Latest results of the R2D2 project An SPC R&D for the neutrinoless double beta decay search

V. Cecchini

Université de Bordeaux, CENBG, CNRS/IN2P3 Subatech, IMT-Atlantique, Université de Nantes.

JRJC, La Rochelle - 21/10/2021

Overview

- Introduction
- Experimental setup
- Analysis and Simulation
- Results

$\beta\beta$ 0 ν decay

- BSM process with lepton number violation (LNV): forbidden in SM
- Sensitive way to determine if the neutrino is Majorana particle.

- $(T_{1/2}^{0\nu})^{-1}=G^{0\nu}|M^{0\nu}|^2(rac{m_{etaeta}}{m_e})^2$: etaeta0
 u evidences requires, at least
 - Excellent energy resolution;
 - 2 Extremely low radioactive background;
 - **3** High masses of $\beta\beta$ emitter medium.
 - 2-tracks recognition = important asset.

Motivations

- NEWS-G (dark matter experiment) show promising results in low energy measurements with an SPC¹, like a single electron detection abilities and two tracks discrimination.
- A full simulation (JINST 13 (2018) no.01, P01009) shows that an extremely low background SPC could reach a competitive sensitivity for $\beta\beta0\nu$ decay searches.
- R2D2 Rare Decays with Radial Detector: R&D project to evaluate the feasibility of a ton scale detector with ultimate low background.

¹Spherical Proportional Counter, i.e. a spherical high-pressure gaseous TPC

Detector's principles

Main advantages

- Simplicity of readout: one channel + light readout.
- Simplicity of structure ⇒ Low material budget ⇒ Low background.
- Scalable to large isotope masses (1 ton = 1 m radius at 40 bars).
- Low detection threshold (single electron).
- Two tracks recognition.
- High energy resolution (1% FWHM expected at ^{136}Xe $Q_{\beta\beta}=2.45MeV$).

The Spherical Proportional Counter

 $\beta\beta$ emitter gas (Xenon) served as detector medium.

R2D2 Roadmap

- Prototype 1 Demonstrate the detector capabilities (focus on energy resolution, no radio-purity) → Xenon prototype up to 10 kg (40 bars). First phase with Argon.
 - Electronic design
 - Light readout
 - * Sensor improvements
- Prototype 2 Demonstrate the almost zero background \rightarrow 50kg Xe; Radio-pure detector; First measurements (limits $m_{\beta\beta}$ <160-330meV)
- Experiment Cover the Inverse Hierarchy $m_{\beta\beta} < 10$ meV (1 ton Xenon, in a background free experiment)

Detector Design

- It aims to demonstrate that the desired energy resolution is achievable.
- Prototype built in aluminum (no radio-purity required at this stage).
- Noise improvement:
 - Vibration reduction
 - Controlled room temperature
 - Low noise electronics (OWEN project²)
 - Electronic and cable shielding
 - Ground uniformization
- New: High pressure certification

² https://r2d2.in2p3.fr/owen.html

Detector Operation

- ^{210}Po source of 5.3 MeV α : study gas behaviours, signal shape.
- Argon P2 (98% Ar, 2%CH₄) used in the early stage; Argon alone used for drift-time measurements.
- **Different pressures tested** (various track length) from 200 to 1100 mbars.
- In sealed mode: short runs to avoid contamination effects.
 Purification technology mature^{3,4} for longer runs.

³V Álvarez et al, JINST 7 (2012) T06001

Chen et al, Science China Physics, Mechanics & Astronomy 60 (2017) no.6, P061011

Light readout challenges

Use $6 \times 6 \text{ mm}^2$ SiPM with a photon detection efficiency (PDE) of 14% at 128 nm

- ⇒ Operation at room temperature require temperature correction of the SiPM response
- → Distant readout electronic result in noisy signal: coaxial for both signal and bias voltage + low-pass filter
- → SiPM electric field disturb the SPC one: need to be shielded

SPC waveform analyses

For very high precision measurements, we compute **variables from integrator and deconvoluted** signals.

The shape of the deconvoluted signal contain the event history.

- ullet Charge observables (linked to energy): Qt compares to Ct o accuracy of deconvolution
- Temporal observables linked to anode distance and track length: Dt (signal width neglecting ion tail) and Dh $\to \alpha$ angular direction
- Pt: direction of the track (toward anode ⇒ small Pt)

Simulation Framework

It aims to improve our variables understanding from waveform analysis.

