

On the B-meson decay anomalies

Jonathan Kriewald

Laboratoire de Physique de Clermont-Ferrand

Based on: 2104,00015 with C. Hati, J. Orloff and A. M. Teixeira

22 October 2021

In SM, force carriers

 In SM, force carriers and 3 generations of matter

- In SM, force carriers and 3 generations of matter
- Quark sector: Higgs mechanism responsible for quark masses and quark flavour mixing

- In SM, force carriers and 3 generations of matter
- Quark sector: Higgs mechanism responsible for quark masses and quark flavour mixing
- Unitary CKM matrix ⇒ no flavour changing neutral current (FCNC) at tree-level

- In SM, force carriers and 3 generations of matter
- Quark sector: Higgs mechanism responsible for quark masses and quark flavour mixing
- Unitary CKM matrix ⇒ no flavour changing neutral current (FCNC) at tree-level
- Lepton sector: vanishing ν-masses ⇒
 accidental lepton flavour conservation

- In SM, force carriers and 3 generations of matter
- Quark sector: Higgs mechanism responsible for quark masses and quark flavour mixing
- Unitary CKM matrix ⇒ no flavour changing neutral current (FCNC) at tree-level
- Lepton sector: vanishing ν-masses ⇒
 accidental lepton flavour conservation
- BUT: ν oscillate, thus have (tiny) masses
 ⇒ explaining ν oscillations opens the door to lepton flavour violation (LFV)!

Lepton flavour universality

Only difference between leptons is their masses:

$$m_e \sim 511 \text{ keV}, \quad m_\mu \sim 105 \text{ MeV}, \quad m_\tau \sim 1.7 \text{ GeV}$$

Accidental "symmetry" in the SM: couplings of electroweak gauge bosons are "blind" to lepton flavour ⇒ Lepton Flavour Universality (LFU)

W+ DECAY MODES	Fraction (Γ_i/Γ)
$\ell^+ \nu$	[b] (10.86± 0.09) %
$e^+ \nu$	$(10.71 \pm 0.16) \%$
$\mu^+ \nu$	(10.63± 0.15) %
$\tau^+ \nu$	(11.38± 0.21) %
hadrons	(67.41± 0.27) %
Z DECAY MODES	Fraction (Γ_{ℓ}/Γ)

Z DEGAT MODES	<u>'</u>	Taction (1 ₁ /1)
e^+e^-	[<i>h</i>]	(3.3632±0.0042) %
$\mu^+\mu^-$	[<i>h</i>]	(3.3662 ± 0.0066) %
$\tau^+\tau^-$	[<i>h</i>]	(3.3696 ± 0.0083) %
$\ell^+\ell^-$	[b,h]	(3.3658 ± 0.0023) %

⇒ BUT: current measurements in semi-leptonic B-meson decays and low energy precision observables appear to tell a different story!

QCD bound states of quarks: Baryons \sim 3 quarks, Mesons \sim 1 quark, 1 anti-quark

 $\begin{array}{l} \circ \ \, \mathsf{Proton} \, \, |p\rangle \sim |uud\rangle, \\ \; \mathsf{neutron} \, \, |n\rangle \sim |udd\rangle, \\ \; \mathsf{pions} \, |\pi^0\rangle \sim \frac{|u\bar{u}\rangle + |d\bar{d}\rangle}{\sqrt{2}}, \, |\pi^+\rangle \sim |u\bar{d}\rangle \end{array}$

- $\begin{array}{l} \circ \ \, \mathsf{Proton} \, \left| p \right\rangle \sim \left| uud \right\rangle, \\ \mathsf{neutron} \, \left| n \right\rangle \sim \left| udd \right\rangle, \\ \mathsf{pions} \, \left| \pi^0 \right\rangle \sim \frac{\left| u\bar{u} \right\rangle + \left| d\bar{d} \right\rangle}{\sqrt{2}}, \, \left| \pi^+ \right\rangle \sim \left| u\bar{d} \right\rangle \\ \end{array}$
- \Rightarrow Kaons: $|K^0\rangle \sim |\bar{s}d\rangle$, $|K^+\rangle \sim |\bar{s}u\rangle$

- $\begin{array}{l} \circ \ \, \mathsf{Proton} \, \, |p\rangle \sim |uud\rangle \, , \\ \mathsf{neutron} \, \, |n\rangle \sim |udd\rangle \, , \\ \mathsf{pions} \, |\pi^0\rangle \sim \frac{|u\bar{u}\rangle + |d\bar{d}\rangle}{\sqrt{2}} \, , \, |\pi^+\rangle \sim |u\bar{d}\rangle \end{array}$
- \Rightarrow Kaons: $|K^0\rangle \sim |\bar{s}d\rangle$, $|K^+\rangle \sim |\bar{s}u\rangle$
- \Rightarrow **B** mesons: $|B^0\rangle \sim |\bar{b}d\rangle$, $|B^+\rangle \sim |\bar{b}u\rangle$

- $\begin{array}{l} \circ \ \, \mathsf{Proton} \, \left| p \right\rangle \sim \left| uud \right\rangle, \\ \mathsf{neutron} \, \left| n \right\rangle \sim \left| udd \right\rangle, \\ \mathsf{pions} \, \left| \pi^0 \right\rangle \sim \frac{\left| u\bar{u} \right\rangle + \left| d\bar{d} \right\rangle}{\sqrt{2}}, \, \left| \pi^+ \right\rangle \sim \left| u\bar{d} \right\rangle \\ \end{array}$
- \Rightarrow Kaons: $|K^0\rangle \sim |\bar{s}d\rangle$, $|K^+\rangle \sim |\bar{s}u\rangle$
- \Rightarrow ${\it B}$ mesons: $|B^0\rangle \sim |\bar{b}d\rangle$, $|B^+\rangle \sim |\bar{b}u\rangle$
- \Rightarrow **D** mesons: $|D^0\rangle \sim |\bar{c}u\rangle$, $|D^-\rangle \sim |\bar{c}d\rangle$
 - Heavy flavours: hadrons involving
 b or c quarks
 - (top quark does not hadronise, it decays before a bound state can be formed)

B-meson decays

B-mesons offer powerful probes of the SM and hints of new physics:

- Theoretically "clean(ish)" due to large mass of b-quark, certain theoretical approximations apply and precise predictions are possible (thanks to non-pert. QCD methods)
- Experimentally accessible mostly produced in forward region (design of LHCb), hundreds of decay channels to explore
- o Exciting future programme (LHCb, Belle II, ...)
- \circ Charged current \emph{B} -decays used to measure CKM parameters $(|V_{cb}|, |V_{ub}|, \gamma, \delta_{C\!P})$
- \circ **B** and **B**_s-meson oscillations offer insight on **CP** violation in the SM
- Due to extremely low SM background, rare FCNC B-meson decays are powerful probes of new physics

