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The mystery of ultra-high energy cosmic rays (UHECRs)

• Cosmic rays: high energy atomic nuclei (protons, iron nuclei, etc)

• Most energetic particles in the universe (ultra-high energy cosmic rays: 

) 


• Where do they come from?
𝐸  >  1018𝑒𝑉

How huge is 1018 eV?

Very low flux:
𝟏 . 𝒌𝒎−𝟐 . 𝒄𝒆𝒏𝒕𝒖𝒓𝒚−𝟏

 We don’t know the exact nature       
of these particles 

 We don’t know the sources 

 We don’t know the acceleration 
mechanisms

UHECRs

A macroscopic energy (Na = 1023) 
in one given particle

105 times higher than the 
maximal energy reached at LHC
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Ultra-high energy multi-messengers (UHE)!

probe the most powerful sources in the Universe

understand the origin of ultra-high energy cosmic rays

3

?
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Interaction of high energy astroparticles with the atmosphere: shower/cascade of 
secondary particles!

Extensive air-showers (EAS)

• Hadronic component: mainly π 
decaying into μ and ν


• Electromagnetic component:  
 e+, e−, γ

We can detect the signal originating from the electromagnetic part with 
radio antennas!

Main emissions:


• Cherenkov light


• Fluorescence light


• Radio emission


atmosphere
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How to reconstruct shower properties?

cr, γ, 𝜈

E, 𝜃, 𝜑 ?

How can we link the experimental measurement of the signal to physical properties of  
the  primary particle?

Huege (2016)

Radio detection of cosmic-rays, a 
trending and efficient technique:
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Fast computation of radio signals from air-showers needed

Radio signal from atmospheric extensive air-showers

Macroscopic approach  
(Holt et al., Scholten et al.)

Microscopic approach 
(Huege et al., Alvarez-Muñiz,  et al.)

We need a fast and accurate tool to model the radio emission: Radio Morphing

Analytical: Fast but many free 
parameters  

Monte Carlo simulations: Accurate 
but computationally demanding 

Huge number of simulations needed for upcoming large scale radio experiments 
(GRAND, Auger Prime, RNO-G, Ice Cube Gen2 radio)

2 main sources of emissionSchröder (2017)
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Radio Morphing principle

 Idea: we can use one single Monte Carlo simulation as a reference shower to           
derive the electric field from any other shower

 
ZHAireS simulation 

(  , 𝜃r , 𝜑r)
ℰr

Reference shower

 
Radio Morphing 

simulation (  , 𝜃t , 𝜑t)
ℰt

Target shower

Universality of air-shower (Giller et al., Góra et al. )

scaling of the 
electric field

• The scaling relies on simple physical principles of electromagnetism 

• Hadronic interactions are only computed once (for the reference showers)

f(  , 𝜃r , 𝜑r,  , 𝜃t , 𝜑t)ℰr ℰt

Gain in computation time of several orders of 
magnitude
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Radio Morphing principle
Aim: To infer the radio signal from any air-shower at any position

Improvements: Scaling with 𝝷,  shower-to-shower fluctuations, time traces interpolation

Version 1 (1811.01750, Zilles et al.) with limitations

(  , 𝜃r , 𝜑r)
ℰr
(  , 𝜃t , 𝜑t)
ℰt
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Radio Morphing principle

Scaling of the electric field

Scaling with the primary energy 
Et =
ℰt

ℰr
Er

Aim: To infer the radio signal from any air-shower at any position

Scaling with the azimuth angle Et
v×B =

sin αt

sin αr
Er

v×B

Improvements: Scaling with 𝝷,  shower-to-shower fluctuations, time traces interpolation

Scaling

Version 1 (1811.01750, Zilles et al.) with limitations

(  , 𝜃r , 𝜑r)
ℰr
(  , 𝜃t , 𝜑t)
ℰt
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Radio Morphing principle

Scaling of the electric field

Scaling with the primary energy 
Et =
ℰt

ℰr
Er

Aim: To infer the radio signal from any air-shower at any position

Scaling with the azimuth angle Et
v×B =

sin αt

sin αr
Er

v×B

Interpolation
2D interpolation (in the shower plane)  3D extrapolation (along the propagation axis)

Improvements: Scaling with 𝝷,  shower-to-shower fluctuations, time traces interpolation

