JRJC - La Rochelle

Solving $(g-2)_{\ell}$ with a new light gauge boson

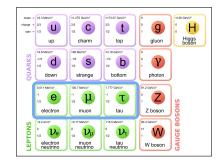
Emanuelle Pinsard

LPC - Clermont

22 October 2021

The Standard Model

- Describes particles and their interactions
- Successfully tested
 Good experimental predictions



But cannot account for some observations:

Neutrino masses, Dark Matter, baryon asymmetry of the Universe

And numerous tensions between theory and observation:

 $(g-2)_\ell$, Cabibbo-angle anomaly, B meson anomalies, ...

⇒ Need New Physics (beyond SM)

 $\begin{array}{c} \textbf{Magnetic moment} \rightarrow \text{Measure of particle's tendency to align with a} \\ \text{magnetic field} \end{array}$

$$ec{\mu_\ell} = g_\ell rac{e}{2m_\ell} ec{s}$$

 \vec{s} , m_ℓ : spin and mass of the lepton g_ℓ Landé factor (characterizes the "strength" of the lepton coupling to a magnetic field)

From Dirac equation : $g_\ell \equiv g_{\rm Dirac} = 2$

But quantum corrections need to be taken into account!

Magnetic moment in QED

Electromagnetic lepton current (external magnetic field)

$$\mathcal{J}_{\mu} = \overline{\ell}(p') \left[\gamma_{\mu} F_{1}(q^{2}) + \frac{i \sigma_{\mu\nu} q^{\nu}}{2 m_{\ell}} F_{2}(q^{2}) + \gamma_{5} \frac{i \sigma_{\mu\nu} q^{\nu}}{2 m_{\ell}} F_{3}(q^{2}) + \gamma_{5} (q^{2} \gamma_{\mu} - \not q q_{\mu}) F_{4}(q^{2}) \right] \ell(p)$$

$$g_{\ell} = 2(F_1(0) + F_2(0))$$

SM tree-level :
$$F_1(0) = 1$$
 and $F_2(0) = F_{3,4}(0) = 0$

Leads to
$$g_{\ell} = 2 = g_{\mathsf{Dirac}}$$

Higher order corrections from $F_2(0)$ at loop level

⇒ Define anomalous magnetic moment

Anomalous magnetic moment

$$egin{aligned} oldsymbol{a_\ell} &\equiv rac{g_\ell - g_{\mathsf{Dirac}}}{g_{\mathsf{Dirac}}} = rac{g_\ell - 2}{2} = F_{\mathbf{2}}(0) \end{aligned}$$

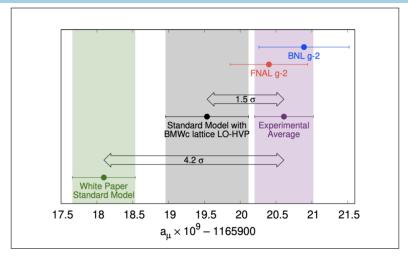
First correction in 1948 (QED NLO) : $a_{\ell} = \frac{\alpha}{2\pi}$

Now: $a_{\ell} = a_{\ell}^{\mathsf{QED}} + a_{\ell}^{\mathsf{EW}} + a_{\ell}^{\mathsf{had}}$

QED contributions: at 5-loop

EW at 2-loop

(non perturbative) QCD in hadronic light-by-light scattering, hadronic vacuum polarization



$$\Delta a_{\mu} = 251(59) \times 10^{-11}$$

⇒ Need **New Physics** to account for this discrepancy

What about the electron?

From scaling of effective dipole operators, expect :

$$\frac{\Delta a_e}{\Delta a_\mu} \sim \frac{m_e}{m_\mu} \sim 5 \times 10^{-3}$$

From symmetry arguments would expect:

$$\frac{\Delta a_e}{\Delta a_\mu} \sim \frac{m_e^2}{m_\mu^2} \sim 2.5 \times 10^{-5}$$

But Δa_e from **precise measurement of** α_e with **Cs** atoms

$$\Delta a_e^{\text{Cs}} \sim (-0.88 \pm 0.36) \times 10^{-12}$$

Leading to
$$\frac{\Delta a_e}{\Delta a_\mu} \sim -3 \times 10^{-4}$$

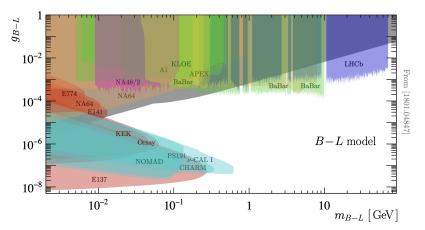
 \Longrightarrow **2.5** σ **tension**, "wrong" sign **and** order of magnitude

Models for $(q-2)_{\ell}$

- Single field extension of the SM
 - \triangleright **Z'** (BSM "cousin" of SM Z)
 - Dark photon
 - ► Two-Higgs-Doublet Model
 - Scalar Leptoquark

- Two or Three-field extension of the SM
 - Vector-like leptons
 - \blacktriangleright # Scalar(s) + # Fermion(s)
- Supersymmetry

From [2104.03691]



Constraints on Z^\prime parameters (mass and coupling) from $U(1)_{B-L}$

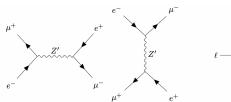
Can evade these bounds considering Flavor Violating coupling to leptons!