JRJC 2021

B-meson decays

 $\emph{\textbf{B}}\text{-mesons}$ offer powerful

- Theoretically "clean approximations apply methods)
- Experimentally access hundreds of decay ch
- Exciting future progr
- Charged current B-d
- \circ $m{B}$ and $m{B_s}$ -meson osc
- Due to extremely low probes of new physi

$ \begin{array}{ c c c c c }\hline $\mathbf{s}^+ \mathbf{DECAY} \ \mathbf{MODES} & & & & & & & & & & \\ \hline $\mathbf{Fraction} \left(\Gamma_i / \Gamma \right) & & & & & & & & \\ \hline $\mathbf{Semileptonic} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		R+ DECAY MODES	Fraction (F./F)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				communice never (me 1/e)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I				cs:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					l
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$D\ell^+\nu_\ell X$)% –	n theoretical
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				to 200 2004 OCD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1				to non-pert. QCD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				10-3	l
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9				design of LHCb),
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D*(2460)0 4+ D*0	(150 016)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(1.53 ± 0.16)) × 10 ° 2065	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Į	$D^{(*)} n \pi \ell^{+} \nu_{\epsilon} (n > 1)$	(188 + 025	1 %	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$D^{*-}\pi^{+}\ell^{+}\nu_{\ell}$			$V = V + 1 \times \delta_{cm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$\overline{D}_1(2420)^{0}\ell^+\nu_{\ell}, \ \overline{D}_1^0 \rightarrow$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D*- π+			SM
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J	$D_1'(2430)^0 \ell^+ \nu_{\ell}, D_1'^0 \rightarrow$	(2.7 ± 0.6)) × 10 ⁻³ –	nus are nouverful
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	٧	$D^{*-}\pi^{+}$ $D^{*}(2460)^{0}\ell^{+}\nu_{0}$	(101 + 024	V 10−3 S=2.0 2065	ays are powerful
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	i		(1.01 ± 0.24)	7 × 10 5-2.0 2005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\overline{D}^0 \pi^{+} \pi^{-} \ell^{+} \nu_{\ell}$	(1.7 ± 0.4)) × 10 ⁻³ 2301	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\overline{D}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$	(8 ± 5) × 10 ⁻⁴ 2248	
		$D_s^{(*)-} K^+ \ell^+ \nu_{\ell}$			
HTTP://PDG.LBL.GOV Page 73 Created: 8/28/2020 18:31		$D_s^- K^+ \ell^+ \nu_\ell$	(3.0 + 1.4) × 10 ⁻⁴ 2242	
HTTP://PDG.LBL.GOV Page 73 Created: 8/28/2020 18:31					
		HTTP://PDG.LBL.GOV	Page 73 Cre	ated: 8/28/2020 18:31	

ēΧ

) masan dasawa	B+ DECAY MODES		Fraction (Γ_j/Γ)	Scale factor/ p Confidence level (MeV/c)	
3-meson decays		Semilept	onic and leptonic modes		
B -mesons offer powerf	$uI^{\ell^+ u_\ell X}$		[///] (10.99 ± 0.28)		cs:
$D_s^{*-}K^+\ell^+\nu_{\ell}$ (2.	9 ± 1.9)×10 ⁻⁴	2185	(10.8 ± 0.4) (9.7 ± 0.7)	/6 –	n theoretical
	80 ± 0.27)×10 ⁻⁵ 9 ± 0.5)×10 ⁻⁵	2638 2611	[III] (2.35 ± 0.09) (7.7 ± 2.5)		t OCI
	$3 \pm 0.8 \times 10^{-5}$	2553	[/// ± 2.5):		to non-pert. QCI
	19 ± 0.09) × 10 ⁻⁴	2582	(1.88 ± 0.20)		
$\rho^0 \ell^+ \nu_{\ell}$ [III] (1.	58 ± 0.11)×10 ⁻⁴	2583	(4.4 ± 0.4):		1: £ 1 11Ch)
$p\overline{p}\ell^+\nu_{\ell}$ (5.	8 + 2.6 - 2.3)×10 ⁻⁶	2467	(2.5 ± 0.5)	× 10 ⁻³	design of LHCb)
$\rho \overline{\rho} \mu^+ \nu_{\mu}$ < 8.	5 × 10 ⁻⁶ CL=90)% 2446	(1.53 ± 0.16):	× 10 ⁻³ 2065	
$p\overline{p}e^+\nu_e$ (8.	2 + 4.0 - 3.3)×10 ⁻⁶	2467			
$e^{+}\nu_{e}$ < 9.	8 × 10 ⁻⁷ CL=90	% 2640	(1.88 ± 0.25)		
	10^{-07} to 1.07×10^{-06} CL=90	% 2639	(6.0 ± 0.4): (3.03 ± 0.20):		$ V_{cb} , V_{ub} , \gamma, \delta_{CP}$
$\tau^{+}\nu_{\tau}$ (1.	$09 \pm 0.24 \times 10^{-4}$ S=1		(3.03 ± 0.20):	< 10 9 2084	SM
$\ell^+ \nu_{\ell} \gamma$ < 3.			→ (2.7 ± 0.6):	× 10 ⁻³	JIVI
$e^+_{\perp}\nu_e\gamma$ < 4.			. (= = = , .		ays are powerful
$\mu^{+}\nu_{\mu}\gamma$ < 3.			(1.01 ± 0.24)	< 10 ^{−3} S=2.0 2065	
$\mu^{+}\mu^{-}\mu^{+}\nu_{\mu}$ < 1.		5% 2634			
Inclusive mo			(1.7 ± 0.4):		
	6 ± 0.7)%	-	(8 ± 5)		
	± 4)% 5 ± 0.5)%	_	(6.1 ± 1.0)	< 10 ⁻⁴	
	9 ± 1.2)%	_	(3.0 + 1.4)	× 10 ⁻⁴ 2242	
	9 + 1.4)%	_			
	10 + 0.40)%	_	Page 73 Crea	ted: 8/28/2020 18:31	
	1 + 0.9)%	_			•
•					
/1 _c / (2.	8 + 1.1)%	_			

