## Quantum dynamics beyond the independent particle picture

Thomas CZUBA
Supervisor: Denis LACROIX

- ○ ○



## Motivations

Objective of the thesis: give an accurate description of the dynamical properties of mesoscopic systems ( $\mathrm{A}=1$ to $\sim 300$ )

## Motivations

Objective of the thesis: give an accurate description of the dynamical properties of mesoscopic systems ( $\mathrm{A}=1$ to $\sim 300$ )

Problem: Difficult to perform an exact treatment

1) Explosive Hilbert Space and computational cost ( $\sim$ A!)
2) Strong correlations

## Motivations

Objective of the thesis: give an accurate description of the dynamical properties of mesoscopic systems ( $\mathrm{A}=1$ to $\sim 300$ )

Problem: Difficult to perform an exact treatment

1) Explosive Hilbert Space and computational cost ( $\sim$ A!)
2) Strong correlations

Simplification: only take the relevant degrees of freedom (DoFs), then add correlations


## Motivations

Objective of the thesis: give an accurate description of the dynamical properties of mesoscopic systems ( $\mathrm{A}=1$ to $\sim 300$ )

Problem: Difficult to perform an exact treatment

1) Explosive Hilbert Space and computational cost ( $\sim$ A!)
2) Strong correlations

Simplification: only take the relevant degrees of freedom (DoFs), then add correlations

Nuclear Physics: strongly correlated dynamics $\Rightarrow$ free particles in a new (simplified) potential


## The Mean-Field ?

Free movement of particles + some effects of inter-particle interaction


## The Mean-Field?

Free movement of particles + some effects of inter-particle interaction
Dependence on the 1-body density matrix: $h=h[\rho]$

Contains all info on
1-body DoFs (e.g. occupation numbers)


## The Mean-Field?

Free movement of particles + some effects of inter-particle interaction
Dependence on the 1-body density matrix: $h=h[\rho]$

Contains all info on
1-body DoFs (e.g. occupation numbers)


Non-linear self-consistent equations of motion:

$$
i \hbar \partial_{t} \rho=[h[\rho], \rho]
$$

## The Mean-Field ?

Free movement of particles + some effects of inter-particle interaction
Dependence on the 1-body density matrix: $h=h[\rho]$

Contains all info on
1-body DoFs (e.g. occupation numbers)


Non-linear self-consistent equations of motion:

$$
i \hbar \partial_{t} \rho=[h[\rho], \rho]
$$

Many applications (e.g. giant resonances, fission, etc)
Misses important correlations (e.g. lifetimes)


## The Mean-Field?

Free movement of particles + some effects of inter-particle interaction
Dependence on the 1-body density matrix: $h=h[\rho]$

Contains all info on 1-body DoFs (e.g. occupation numbers)


Non-linear self-consistent equations of motion:

Add correlations beyond the mean-field ?
$i \hbar \partial_{t} \rho=[h[\rho], \rho]$

1) Stochastic path
2) Deterministic path

## Beyond Mean-Field: stochastic path

Random initial fluctuations around the Mean-Field:

## Beyond Mean-Field: stochastic path

Random initial fluctuations around the Mean-Field:

$$
\rho \Longrightarrow \rho^{(n)}=\rho+\delta \rho^{(n)}
$$



## Beyond Mean-Field: stochastic path

Random initial fluctuations around the Mean-Field: complex problem
=> N multiple simple ones
$\rho \Longrightarrow \rho^{(n)}=\rho+\delta \rho^{(n)}$


Stochastic Mean-Field: (Initially) gaussian statistics of Mean-Field trajectories

## Beyond Mean-Field: stochastic path

Hubbard model: electrons hopping from sites to sites
a) 2 spin up, 2 spin down
b) 4 spin up, 4 spin down


Stochastic Mean-Field: (Initially) gaussian statistics of Mean-Field trajectories

## Beyond Mean-Field: stochastic path

Hubbard model: electrons hopping from sites to sites
a) 2 spin up, 2 spin down
b) 4 spin up, 4 spin down
$\rho\left(t_{0}\right)$

$\rho^{(n)}\left(t_{0}\right)$

Stochastic Mean-Field: (Initially) gaussian statistics of Mean-Field trajectories

Perturbative regime $\mathrm{U}=0.1 \mathrm{~J}$

# Beyond Mean-Field: deterministic path 

Adding many-body corrections: the deterministic path

## Beyond Mean-Field: deterministic path

Adding many-body corrections: the deterministic path

Systematic expansion in powers of the two-body interaction: BBGKY hierarchy

$$
i \hbar \partial_{t} \rho=[h[\rho], \rho]+F\left(v_{12}, C_{12}\right),
$$

$$
i \hbar \partial_{t} C_{12}=\ldots+G\left(v_{12}, v_{13}, v_{23}, C_{123}\right)
$$

