Lucas MARTEL

Improvement of the vertex detector resolution in the Belle II experiment PhD thesis 2028 - 2023

The Belle II experiment

- International collaboration based in Japan
- Data taking since 2019
- Comprised of asymmetric e+e-SuperKEKB collider (10,58 GeV) and Belle II detector
- Highest instantaneous luminosity in the world (> 3 x 10³⁴ cm⁻²s⁻¹), 200fb⁻¹ of data collected in first two years of running
- Main targets: Discovery of BSM physics
- Strengths: rare and partially invisible decays + precision measurements

Lucas Martel (Strasbourg)

JRJC 2021

ninosity [fb⁻¹]

otal integrated Weekly

10

The Belle II experiment

- International collaboration based in Japan
- Data taking since 2019
- Comprised of asymmetric e+e-SuperKEKB collider (10,58 GeV) and Belle II detector
- Highest instantaneous luminosity in the world (> 3 x 10³⁴ cm⁻²s⁻¹), 200fb⁻¹ of data collected in first two years of running
- Main targets: Discovery of BSM physics
- Strengths: rare and partially invisible decays + precision measurements

Lucas Martel (Strasbourg)

Search for $B \rightarrow K^{(*)}v\overline{v}$ decays

- $B \rightarrow K^{(*)} v \overline{v} decays$:
- Never been observed
- Partially invisible final state
- Rare : $\mathcal{B}(B \rightarrow K^{(*)}\nu\overline{\nu}) \sim 10^{-6}$
- Good probe for BSM physics

Search for $B \rightarrow K^{(*)}v\overline{v}$ decays

- $B \rightarrow K^{(*)} v \overline{v} decays$:
- Never been observed
- Partially invisible final state
- Rare : $\mathcal{B}(B \rightarrow K^{(*)}\nu\overline{\nu}) \sim 10^{-5}$
- Good probe for BSM physics

Search for rare decays needs the best **reconstruction efficiency** possible

Silicon vertex detector (SVD)

- 4 Concentric layers of detectors
- Double Sided Silicon strip Detectors
 → two sides (p/U n/V)
- Electronic readout: APV 25 chips
- Goal of SVD: giving 3D position, hit time and deposited charge from charged particles (for tracking (vertexing), PID, PXD data reduction..)

Sensors	Small	Large	Trapezoidal	
strips p	768	768	768	
pitch p	50 µm	75 µm	50-75 µm	
strips n	768	512	512	
pitch n	160 µm	240 µm	240 µm	
thickness	320 µm	320 µm	300 µm	

5

IRIC 2021

Lucas Martel (Strasbourg)

Cluster reconstruction

- The SVD cluster provides information on charged particles, extracted from a set a retained fired strips
- Strip retained if S/N > 3
- For each strips, access to :
 - Deposited charge
 - Noise
 - Gain
- Set of retained strips → Cluster

Cluster reconstruction

- For each cluster, computation of:
 - Charge S_{cl}
 - Position x_{cl}
 - Time t_{cl}
- For a cluster made of n strips
- $S_{cl} = \Sigma S_{i}$
- $x_{cl} = \Sigma x_i S_i / \Sigma s_i$ (Center of gravity)
- $t_{cl} = \Sigma t_i S_i / \Sigma S_i$ (Center of gravity)

- To compute the resolution σ_{cl} we need:
 - Residuals

- Error on the unbiased track intercept position $\boldsymbol{\sigma}_{_{\! t}}$

- To compute the resolution σ_{r} we need:
 - Residuals _

measured cluster position - unbiased track intercept position

• Error on the unbiased track intercept position σ_t

Track is fitted while excluding the cluster on the sensor under study.

The **unbiased track intercept position** is the position where this track crosses the sensor.

$$\sigma_{cl}^2 = < res^2 - \sigma_t^2 >$$

DSSD

track

- To compute the resolution σ_{d} we need:
 - Residuals _

measured cluster position - unbiased track intercept position

• Error on the unbiased track intercept position σ_t

Track is fitted while excluding the cluster on the sensor under study.