(97 ± 4)%

Scale factor/

D	B+ DECAY MODES		Fraction (Γ_i/Γ)		ice level (MeV/	<u>=)</u>			
B-meson decays		emilept	tonic and leptonic modes			-			
B-mesons offer power	ful $^{\ell^+ u_\ell X}$		[III] (10.99 ± 0.28) %			cs:			
$D_{s}^{*-}K^{+}\ell^{+}\nu_{\ell}$ $\pi^{0}\ell^{+}\nu_{\ell}$ ($2.9 \pm 1.9 \times 10^{-4}$ $7.80 \pm 0.27) \times 10^{-5}$	2185 2638	(10.8 ± 0.4) % (9.7 ± 0.7) % [///] (2.35 ± 0.09) %		231	$\frac{1}{0}$ h theore	tical		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.2 $^{+}$ $^{4.0}$ $^{-}$ $^{-}$ 3.3 $^{-}$	2611 2553 2582 2583 2467 2446 2467 2640 2639 2341	$\begin{array}{l} \pi^+\ell^+\ell^- \\ \pi^+e^+e^- \\ \pi^+\mu^+\mu^- \\ \pi^+\nu\overline{\nu} \\ K^+\ell^+\ell^- \\ K^+e^+e^- \\ K^+\mu^+\mu^- \\ \text{nonreso-} \\ K^+\tau^+\pi^- \\ \text{nant} \\ K^+\overline{\nu}\nu \end{array}$	81 81 81 81 81 81 81 81 81	< 1.4 [///] (4.5 (5.5 (4.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 CL=90% 7 S=1.1 7 S=1.2 7 S=1.2 7 CL=90% 5 CL=90%	2638 2634 2638 2617 2617 2612 2612 1687 2617	
$\begin{array}{cccc} \mathbf{e}^{+}\nu_{\mathbf{e}}\gamma & < \\ \mu^{+}\nu_{\mu}\gamma & < \\ \mu^{+}\mu^{-}\mu^{+}\nu_{\mu} & < \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2640 2640 2639 2634	$\rho^+ \nu \overline{\nu}$ $K^*(892)^+ \ell^+ \ell^ K^*(892)^+ e^+ e^ K^*(892)^+ \mu^+ \mu^-$	B1 B1 B1 B1	(1.5	$01 \pm 0.11 \times 10^{-1}$ $05 + 0.40 \times 10^{-1}$ $05 \pm 1.0 \times 10^{-1}$	6 7	2564 2564 2560	
$ \overline{D}^{0}X \qquad (7) $ $ D^{+}X \qquad (8) $	8.6 ± 0.7)%	-	$K^*(892)^+ \nu \overline{\nu}$ $K^+ \pi^+ \pi^- \mu^+ \mu^-$ $\phi K^+ \mu^+ \mu^-$	B1 B1 B1	(7.9	3 ± 0.4) × 10 ⁻¹ 3 + 2.1) × 10 ⁻¹ 4 - 1.7) × 10 ⁻¹	8	2593 2490	
$D_s^+ X$	9.9 ± 1.2) % 7.9 + 1.4) % 1.10 + 0.40) % 1.10 + 0.32) %	- - -	$ \overline{\Lambda} \rho \nu \overline{\nu} $ $ \pi^+ e^+ \mu^- $ $ \pi^+ e^- \mu^+ $ $ \pi^+ e^{\pm} \mu^{\mp} $	LF LF LF	< 3.0 < 6.4 < 6.4 < 1.7	× 10 ⁻¹ × 10 ⁻¹ × 10 ⁻¹	5 CL=90% 3 CL=90% 3 CL=90% 7 CL=90%	2637 2637 2637	
$\Lambda_c^+ X$	2.1 + 0.9) % 2.8 + 1.1) %	- - -	$\pi^{+}e^{+}\tau^{-}$ $\pi^{+}e^{-}\tau^{+}$ $\pi^{+}e^{\pm}\tau^{\mp}$ $\pi^{+}\mu^{+}\tau^{-}$ $\pi^{+}\mu^{-}\tau^{+}$	LF LF LF LF	< 7.4 < 2.0 < 7.5 < 6.2 < 4.5	× 10 ⁻ × 10 ⁻ × 10 ⁻ × 10 ⁻	5 CL=90% 5 CL=90% 5 CL=90% 5 CL=90% 5 CL=90%	2338 2338 2333	
Jonathan Kriewald LPC		JRJC	$\pi^{+}\mu^{\pm}\tau^{\mp}$ 2021	LF	< 7.3	2 × 10	⁵ CL=90% ber 2021		/

Scale factor/

Ŧ		B+ DECAY MODES	Fraction (Γ_j/Γ)	Scale factor/ Confidence level (Me)	P leV/c)	
L	B-meson decays B-mesons offer powerful		onic and leptonic modes [///] (10.99 ± 0.28) %		- cs:	
	$D_s^{*-}K^+\ell^+\nu_{\ell}$ (2.9 = $\pi^0\ell^+\nu_{\ell}$ (7.80 =	± 1.9) $\times 10^{-4}$ 2185 ± 0.27) $\times 10^{-5}$ 2638	(10.8 ± 0.4) % (9.7 ± 0.7) % [///] (2.35 ± 0.09) %	2	h theoretical	
	$\eta' \ell^+ \nu_{\ell}$ (2.3 = $\omega \ell^+ \nu_{\ell}$ [///] (1.19 =	± 0.5) $\times 10^{-5}$ 2611 ± 0.8) $\times 10^{-5}$ 2553 ± 0.09) $\times 10^{-4}$ 2582 ± 0.11) $\times 10^{-4}$ 2583	$\pi^{+}\ell^{+}\ell^{-}$ $\pi^{+}e^{+}e^{-}$ $\pi^{+}\mu^{+}\mu^{-}$	B1 < 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{c} + 2.6 \\ - 2.3 \end{array}$) × 10 ⁻⁶ 2467	$\pi^+ \nu \overline{\nu}$ $K^+ \ell^+ \ell^ K^+ \circ^+ \circ^-$	B1 [III] (4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$p\overline{p}e^{+}\nu_{e}$ (8.2) $e^{+}\nu_{e}$ < 9.8 $\mu^{+}\nu_{\mu}$ 2.90 × 10 ⁻⁶	and hundre	eds more, mo	ost ('	4.41 ± 0.22) × 10^{-7} S=1.2 2612 4.37 ± 0.27) × 10^{-7} 2612 2.25 × 10^{-3} CL=90% 1687	
	$\begin{array}{lll} \tau^{+}\nu_{\tau} & (& 1.09 \\ \ell^{+}\nu_{\ell}\gamma & < & 3.0 \\ e^{+}\nu_{e}\gamma & < & 4.3 \\ \mu^{+}\nu_{\mu}\gamma & < & 3.4 \end{array}$	in excellent a S	greement wi M!	th < 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
		± 0.7)% - ± 4)% -	$K^*(892)^+ \nu \overline{\nu}$ $K^+ \pi^+ \pi^- \mu^+ \mu^-$	B1 < 4 B1 (4	9.6 \pm 1.0) × 10 ⁻⁷ 2560 4.0 × 10 ⁻⁵ CL=90% 2564 4.3 \pm 0.4) × 10 ⁻⁷ 2593	
	$D^+ X$ (2.5 = $D^- X$ (9.9 =	± 0.5)% - ± 1.2)% - + 1.4)% -	$\phi K^{+} \mu^{+} \mu^{-}$ $\overline{\Lambda} \rho \nu \overline{\nu}$ $\pi^{+} e^{+} \mu^{-}$ $\pi^{+} e^{-} \mu^{+}$	< 3 LF < 6	7.9 $^{+}$ $^{+}$ $^{2.1}$)×10 ⁻⁸ 2490 3.0 ×10 ⁻⁵ CL=90% 2430 6.4 ×10 ⁻³ CL=90% 2637 6.4 ×10 ⁻³ CL=90% 2637	
	$D_s^- X$ (1.10]	+ 0.40) % - 0.32) % - 0.62) % -	$\pi + e + \mu + \mu + \mu + \mu + \mu + \mu + \tau - \tau + e - \tau + \mu + \tau$	LF < 1 LF < 7	1.7 × 10 ⁻⁵ CL=90% 2637 7.4 × 10 ⁻⁵ CL=90% 2637 2.0 × 10 ⁻⁵ CL=90% 2338 2.0 × 10 ⁻⁵ CL=90% 2338	
	T	+ 1.1) % - - 0.9) % - + 4) % -	$\pi^{+}e^{\pm}\tau^{\mp}$ $\pi^{+}\mu^{+}\tau^{-}$ $\pi^{+}\mu^{-}\tau^{+}$	LF < 6	7.5 × 10 ⁻⁵ CL=90% 2338 6.2 × 10 ⁻⁵ CL=90% 2333 4.5 × 10 ⁻⁵ CL=90% 2333	