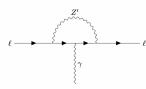
Extend the SM content with one new (light) neutral gauge boson Z'

$$\mathcal{L} = Z_{\mu}' \left[\bar{\ell}_i \gamma^{\mu} (g_{\ell L}^{ij} P_L + g_{\ell R}^{ij} P_R) \underline{\ell_j} + \bar{\nu_{\alpha}} \gamma^{\mu} (g_{\nu L}^{\alpha \beta} P_L) \nu_{\beta} \right] + \text{H.c.}$$

- lacktriangle Expect chiral enhancement \Longrightarrow sizeable contributions to $(g-2)_\ell$
- Only coupling to leptons to avoid hadronic constraints
- Only Flavor Violating couplings to evade constraints from direct searches and EW precision observables

Constraints on $e\mu$ couplings



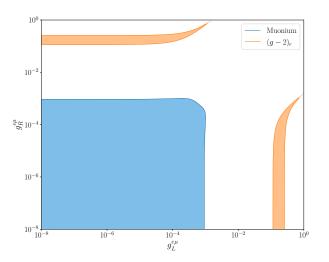


Muonium oscillations:

- ▶ $Mu = \mu^+ e^-$ bound state used to test the SM
- In models with **cLFV**, can oscillate into antimuonium $\overline{\mathrm{Mu}} = \mu^- e^+$ (similar to neutral meson oscillation)
- ▶ In this Z' model, contributions **@ tree-level!**
- ⇒ Stringent constraints expected

Can Z' account for $(g-2)_e$ and comply with $\mathrm{Mu}-\overline{\mathrm{Mu}}$ bounds ?

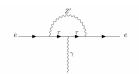
Constraints on $e\mu$ couplings



 $\Longrightarrow \mathrm{Mu}$ oscillations **exclude** $(g-2)_e$ via $e\mu$ couplings

Constraints on $e \tau$ couplings

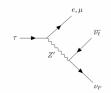
▶ **But!** $(g-2)_e$ induced by τ in the loop

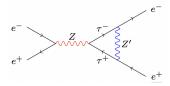


▶ au decay : $au o e \overline{
u} u$ mediated by Z' boson @ tree level.

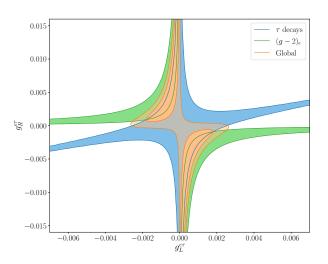
Competes with SM tree level process mediated by W

lacksquare Z couplings : $g_{Z,L/R}^{\mu, au}$ Z' loop induces **modifications of** Z couplings





Constraints on e au couplings



 \implies Opposite sign **RH** and **LH** $e\tau$ couplings can account for the negative deviation of $(g-2)_e$ and τ decays!

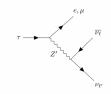
Constraints on $\mu\tau$ couplings

Can we have $(g-2)_{\mu}$ for $\mu \tau Z'$ while complying with τ decay ?

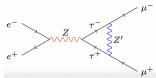
 \triangleright $(g-2)_{\mu}$ induced by τ in the loop

ightharpoonup au decay : $au o \mu \overline{
u} u$

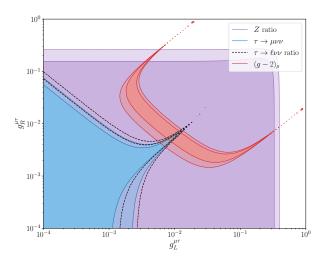
• au decay universality ratio : $\frac{ au o \mu \overline{
u}
u}{ au o \overline{
u}
u}$



ightharpoonup Z couplings : $g_{Z,L/R}^{\mu,\tau}$

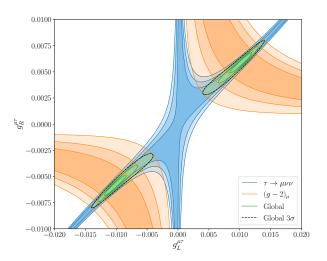


Constraints on $\mu\tau$ couplings



Stringent constraints from $(g-2)_{\mu}$ and τ decays \Longrightarrow small allowed parameter space

Constraints on $\mu\tau$ couplings



 \implies Same sign **RH** and **LH** $\mu\tau$ couplings can account for the positive deviation of $(g-2)_{\mu}$ and τ decays!

Conclusion

- Adding only one field \to light gauge boson Z' can solve $(g-2)_{\mu}$ with sizeable $g^{\mu\tau}$, while satisfying several constraints from flavor observables
- ightharpoonup Stringently constrained parameter space \Longrightarrow very predictive model
- $e\mu$ couplings constrained via $Mu-\overline{Mu}$ oscillations: cannot account for $(g-2)_e o$ need e au couplings
- \Rightarrow Leads to extremely large $\mu \to e \gamma$ rate
- Model needs a scalar for symmetry breaking: considering scalar contributions to observables
- \Rightarrow Could it solve $(g-2)_e$ without large $\mu \to e\gamma$?
- Can also extend the model with additional BSM fermions