The **unbiased track intercept position** is the position where this track crosses the sensor.

$$\sigma_{cl}^2 = < res^2 - \sigma_t^2 >$$

Good cluster position resolution :

Improved quality of tracks and vertices Correct track extrapolation uncertainty

track

JRJC 2021

DSSD

Issues with cluster position resolution

Resolution estimated in data (~16 fb⁻¹ dimuon events) and Monte-Carlo simulation (500k dimuon events)

 Discrepancies between data and MC (~ 5 - 8µm) → Issues with reconstruction performance + optimistic Monte-Carlo

Issues with cluster position resolution

Resolution estimated in data (~16 fb⁻¹ dimuon events) and Monte-Carlo simulation (500k dimuon events) + improvements on reconstruction and simulation

• Overall better agreement between MC and data. But still ~ 1 - 5 μ m gap.

• Some tuning necessary \rightarrow trying to understand and correct smaller effects.

Electronic channel couplings and resolution

- A signal is injected on a given strip, the waveform of the adjacent APV channel is also checked
- A small signal on the adjacent APV channel is observed with lower time ~7/8 APV clock = 27ns

• Expected effect on strip charges :

```
charge(a) = charge_{real}(a) + 0.06 * charge(b)
```


Lucas Martel (Strasbourg)

Electronic channel couplings and resolution

- A signal is injected on a given strip, the waveform of the adjacent APV channel is also checked
- A small signal on the adjacent APV channel is observed with lower time ~7/8 APV clock = 27ns

• Expected effect on strip charges :

```
charge(a) = charge_{real}(a) + 0.06 * charge(b)
```

Charge used to compute position : impact on resolution !

Lucas Martel (Strasbourg)

JRJC 2021

signal[ADC]

Cluster unfolding method

In the end, the observed charges follow : $a_i = (1-2c)A_i + c(A_{i-1} + A_{i+1})$

From the observations on electronics, c value expected to be ~ 0.06

Example for a cluster of 4 strips

Cluster unfolding method

Example for a cluster of 4 strips

To correct this effect, we propose to "unfold" the cluster charges :

$$\begin{pmatrix} 1-2c & c & 0 & 0 \\ c & 1-2c & c & \\ 0 & c & 1-2c & c \\ 0 & 0 & c & 1-2c \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \\ A_3 \\ A_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_3 \end{pmatrix}$$

True

Obs

Unfold by inversion :

 $\begin{pmatrix} A_1 \\ A_2 \\ A_3 \\ A_3 \end{pmatrix} = \mathsf{M}^{-1} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_3 \end{pmatrix}$ True Obs

In the end, the observed charges follow : $a_i = (1-2c)A_i + c(A_{i-1} + A_{i+1})$

From the observations on electronics, c value expected to be ~ 0.06

 The resolution is computed for each type of sensor for different values of c ranging from 0 to 0.2

Lucas Martel (Strasbourg)

JRJC 2021

- The resolution is computed for each type of sensor for different values of c ranging from 0 to 0.2
- The unfolding method does not improve the resolution on V-side sensors
- However, U-side sensors do benefit from the method, with an optimal gain with c = 0.1 for all type of sensors

Takeaway

- Improvements seen on U-side sensors with cluster unfolding method (~20 30% of the remaining gap between data and MC)
- Unfolding implemented in the Belle II analysis software
- Some work still needed to squash the remaining discrepancies between data and MC

Thank you for listening

Lucas Martel (Strasbourg)

Cluster interstrip position distribution

Corresponds to the computed position of the cluster within the central strip

JRJC 2021

• Defined as $\zeta_{1S} = x_{c1} \mod(\text{pitch})$

Lucas Martel (Strasbourg)

Cluster interstrip position distribution

Corresponds to the computed position of the cluster within the central strip

IRIC 2021

• Defined as $\zeta_{1S} = x_{1S} \mod(\text{pitch})$

Lucas Martel (Strasbourg)