Scale factor/

LF

D		B+ DECAY MODES		Fraction (Γ_i/Γ)	Scale fa Confidence	e level (MeV/c)			
B-meson dec B -mesons offe	_	$\ell^+ \nu_{\ell} X$	Semilepto	onic and leptonic modes		-	cs:		
$D_s^{*-}K^+\ell^+\nu_\ell$ $\pi^0\ell^+\nu_\ell$ $\eta\ell^+\nu_\ell$	(7.80 ±	1.9) × 10 ⁻⁴ 0.27) × 10 ⁻⁵ 0.5) × 10 ⁻⁵	2185 2638 2611	(10.8 ± 0.4) % (9.7 ± 0.7) % [///] (2.35 ± 0.09) %		2310	n theoret	ical	CD
$ \begin{array}{c} \eta \ell^+ \nu_\ell \\ \eta' \ell^+ \nu_\ell \\ \omega \ell^+ \nu_\ell \\ \rho^0 \ell^+ \nu_\ell \end{array} $	(2.3 ± [///] (1.19 ±	0.5) × 10 -5 0.8) × 10 -5 0.09) × 10 -4 0.11) × 10 -4	2553 2582 2583	$\pi^{+}\ell^{+}\ell^{-}$ $\pi^{+}e^{+}e^{-}$ $\pi^{+}\mu^{+}\mu^{-}$	B1 B1 B1	< 4.9 < 8.0 (1.75		CL=90% CL=90%	2638 2638 2634
$ \rho \overline{\rho} \ell^+ \nu_{\ell} $ $ \rho \overline{\rho} \mu^+ \nu_{\mu} $		2.6)×10 ⁻⁶	2467	$\kappa^+ \nu \overline{\nu}$ $\kappa^+ \ell^+ \ell^ \kappa^+ \epsilon^+ \epsilon^-$	B1 B1	< 1.4 [///] (4.51 :	± 0.23) × 10 ⁻⁷ 0.7) × 10 ⁻⁷	CL=90% S=1.1	2638 2617 2617
$p\overline{p}e^+ u_e$ $e^+ u_e$ $\mu^+ u_\mu$				eviations f			7) × 10 ⁻⁷ 7) × 10 ⁻⁷	S=1.2	2612 2612
$\tau^+ \nu_{\tau}$	obcon	and in R -	ゝゕゖ	$^{*)}\ell u$ and B	\rightarrow 1	C(*)00	× 10 ⁻³		1687
$\begin{array}{c} \ell^+\nu_\ell\gamma \\ e^+\nu_e\gamma \\ \mu^+\nu_\mu\gamma \end{array}$	Observ	reu III D -		ays!	71		$\begin{array}{c} \times 10^{-5} \\ 1) \times 10^{-6} \\ 0) \times 10^{-6} \end{array}$	CL=90% CL=90% S=1.1	2617 2583 2564 2564
$\begin{array}{c} \ell^+\nu_\ell\gamma\\ e^+\nu_e\gamma\\ \mu^+\nu_\mu\gamma\\ \mu^+\mu^-\mu^+\nu_\mu\end{array}$ $\frac{D^0X}{\overline{D}^0X}$	Inclusive modes (8.6 ± (79 ±	= 0.7) % = 4) %	dec		B1 B1 B1	< 4.0 (4.3	× 10 ⁻⁵ 1)×10 ⁻⁶ 0)×10 ⁻⁶ ± 1.0)×10 ⁻⁷	CL=90%	2583 2564
$\begin{array}{c} \ell^+\nu_{\mu\gamma} \\ e^+\nu_e\gamma \\ \mu^+\nu_{\mu\gamma} \\ \mu^+\nu_{\mu\gamma} \\ \mu^+\mu^-\mu^+\nu_{\mu} \\ \hline D^0 X \\ D^0 X \\ D^- X \\ D^- X \\ D^- X \\ D^s X \\ \end{array}$	Inclusive modes (8.6 ± (7.9 ± (2.5 ± (9.9 ± (7.9 ±	0.7)% 4)% 0.5)% 1.2)% 1.1.3)%	dec	ays! $\kappa'(892)^{+}\nu\overline{\nu}$ $\kappa'(892)^{+}\nu\overline{\nu}$ $\kappa'+\pi+\mu^{-}\mu^{-}$ $\phi\kappa'+\mu^{+}\mu^{-}$ $\pi^{+}e^{+}\mu^{-}$ $\pi^{+}e^{-}\mu^{+}$	B1 B1 B1 LF LF	 4.0 4.3 7.9 3.0 6.4 6.4 	$\begin{array}{c} \times 10^{-5} \\ 1) \times 10^{-6} \\ 0) 1 \times 10^{-6} \\ 1) \times 10^{-6} \\ \pm 1.0) \times 10^{-7} \\ \times 10^{-5} \\ \pm 0.4) \times 10^{-7} \\ + 2.1 \\ - 1.7) \times 10^{-8} \\ \times 10^{-3} \\ \times 10^{-3} \\ \times 10^{-3} \end{array}$	CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	2583 2564 2564 2560 2564 2593 2490 2430 2637 2637
$\begin{array}{c} \ell^+\nu_\ell\gamma\\ e^+\nu_e\gamma\\ e^+\nu_\mu\gamma\\ \mu^+\nu_\mu\gamma\\ \mu^+\mu^-\mu^+\nu_\mu\\ \hline D^0X\\ D^0X\\ D^-X\\ \end{array}$	Inclusive modes (8.6 ± (79 ± (2.5 ± (9.9 ± (7.9 ± (1.10 ± (2.1 ±	= 0.7) % = 4) % = 0.5) % = 1.2) %	dec	ays! κ*(892)*νν̄ κ*π+π-μ+μ- φκ+μ+μ- Λ̄ρνν̄ Λ̄ρν̄	B1 B1 B1 LF	 4.0 4.3 7.9 3.0 6.4 	$\begin{array}{c} \times 10^{-5} \\ 1 \) \times 10^{-6} \\ 0 \) 1 \) \times 10^{-6} \\ 0 \) 1 \) \times 10^{-6} \\ 1 \) \times 10^{-7} \\ 10^{-5} \) 10^{-7} \\ \times 10^{-5} \\ 10^{-7} \) \times 10^{-7} \\ 10^{-7} \) \times 10^{-8} \\ \times 10^{-3} \\ \times 10^{-3} \\ \times 10^{-7} \\ \times 10^{-5} \\ \times$	CL=90% S=1.1 CL=90% CL=90% CL=90%	2583 2564 2564 2560 2564 2593 2490 2430 2637