Scaling

Version 1 (1811.01750, Zilles et al.) with limitations

Interpolation

(  , 𝜃r , 𝜑r)
ℰr
(  , 𝜃t , 𝜑t)
ℰt
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Scaling with the zenith angle

vertical
 inclined

Vertical showers should develop in denser atmosphere than inclined showers

f(  , ) =?θr θt

Additionally we have:  
 

	      and	  Egeo = Egeo(ρ) Ece = Ece(ρ)

 We need  and  dependency with air-density!Egeo Ece

(  , 𝜃t , 𝜑r)
ℰr(  , 𝜃r , 𝜑r)
ℰr
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Geomagnetic and charge excess dependency with air-density

11000 ZHAireS simulations with various energy and arrival directions

Along the  baseline of antennas we have:v × v × B Egeo = Ev×B and Ece = Ev×v×B

Erad = ∫
2π

0
dϕ∫

∞

0
|E |2 rdrReconstruction of the radiated energy —> ,   Erad, geo Erad, ce
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Geomagnetic and charge excess dependency with air-density

11000 ZHAireS simulations with various energy and arrival directions

Along the  baseline of antennas we have:v × v × B Egeo = Ev×B and Ece = Ev×v×B

Erad = ∫
2π

0
dϕ∫

∞

0
|E |2 rdr

fgeo(ρ) = Erad, geo /(ℰ × sin α)2 fce(ρ) = Erad, ce /ℰ2

Scaling with zenith angle: Et
v×B =

fgeo(ρt
xmax)

fgeo(ρr
xmax)

Er
v×B Et

v×v×B =
fce(ρt

xmax)
fce(ρr

xmax)
Er

v×v×B

Reconstruction of the radiated energy —> ,   Erad, geo Erad, ce
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Test of the scaling procedure

comparison to ZHAireS simulations with corresponding parameters

Mean relative differences between radiated energies of ~ 10%!

Relative differences between 
ZHAireS and Radio Morphing

5 showers Reference library: , º (West),   ℰr = 3.98 EeV ϕr = 90 θr = [67.8, 74.8, 81.3, 83.9, 86.5]

1200 target showers: , ,   ℰt = [0.1 − 4] EeV ϕt = [0 − 360] θt = [60 − 90]

(ERM
rad − EZHAireS

rad )/EZHAireS
rad
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2D interpolation of the radio signal

We want to infer the radio signal at any position in space

(Tueros, Zilles, 2020)

Linear interpolation from https://arxiv.org/pdf/2008.06454.pdf  (Tueros, Zilles, 2020)


Fourier space: Electric field time traces decomposed into a phase  and an 
amplitude  interpolated independently

φ
𝒜

• Timing accuracy of a fraction of nanosecond 


• Relative differences on the peak amplitude of a few percent when outside of the 
Cerenkov cone  
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3D extrapolation: correcting for propagation effects

Relative difference with ZHAireS on the peak amplitude and the integral  5%<

Aim: extrapolate the radio 
signal at any position along 
the shower axis  

We have to correct for propagation effects!

3D extrapolation after scaling
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3D extrapolation: correcting for propagation effects

Relative difference with ZHAireS on the peak amplitude and the integral  5%<

Aim: extrapolate the radio 
signal at any position along 
the shower axis  

We have to correct for propagation effects!

• Dilution of the radio signal

Etarget =
Dscaled

Dtarget
Escaled

• Variation of the refractive index n̄

Etarget = kstretchEscaled

xtarget = xscaled /kstretch

3D extrapolation after scaling

kstretch = θcer(n̄scaled)/θcer(n̄target)
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Radio Morphing results
Test of the whole Radio Morphing process (scaling + 3D extrapolation) for 1200 
cosmic-ray air-shower simulations

Mean relative differences on the peak amplitude between 10% to 20%≈

Mean and RMS of relative differences with 
ZHAireS simulations on the peak amplitude 

Distribution of errors on the peak 
amplitude at the antenna level

91% of antennas with relative differences < 10%
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Conclusion

Radio Morphing: A fast and accurate tool for air-shower radio signals computation

• Scaling of the electric field 

• 2D interpolation and 3D extrapolation

Principle

Performances (compared with Monte-Carlo simulations)

• Accuracy: relative differences on the peak amplitude  < 10% for 91% of antennas

• Computation time: gain of 2 orders of magnitude 

Next steps

• Include Askaryan emission in the scaling with Φ
• Enable to use an input value for Earth magnetic field

Even more accurate and universal method