Simulation outcomes

The observables combination are closely linked to the **event topology**, **resulting in specific patterns**, *e.g.* 3 regions in the following plots:

- Tracks toward the anode.
- Tracks at larger angles but contained in gas.
- 3 Tracks hitting the cathode (loosing energy in it).

 \rightarrow Allow a better understanding of the data (e.g. the α track direction).

1st Resolution main result - Direction effects

Cuts for angle selection from simulation.

Dt cuts corresponding to angular direction selection.

⇒ Track direction doesn't affect energy resolution.

200mbar - 720V data.

2nd Resolution main result - Track length effects

Runs at **200mbar (720V) and 1100mbar (2000V)** to change α **track length** (\sim 20cm vs \sim 4cm respectively)

Histograms of Ct variable (charge) convert in recovered energy.

⇒ Track length and pressure do not (strongly) affect the energy resolution

Preliminary results on light readout

SiPM use for light collection, giving the t_0 of the event (detector operate with Argon at 1100 mbar).

2200V event: SiPM signal in blue, SPC (ball sensor) in orange

Conclusions

- A good understanding of the detector response was achieved.
- 1.1% energy resolution have been reached in Argon with 5.3MeV α .
- Neither track length nor direction affect the energy resolution.
- Deal with light readout: successful drift-time measurements.

Plenty of work:

- → Sensor updates could improve performances.
- → Correlation of the light readout information to the SPC observables could improve event reconstruction.
- → Results have to be confirmed in Xenon.
- ⇒ Expect to build prototype with features adapted to physics measurements (depending on results).

BACKUP

ACHINOS

Multi-anode sensor "ACHINOS" design

Xenon advantages

- → A large natural abundance (8.9%)
- → It is a **neutral gas**, meaning easy manipulation and few molecular reaction
- ightarrow It has a **high** Q_{etaeta} , lowering the background in the ROI
- → Enrichment methods are already known
- → It has a good **intrinsic energy resolution**, *i.e.* Fano's theory:

$$\frac{\delta E}{E} = 2.355 \frac{\sigma}{N_i} = 2.355 \frac{\sqrt{F \times W}}{\sqrt{E}} \sim \mathcal{O}(10^{-3})$$

ightarrow The long $T_{1/2}^{2
u}$ with respect to $T_{1/2}^{0
u}$ allow a large SNR for this background:

$$\frac{S}{B} = \left(\frac{Q_{\beta\beta}}{\Delta E}\right)^6 \frac{\left(T_{1/2}^{2\nu}\right)}{\left(T_{1/2}^{0\nu}\right)}$$

Sensitivity I

Why background rejection is so important in $0\nu\beta\beta$ searches ?

If $0
u\beta\beta$ is mediated by light Majorana u exchange, rate is given by

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M^{0\nu}|^2 (\frac{m_{\beta\beta}}{m_e})^2$$

The number of signal event is related to the half-life through the following (background-free) formula

$$T_{1/2}^{0\nu} = \epsilon \log 2 \frac{\eta N_A}{A} \frac{M.t}{N}$$

By combining equations, the sensitivity to the effective neutrino mass is:

$$S(m_{etaeta}) = \sqrt{rac{m_e^2 A}{\eta N_A log 2 \ G^{0
u} |M^{0
u}|^2}} \sqrt{rac{N}{\epsilon M.t}}$$

Sensitivity II

In presence of background $N \to \overline{N}$ the number of signal like events (signal + background).

For large background, $\overline{N} \approx \sqrt{b}$ (b the number of background events). And in an energy windows ΔE , $b \propto \text{rate } (r_b)$ and exposure M.t $\Rightarrow b = r_b, M.t. \Delta E$.

Replacing N by \overline{N} , we get a sensitivity S of

$$S(m_{etaeta}) = \sqrt{rac{m_e^2 A}{\eta N_A log 2 G^{0
u} |M^{0
u}|^2}} \left(rac{r_b \Delta E}{\epsilon^2 M.t}
ight)^{1/4}$$

Since we need $S(m_{\beta\beta})$ sensible to small masses, it require large exposure. Background reduce heavily the effect of large exposure, we need to suppress it.