Observables in $b \rightarrow c\ell\nu$

$$\mathbf{R}_{\mathbf{D}(\bullet)} = \frac{\mathrm{BR}(B \to D^{(*)} \mathbf{\tau} \nu)}{\mathrm{BR}(B \to D^{(*)} \ell \nu)}$$

- Charged current tree-level decay
- Theoretically clean: hadronic uncertainties cancel in the ratio

• SM:
$$R_D = 0.299 \pm 0.003$$

$$R_{D^*} = 0.258 \pm 0.005$$

• Exp.:
$$R_D = 0.340 \pm 0.030$$

$$R_{D^*} = 0.295 \pm 0.014$$

- \Rightarrow SM predictions are significantly smaller than experimental results, (combined) deviation from SM $\sim 3.1 \, \sigma!$
 - \Rightarrow Violation of LFU? New physics coupled to τ ?

Observables in $b \to s\ell\ell$

$$\mathbf{R}_{\mathbf{K}^{(\bullet)}} = \frac{\mathrm{BR}(B \to K^{(*)} \mu \mu)}{\mathrm{BR}(B \to K^{(*)} e e)}$$

- FCNC penguin decay
- Theoretically clean: hadronic uncertainties cancel in the ratio
- \circ SM: $R_{K} = R_{K^*} \simeq 1$
- Exp.: $\mathbf{R}_{\mathbf{K}} = 0.846^{+0.044}_{-0.041}$ (NEW!)

$$R_{K^*} = 0.69 \pm 0.12$$

- ⇒ First evidence for violation of LFU @ 3.1 σ!
- \Rightarrow Strong hint on new physics coupled to μ ! (and/or to e)
 - o (Recent measurements of $R_{K^0_S}$ and R_{K^*+} corroborate the picture, but too low statistics)

Observables in $b \to s \mu \mu$

- Angular observables and BRs in $B^{+,0} \rightarrow K^* \mu^+ \mu^-$ and $B_s \rightarrow \phi \mu^+ \mu^-$, (local) deviations $2-3 \sigma!$
- o ATLAS, CMS and LHCb measurements of ${\rm BR}(B_{(s)} \to \mu^+\mu^-)$ consistent with SM

Observables in $b \rightarrow s\mu\mu$

- o ATLAS, CMS and LHCb
 - measurements of $BR(B_{(s)} \to \mu^+\mu^-)$ consistent with SM

Electroweak penguins in $b \rightarrow s\ell\ell$

FCNC transitions in the SM are "loop-suppressed": (e.g. $B^0 \to K^{0*}\ell^+\ell^-$)

Electroweak penguins in $b \rightarrow s\ell\ell$

FCNC transitions in the SM are "loop-suppressed": (e.g. $B^0 \to K^{0*}\ell^+\ell^-$)

Heavy BSM contributions are "mass suppressed" \Rightarrow If required to be large, must be present at tree-level:

JRJC 2021

Electroweak penguins in $b \rightarrow s\ell\ell$

FCNC transitions in the SM are "loop-suppressed": (e.g. $B^0 \to K^{0*}\ell^+\ell^-$)

Heavy BSM contributions are "mass suppressed" \Rightarrow If required to be large, must be present at tree-level:

Z': BSM "cousin" of SM Z-boson

Jonathan Kriewald LPC JRJC 2021 22 October 2021

Electroweak penguins in $b \rightarrow s\ell\ell$

FCNC transitions in the SM are "loop-suppressed": (e.g. $B^0 \to K^{0*}\ell^+\ell^-$)

Heavy BSM contributions are mass suppressed — in required to be large, must be present at *tree*-level:

Z': BSM "cousin" of SM Z-boson

Leptoquarks: scalar or vector fields coupling leptons to quarks

EFT intermezzo I

Effective Field Theory \simeq SM Lagrangian + non-renormalisable operators Heavy fields are "integrated out": only valid in certain energy regime

EFT intermezzo I

Effective Field Theory \simeq SM Lagrangian + non-renormalisable operators

Heavy fields are "integrated out": only valid in certain energy regime

 \Rightarrow Fermi constant G_F is an effective coupling constant

EFT intermezzo I

Effective Field Theory \simeq SM Lagrangian + non-renormalisable operators

Heavy fields are "integrated out": only valid in certain energy regime

 \Rightarrow Fermi constant G_F is an effective coupling constant

EFT Lagrangian for $b \to s\ell\ell$: $\mathcal{L}_{eff} \propto \frac{4G_F}{\sqrt{2}} \sum_k C_k(\mu) \mathcal{O}_k(\mu)$