Cluster interstrip position distribution

- Corresponds to the computed position of the cluster within the central strip
- Defined as $\zeta_{1S} = x_{c1} \mod(\text{pitch})$

Idea : correct this distribution, use the corrected values of ζ_{IS} to recompute the cluster position ==> could impact resolution

Lucas Martel (Strasbourg)

JRJC 20<u>21</u>

η correction method

- We define the η correction function : $F(\zeta_{IS} = \zeta) = \int_0^{\zeta} P(\zeta_{IS}) d\zeta_{IS}$
- Then we can compute the η -corrected cluster position : $x_{\eta} = x_{S0} + p * F(\zeta_{IS})$

Lucas Martel (Strasbourg)

η correction method – impact on residuals

• We compute the residuals using the corrected cluster position and compare the distribution to the original one

IRIC 2021

 In the end, the correction does not have any noticeable effect on the residuals distribution

Lucas Martel (Strasbourg)

• We define the quantity
$$\sigma_{cl}^2$$
 as : $\sigma_{cl}^2 = \langle res^2 - \sigma_t^2 \rangle = \langle res^2 \rangle - \langle \sigma_t^2 \rangle$
= mean(res)² - mean(σ_t)² - std.dev(σ_t)²

- Since the distributions are not perfectly gaussian use instead :
 - mean(x) \approx median(x)
 - Std.dev(x) \approx mad(x) \equiv 1.4826*median(|x median(x)|)

• Then
$$\sigma_{cl}^2 = mad(res)^2 - median(\sigma_t)^2 - mad(\sigma_t)^2$$

Estimation of cluster position resolution - Overlaps

 A new strategy to compute cluster position resolutions has been devised exploiting the SVD Overlaps method inherited from CMS, here paper and slides.

IRIC 2021

PROS:

- Marginally sensitive to Coulomb scattering effect due to the reduced radial distance between overlapping sensors
- Can exploit any kind of tracks
- Double residuals technique may help decoupling resolutions from error on the intercept

CONS:

 U-side is the most critical side for resolutions, but also the most challenging due to the reduced overlap region in udirection and limited statistics.

SVD volume

Lucas Martel (Strasbourg)

 The resolution is computed for each type of sensor for different values of c ranging from 0 to 0.2

No unfold

= 0.05

= 0.10

c = 0.15c = 0.20

MC

Lucas Martel (Strasbourg)

Lucas Martel (Strasbourg)

- The resolution is computed for each type of sensor for different values of c ranging from 0 to 0.2
- The unfolding method does not improve the resolution on V-side sensors
- However, U-side sensors do benefit from the method, with an optimal gain with c = 0.1 for all type of sensors

					_	
Sensors - U side	c = 0	c = 0.05	c = 0.1	c = 0.15	c = 0.20	MC
L3.1	9.6	9.3	9.1	9.3	10.7	7.2
L3.2	10.7	10.3	10	10	10.8	8.3
L456 backward	13.1	12.2	11.9	13.1	16.3	9.8
L456 origami	12.6	11.8	11.5	12.6	15.2	9.1
1456 slanted	11.6	10.9	10.7	12	14.8	8.9
	original corrected				goal	
	-	_				
Sensors - V side	c = 0	c = 0.05	c = 0.1	c = 0.15	c = 0.20	MC
L3.1	25.1	24.5	24.8	25.6	27.8	21.1
L3.2	17.5	17.5	19.5	23.8	30.2	14.1
L456 backward	23.7	25.7	31.9	42.2	54.5	19.4
L456 origami	26.5	28.5	33.4	40.3	46.2	22.5
1456 slanted	29.3	29	31.2	37.3	49.6	23.4

Setting limits on \mathcal{B}

Limit set with the untagged analysis (on 63fb⁻¹) compared to Belle/Babar

- Projections using MC
- Hadronic tagging already competitive, more work needed on SL