{mass} + \underbrace{\lambda \nu h^3}_{trilinear\ coupling} + \underbrace{\frac{\lambda}{4} h^4}_{quadrilinear\ coupling}$$
 with $\frac{\mu}{\sqrt{\lambda}} \equiv \nu$

Aim of the study:

- ullet Obtain a direct measurement of λ_{hhh}
- Proof of the Higgs Field potential shape

HH production at LHC

- At LHC the dominant HH production modes are: $(\sqrt{s}=13 \text{ TeV})$
 - Gluon-Gluon fusion (ggf) $\sigma=$ 30 fb
 - 2 Vector boson fucion (VBF) $\sigma = 2$ fb
 - \bullet $t\bar{t}HH \sigma = 1 \text{ fb}$
 - **1** Double Higgs-strahlung (VHH) $\sigma = 1$ fb

ullet Total cross section of the Higgs production at LHC = 57 pb

Relation between λ_{HHH} and σ_{HH}

• Aim of the analysis: Search to measure the cross section of the HH production

HH decays

- Signal = Decay of HH into a specific signature
- Background = All processes, different from HH leading to the same signature
- ullet Signature $\ell^{\pm}\ell^{\pm}$ or $2\ell SS o Reject a maximum of backgrounds$
- ullet Main Backgrounds: VV production, Boson V production and $tar{t}$

ATLAS experiment

ATLAS detector

Run II: From 2015 to 2018

10 / 25

• Integrated luminosity 139 fb-1

Analysis - Strategy

- Analysis is performed using Monte-Carlo Simulation
- Each event is described by a list of properties : pT, charge, Invariant mass...
- Aim of this analysis :

- ullet 3 Main Backgrounds: VV production, Boson V production and $tar{t} o$ Various properties
- Train 3 specific BDTs, targeting each main background
- Combine them into a final discriminant variable

How can we distinguish Signal from Backgrounds?

$2\ell SS$ - Choice of discriminating variables

- Number of jets
- Transverse missing energy
- Number of b-jets
- \bullet ΔR between lepton and jets

Discriminating variables

- Pseudo-rapidity η
- Masses $(\ell \ell \text{ or } \ell\text{-jets or total})$
- Distance between particles ($\ell \ell$ or ℓ -jets)
- Transverse momentum
- Identity of the particle
- Number of jets / particles
- Transverse missing energy: energy not detected (usually neutrinos production)

13 / 25

- → Between 10 and 12 variables identified per background
- ightarrow Use them as input of the BDT method

BDT: ML method using binary criteria

Specific BDTs

Combined BDT

- Final BDT output estimated for all background - Stat only (no systematics)
- All shapes and normalisations from MC simulation
- Asimov fit with TRExFitter

Statistics and Cls method

Profile likelihood (TRExFitter)

- \bullet The signal strength is defined as $\mu = \frac{\sigma}{\sigma_{SM}}$
- Frequentist approach
- Use CL_s method

The CL_s method:

- 2 Hypothesis described by a likelihood based on poisson distribution:
 - H1 b: Background only
 - H0 s+b: Signal and Background
- Confidence level: CL_b and CL_{s+b} and $CL_s = \frac{CL_{s+b}}{CL}$
- Reject the hypothesis H1 with a 95% confidence level : $\text{CL}_s = 0.05$

Combined BDT

- Final BDT output estimated for all background - Stat only (no systematics)
- All shapes and normalisations from MC simulation
- Asimov fit using profile likelihood (TRExFitter)
- Using BDT bins:

$$\mu_{95\%} = 30.9$$

Instrumental background estimation

- Estimation of the instrumental background
- Use data driven method
- For instance: Photon conversion

1.5 2 2.5 3

3.5

DRII01

Combination

- ullet 2 ℓ SS analysis in included into a global analysis
- Each channel with it own strategy

Combination

Channel	Exp. limit $\mu_{95\%}$
3ℓ	24.5
2ℓSS	29.9
2ℓOS	92.6
4 ℓ	83.7
4 ℓ + bb	31.6
$2\ell SS1 au$	55.96
$1\ell 2 au$	25.60
Combination	11.50

- All systematics are ignored in this stage
- All strategies are based on BDT distribution to discriminate Signal from Background

Summary

- The measurement of the Higgs self coupling will bring a proof of the Higgs Field potential shape
- My work is focused on 2ℓSS:
 - Identification of discriminating variables
 - 2 Build a final discriminant variable using BDT method (leads to $\mu_{95\%}=30.9$ stat only)
 - Refine estimation of instrumental backgrounds
- Next step: Include systematics + refine estimation of instrumental backgrounds

Backup Slides

Boosted Decision Trees

- A node = a binary criteria
- Each level = Put variables in order and
- ullet Training: Adress ± 1 if signal or backgrounds

$2\ell SS$ - Choice of discriminating variables

Océane PERRIN (LPC) JRJC 20/10/2021

Backup - Background