- Effective operators \mathcal{O}_k are accompanied by effective coupling constants C_k (Wilson coefficients)
- Couplings run! (depend on energy scale μ)

$$\begin{split} \mathcal{O}_{7}^{ij} &= \frac{e\, m_{d_{j}}}{(4\pi)^{2}} (\bar{d}_{i}\, \sigma_{\mu\nu}\, P_{R}\, d_{j})\, F^{\mu\nu}\,, \qquad \mathcal{O}_{9}^{ij:\ell\ell'} &= \frac{e^{2}}{(4\pi)^{2}} (\bar{d}_{i}\, \gamma^{\mu}\, P_{L}\, d_{j}) (\bar{\ell}\, \gamma_{\mu}\, \ell')\,, \\ \mathcal{O}_{10}^{ij:\ell\ell'} &= \frac{e^{2}}{(4\pi)^{2}} (\bar{d}_{i}\, \gamma^{\mu}\, P_{L}\, d_{j}) (\bar{\ell}\, \gamma_{\mu}\, \gamma_{5}\, \ell')\,, \qquad \mathcal{O}_{3}^{ij:\ell\ell'} &= \frac{e^{2}}{(4\pi)^{2}} (\bar{d}_{i}\, P_{R}\, d_{j}) (\bar{\ell}\, \ell')\,, \\ \mathcal{O}_{P}^{ij:\ell\ell'} &= \frac{e^{2}}{(4\pi)^{2}} (\bar{d}_{i}\, P_{R}\, d_{j}) (\bar{\ell}\, \gamma_{5}\, \ell')\,, \qquad \mathcal{O}_{T}^{ij:\ell\ell'} &= \frac{e^{2}}{(4\pi)^{2}} (\bar{d}_{i}\, \sigma_{\mu\nu}\, d_{j}) (\bar{\ell}\, \sigma^{\mu\nu}\, \ell')\,, \\ \mathcal{O}_{T5}^{ij:\ell\ell'} &= \frac{e^{2}}{(4\pi)^{2}} (\bar{d}_{i}\, \sigma_{\mu\nu}\, d_{j}) (\bar{\ell}\, \sigma^{\mu\nu}\, \gamma_{5}\, \ell') \end{split}$$

10 / 20

JRJC 2021

EFT

Effectiv

He

$$egin{aligned} \mathcal{O}_{7}^{ij} &= rac{e \, m_{d_j}}{(4\pi)^2} (ar{d}_i \, \sigma_{\mu
u} \, P_R \, d_j) \, F^{\mu
u} \, \, , \ \\ \mathcal{O}_{10}^{ij;\ell\ell'} &= rac{e^2}{(4\pi)^2} (ar{d}_i \, \gamma^{\mu} \, P_L d_j) (ar{\ell} \, \gamma_{\mu} \, \gamma_5 \, \ell') \ \\ \mathcal{O}_{P}^{ij;\ell\ell'} &= rac{e^2}{(4\pi)^2} (ar{d}_i \, P_R \, d_j) (ar{\ell} \, \gamma_5 \, \ell') \, , \ \\ \mathcal{O}_{T5}^{ij;\ell\ell'} &= rac{e^2}{(4\pi)^2} (ar{d}_i \sigma_{\mu
u} \, d_j) (ar{\ell} \sigma^{\mu
u} \, \gamma_5 \, \ell') \ \end{aligned}$$

$${\cal O}_9^{ij;\ell\ell'} = rac{e^2}{(4\pi)^2} (ar{d}_i \, \gamma^\mu \, P_L \, d_j) (ar{\ell} \, \gamma_\mu \, \ell')$$

$$\mathcal{O}_{S}^{ij;\ell\ell'} = \frac{e^2}{(4\pi)^2} (\bar{d}_i \, P_R \, d_j) (\bar{\ell} \, \ell') \,,$$

$${\cal O}_T^{ij;\ell\ell'} = rac{e^2}{(4\pi)^2} (ar d_i \sigma_{\mu
u} \, d_j) (ar\ell\sigma^{\mu
u} \, \ell') \, ,$$

EFT intermezzo **II**

⇒All diagrams contribute to the **Wilson** coefficients!

EFT intermezzo **II**

⇒All diagrams contribute to the Wilson coefficients!

- Different kinematical bins are sensitive on different Wilson coefficients
- ⇒ Fit Wilson coefficients on data to discriminate between new physics scenarios!

Constraints on (pseudo-) scalar operators Weak effective theory fit @ $4.8 \, \text{GeV}$ for all $b \to s \ell \ell$ data:

	$C_9^{bs\mu\mu}$	$C_{10}^{bs\mu\mu}$	$C_9^{\prime bs\mu\mu}$	$C_{10}^{\prime bs\mu\mu}$	C_7^{bs}
	-1.17 ± 0.16	0.09 ± 0.14	0.41 ± 0.34	-0.19 ± 0.20	0.002 ± 0.014
	$C_7^{\prime bs}$	$C_S^{bs\mu\mu} = -C_P^{bs\mu\mu}$	$C_S^{\prime bs\mu\mu} = C_P^{\prime bs\mu\mu}$	Pull _{SM}	$p ext{-}value$
ſ	0.006 ± 0.017	-0.001 ± 0.025	-0.001 ± 0.025	5.8	49.7%

- Primed operators:
 right-handed quark current,
 vanishing in SM
- Scalar and pseudo-scalar operators tightly constrained by $B_s \rightarrow \mu^+\mu^-$ and effective lifetime, consistent with 0

12 / 20

Constraints on dipoles

Weak effective theory fit @ $4.8\,\mathrm{GeV}$ for all $b\to s\ell\ell$ data:

C_9	C_{10}	C_9'	C'_{10}	C_7	C_7'	Pull _{SM}
$1.18^{+0.17}_{-0.16}$	$0.11^{+0.15}_{-0.14}$	$0.34^{+0.33}_{-0.33}$	$-0.25^{+0.18}_{-0.17}$	$0.001^{+0.014}_{-0.014}$	$0.005^{+0.014}_{-0.014}$	6.1

- Primed operators:
 right-handed quark current,
 vanishing in SM
- Dipole coefficients tightly constrained by $b \rightarrow s\gamma$ and $b \rightarrow see$, consistent with 0

DISCLAIMER: take pulls with a grain of salt, only a taste of how things are moving qualitatively...

C_9 vs C_{10}

Add BSM to SM contribution in LH V and A currents (SM: $C_9 \approx -C_{10} \rightsquigarrow V - A$)

$$\Rightarrow$$
 best fit: $\Delta C_9^{bs\mu\mu} = -0.86^{+0.18}_{-0.17}, \ \Delta C_{10}^{bs\mu\mu} = 0.10^{+0.12}_{-0.12}, \ \text{Pull}_{\text{SM}} = 5.8$

o: SM

 \bigstar : best fit small tension between R_K and R_{K^*} with ang. obs.