2 body collisions + pairing $+\ldots$
D. Lacroix, P. Chomaz, and S. Ayik, Nucl. Phys. A 651, 369 (1999).
A. Akbari et al, Phys. Rev. B 85, 235121, (2012)

## Beyond Mean-Field: deterministic path

Adding many-body corrections: the deterministic path

Systematic expansion in powers of the two-body interaction: BBGKY hierarchy

$$
\begin{aligned}
i \hbar \partial_{t} \rho & =[h[\rho], \rho]+F\left(v_{12}, C_{12}\right), \\
i \hbar \partial_{t} C_{12} & =\ldots+G\left(v_{12}, v_{13}, v_{23}, C_{123}\right)
\end{aligned}
$$

# Beyond Mean-Field: deterministic path 

Adding many-body corrections: the deterministic path

Systematic expansion in powers of the two-body interaction: BBGKY hierarchy
$i \hbar \partial_{t} \rho=[h[\rho], \rho]+K[\rho]+\ldots$

# Beyond Mean-Field: deterministic path 

Adding many-body corrections: the deterministic path

Systematic expansion in powers of the two-body interaction: BBGKY hierarchy
$i \hbar \partial_{t} \rho=[h[\rho], \rho]+K[\rho]+\ldots$

Dissipator: in medium inter-particle collision

Non-Markovian effects, particle-hole excitations, thermalization...

## Beyond Mean-Field: deterministic path

2 particles in a double well + gaussian interaction
 excitations, thermalization...

## Beyond Mean-Field: deterministic path

2 particles in a double well + gaussian interaction
 excitations, thermalization...

## Beyond Mean-Field: deterministic path

Collision integral: difficult treatment
Search for approximations: catching the essentials of non-markovian dynamics

## Beyond Mean-Field: deterministic path

$\mathrm{T}=5 \mathrm{MeV}$
Collision integral: difficult treatment
Search for approximations: catching the essentials of non-markovian dynamics

1) Perturbation theory: master equation

$$
i \hbar \partial_{t} n_{\alpha}=\left(1-n_{\alpha}(t)\right) G_{\alpha}(t)-n_{\alpha}(t) L_{\alpha}(t)
$$

## Beyond Mean-Field: deterministic path

$\mathrm{T}=5 \mathrm{MeV}$
Collision integral: difficult treatment
Search for approximations: catching the essentials of non-markovian dynamics

1) Perturbation theory: master equation
$i \hbar \partial_{t} n_{\alpha}=\left(1-n_{\alpha}(t)\right) G_{\alpha}(t)-n_{\alpha}(t) L_{\alpha}(t)$



Average lifetime $\sim 80 \mathrm{fm} / \mathrm{c}$


## Beyond Mean-Field: deterministic path

$\mathrm{T}=5 \mathrm{MeV}$
Collision integral: difficult treatment
Search for approximations: catching the essentials of non-markovian dynamics

1) Perturbation theory: master equation
$i \hbar \partial_{t} n_{\alpha}=\left(1-n_{\alpha}(t)\right) G_{\alpha}(t)-n_{\alpha}(t) L_{\alpha}(t)$



Average lifetime $\sim 80 \mathrm{fm} / \mathrm{c}$


# Problems: why can't we do some perturbation theory? 

Erratic effects of truncation: unphysical behaviors (e.g. occupation numbers > 1)
Non-trivial instabilities at long times
Exponential number of complex terms...

## Problems: why can't we do some perturbation theory?

Erratic effects of truncation: unphysical behaviors (e.g. occupation numbers > 1)
Non-trivial instabilities at long times
Exponential number of complex terms...

Get a maximum of correlations while not expanding that much the BBGKY hierarchy


## A hybrid method?

Fluctuations around MF + supplementary correlation terms $=>2 \times \mathrm{N}$ equations


## A hybrid method?

Fluctuations around MF + supplementary correlation terms $=>2 \times \mathrm{N}$ equations


## A hybrid method?

Fluctuations around MF + supplementary correlation terms $=>2 \times \mathrm{N}$ equations


Only 2-body collisions with 2 spin up +2 spin down


## A hybrid method?

Fluctuations around MF + supplementary correlation terms $=>2 \times \mathrm{N}$ equations


Only 2-body collisions with 2 spin up +2 spin down

Success ! On a simple system


## The next step

Fluctuations around MF + supplementary correlation terms $=>2 \times \mathrm{N}$ equations


## The next step

Fluctuations around MF + supplementary correlation terms $=>2 \times \mathrm{N}$ equations


## The next step

Fluctuations around MF + supplementary correlation terms $=>2 \times \mathrm{N}$ equations


Thank you for listening