14 / 20

DISCLAIMER: take pulls with a grain of salt, only a taste of how things are moving qualitatively...

C_9 vs C_{10}

Add BSM to SM contribution in LH V and A currents (SM: $C_9 \approx -C_{10} \rightsquigarrow V - A$)

$$\Rightarrow$$
 best fit: $\Delta C_9^{bs\mu\mu} = -0.86^{+0.18}_{-0.17}, \ \Delta C_{10}^{bs\mu\mu} = 0.10^{+0.12}_{-0.12}, \ \text{Pull}_{\text{SM}} = 5.8$

۵: SM

 \bigstar : best fit small tension between R_K and R_{K^*} with ang. obs.

14 / 20

DISCLAIMER: take pulls with a grain of salt, only a taste of how things are moving qualitatively...

$$C_9 = -C_{10}$$
 vs $C_9^{\mathrm{univ.}}$

First considered in Alguéro et.al. [1809.08447]: $C_9^{bsee} = \Delta C_9^{\text{univ.}}, C_9^{bs\mu\mu} = \Delta C_9^{bs\mu\mu} + \Delta C_9^{\text{univ.}}$

$$\Rightarrow$$
 best fit: $\Delta C_9^{bs\mu\mu} = -\Delta C_{10}^{bs\mu\mu} = -\mathbf{0.33}_{-0.08}^{+0.08}, \ \Delta C_9^{\text{univ.}} = -\mathbf{0.86}_{-0.17}^{+0.19}, \ \text{Pull}_{\text{SM}} = \mathbf{6.4}$

★: best fit

 $C_9^{\text{univ.}}$ can be RG running induced (e.g. from large $C_9^{bs\tau\tau}$) $\sim R_{D(*)}$?

Unknown $c\bar{c}$ corr. can mimic $C_9^{\text{univ.}} \Rightarrow$ Lancierini et. al. [2104.05631]: 4.3σ significance (with LEE) DISCLAIMER: take pulls with a grain of salt, only a taste of how things are moving qualitatively...

RG tales from the SMEFT

Consider Standard Model EFT (SMEFT) at $\Lambda_{\sf NP} \sim \mathcal{O}({\rm TeV}) \gg \Lambda_{\sf EW}$

Semileptonic operators:

$$SU(2)_L$$
-singlet: $(C_1)_{\ell a}^{ijmn}(\bar{L}_i\gamma_\mu L_j)(\bar{Q}_m\gamma^\mu Q_n)$

$$SU(2)_L$$
-triplet: $(C_3)_{\ell a}^{ijmn}(\bar{L}_i\gamma_\mu \tau_a L_j)(\bar{Q}_m\gamma^\mu \tau_a Q_n)$

Tree-level matching SMEFT \rightarrow WET:

$$\circ C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \propto (C_1)_{\ell q}^{2223} + (C_3)_{\ell q}^{2223}$$

- o $R_{D^{(*)}} \propto (C_3)_{\ell q}^{3323}$; also leads to $C_9^{bs\tau\tau} = -C_{10}^{bs\tau\tau}$ and under RG running to C_9^{univ} .
- Require $(C_1)_{\ell q}^{\ell \ell 23} = (C_3)_{\ell q}^{\ell \ell 23}$ to evade constraints from $B \to K^{(*)} \nu \bar{\nu}$

JRJC 2021

17 / 20

SMEFT @ 2 TeV:
$$(C_1)_{\ell q}^{2223} = (C_3)_{\ell q}^{2223}$$
 vs $(C_1)_{\ell q}^{3323} = (C_3)_{\ell q}^{3323}$ $(C_1)_{\ell q}^{3323} = (C_3)_{\ell q}^{3323} \Rightarrow$ large $C_9^{bs\tau\tau}$ via $SU(2)_L$ invariance \Rightarrow RGE induced C_9^{univ} .

best fit:
$$(C_{1,3})_{\ell q}^{2223} = (\mathbf{3.0}_{-0.6}^{+0.7}) \times 10^{-4} \, \mathrm{TeV}^{-2}, \ (C_{1,3})_{\ell q}^{3323} = -\mathbf{0.059}_{-0.01}^{+0.01} \, \mathrm{TeV}^{-2}, \ \mathrm{Pull_{SM}} = \mathbf{7.4}$$

☆: SM

★: best fit

Massive enhancement of ${\color{red} b \rightarrow s \tau \tau}$ processes; for example: BR $({\color{blue} B_s \rightarrow \tau^+ \tau^-})_{\rm SMEFT} \simeq 10^3 \times {\rm SM}$ Capdevila et. al. [1712.01919]

Candidate model: $V_1 \sim ({\bf 3,1,2/3})$ vector leptoquark (e.g. Buttazzo et. al. [1706.07808]) Global likelihood now also contains ${\bf R_{D(*)}}$ and binned data for ${\rm BR}(B \to D^{(*)} \ell \nu)!$

18 / 20

Requirements on (minimal) single-particle BSM explanations

- o $b \to s\ell\ell$ requires FCNC at tree-level (competing with SM at 1-loop)
- $\circ~b \to c \ell \nu$ requires charged current at {\it tree}{-level} (competing with SM at {\it tree}{-level})
- \Rightarrow Single particle explanations need very different couplings, for $b \to c \ell \nu$ a low mass is required $\mathcal{O}(\mathrm{TeV})$
- \Rightarrow Expect stringent constraints from cLFV observables (e.g. $B \to K \tau \mu$)
- Heavy Z' can explain only $b \to s\ell\ell$, most models ruled out by $B_s \bar{B}_s$ mixing
- \circ Scalar $SU(2)_L$ -singlet leptoquark S_1 : only $b \to c\ell\nu$
- o Scalar $SU(2)_L$ -triplet leptoquark S_3 : only $b \to s\ell\ell$
- \circ Vector $SU(2)_L$ -triplet leptoquark V_3 : ruled out by $B \to K \nu \bar{\nu}$
- \Rightarrow Vector $SU(2)_L$ -singlet leptoquark V_1 : explains both anomalies, but heavily constrained from cLFV!

Extensive list of dedicated analyses, $\mathcal{O}(10^{23})$ relevant contributions...

Other approaches rely on more non-minimal field content (e.g. "4321"-models [EPJC 79(2019)4, 334], PS³ [PLB 779(2018)317], RPV SUSY [PRD 102(2020)1, 015031] ...)

Conclusions and outlook

First evidence for LFUV in R_K !

- Waiting for R_{K^*} updates...
- \circ Patterns of deviations in several $b o s\mu\mu$ draw a more and more clear (and consistent) picture
- Slight tension between $R_{K^*} < R_K$ and $b \to s\mu\mu$ can be reduced by considering C_9^{univ} .
- $\Rightarrow C_9^{\text{univ.}}$ can be RG running induced; connection to $R_{D(*)}$?
- \Rightarrow "Combined explanation" implies large $b \rightarrow s \tau \tau$
 - SM extensions via V₁-leptoquark offer viable explanations for both B-decay anomalies
 - Large region of the parameter space to be probed in the near future!

Thank you!!!

Bonus slides

Angular observables

Statistical setup

Likelihoods: $-2\Delta \log \mathcal{L} \approx \mathcal{O}^T (\mathcal{C}_{\text{exp}} + \mathcal{C}_{\text{theo}})^{-1} \mathcal{O}$ (see e.g. smelli [arXiv:1810.07698]) all observables (and their uncertainties) calculated with flavio

- New/updated measurements:
 - $R_K, q^2 \in [1.1, 6.0] \, \text{GeV}^2$
 - BR($B^+ \to K^+ e^+ e^-$), $q^2 \in [1.1, 6.0] \text{ GeV}^2$
 - Updated measurement of $BR(B_{(s)} \to \mu^+\mu^-)$
 - Angular data and binned BRs in $B_s \to \phi \mu^+ \mu^-$
- Other observables included:
 - o $R_{\kappa(*)}$ measurements by LHCb, BaBar and Belle
 - o Angular LFU Q_4 , Q_5 measured by Belle
 - \circ Angular data in $B^{+,0} \to K^* \mu^+ \mu^-$
 - Angular data in $B^0 \to K^*e^+e^-$
 - (Binned) BR's of $B \to K^{(*)} \mu^+ \mu^-$
 - \circ BR($B \to K^* \gamma$), BR($B_s \to \phi \gamma$), BR($B \to X_s \gamma$)

DISCLAIMER: take absolute values of pulls with a grain of salt, only a taste of how things are moving qualitatively...

$$C_9 \equiv -C_{10}$$
 vs C_9'

Add RH (quark)
$$V$$
 current C_9' to $C_9 = -C_{10}$

$$\Rightarrow \text{ best fit: } \Delta C_9^{bs\mu\mu} = -\Delta C_{10}^{bs\mu\mu} = -\mathbf{0.54}_{-0.10}^{+0.10}, \ \Delta \frac{\mathbf{C_9'}^{bs\mu\mu}}{\mathbf{9}} = \mathbf{0.53}_{-0.18}^{+0.18}, \ \mathsf{Pull_{SM}} = \mathbf{6.0}$$

o: SM

★: best fit

T: Dest in

Better, but ang. obs. vs. $R_{K(*)}$ still not fully

reconciled...

DISCLAIMER: take pulls with a grain of salt, only a taste of how things are moving qualitatively...

$$C_9 \equiv -C_{10}$$
 vs C_9'

Add RH (quark)
$$V$$
 current C_9' to $C_9 = -C_{10}$

$$\Rightarrow \text{ best fit: } \Delta C_9^{bs\mu\mu} = -\Delta C_{10}^{bs\mu\mu} = -\mathbf{0.54}_{-0.10}^{+0.10}, \ \Delta \underline{C_9'^{bs\mu\mu}} = \mathbf{0.53}_{-0.18}^{+0.18}, \ \mathsf{Pull_{SM}} = \mathbf{6.0}$$

α: SM

★: best fit

Better, but ang. obs. vs.

 $R_{K^{(*)}}$ still not fully

reconciled...

DISCLAIMER: take pulls with a grain of salt, only a taste of how things are moving qualitatively...

V_1 vector leptoquark

Leptoquarks: scalar or vector fields coupling leptons to quarks (typically arise in GUTs)

$$\mbox{Leptoquark Lagrangian: } \mathcal{L} \supset V_1^{\mu} \left(\bar{d}_L^i \gamma_{\mu} K_L^{ik} \ell_L^k + \bar{u}_L^j V_{ji}^{\dagger} \gamma_{\mu} K_L^{ik} U_{kj}^{\rm P} \nu_L^j \right)$$

Both $b \to c \ell \nu$ and $b \to s \ell \ell$ at tree-level:

LFV Prospects

What does the future hold?

⇒ Fit of 9 LQ couplings ⇒ MCMC posterior distributions:

Prospects for $R_{D^{(*)}}$

Belle II will improve sensitivities in several \boldsymbol{b} and $\boldsymbol{\tau}$ decay channels! Fit of 9 LQ couplings:

Non-universality from universal gauge interactions

Gauge couplings are strictly universal; how to explain LFU Violation?

- \Rightarrow Only unitary $q\ell$ mass missalignment is ruled out by LFV
- ▶ Add n vector-like (VL) leptons mixing with (left-handed) SM leptons effective LQ-q- ℓ couplings $K_L^{q\ell}$ parametrised via non-unitary matrix (from mixing with heavy states)
- \Rightarrow Induce LFUV structure in $C_{9,10}^{ij;\ell\ell'}$ Wilson coefficients (tree-level)

$$\left(C_{9,10}^{ij;\ell\ell'} = \mp rac{\pi}{\sqrt{2}G_F \, lpha \, V_{3j} \, V_{3i}^*} \, rac{1}{m_{V_1}^2} K_L^{i\ell'} \, K_L^{j\ell*}
ight)$$

- \Rightarrow Required mixing pattern: induce non-universal $Z \to \ell \ell'$ (at $\mathit{tree-level}$)
 - \rightsquigarrow VL leptons have to be $SU(2)_L$ -doublets!!
- \Rightarrow $R_{K^{(*)}}$ and $R_{D^{(*)}}$ can be explained, tight constraints from cLFV, EWPO, colliders...

Non-unitary parametrisation

In analogy to neutrino physics, the mixing matrices get enlargened:

$$U_L^\ell = \begin{pmatrix} A & R \\ B & S \end{pmatrix} \begin{pmatrix} V_0 & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$$

In case of n=3 generations:

$$\begin{pmatrix} A & R \\ B & S \end{pmatrix} = \mathcal{R}_{56}\mathcal{R}_{46}\mathcal{R}_{36}\mathcal{R}_{26}\mathcal{R}_{16}\mathcal{R}_{45}\mathcal{R}_{35}\mathcal{R}_{25}\mathcal{R}_{15}\mathcal{R}_{34}\mathcal{R}_{24}\mathcal{R}_{14}$$

$$\begin{pmatrix} V_0 & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} = \mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}$$

Defining semi-unitary rectangular matrix:

$$K_L^{q\ell} = (K_1, K_2) = \frac{\kappa_L}{\sqrt{2}} (A V_0, R)$$