Higgs pair production in bbγγ final state with ATLAS at LHC full Run 2

Run: 329964 Event: 796155578 2017-07-17 23:58:15 CEST

Linghua Guo

11 .

IJCLab

CONF-note Moriond QCD: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-016/

Motivation for double Higgs production

Interest: Higgs self coupling

Higgs potential

$$\mathcal{L}_{ ext{Higgs}} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - \left(\mu^2 \Phi^{\dagger} \Phi + \lambda ig(\Phi^{\dagger} \Phi ig)^2
ight).$$

Motivation for double Higgs production

Interest: Higgs self coupling

$$egin{aligned} \mathcal{L}_{ ext{Higgs}} &= (D_\mu \Phi)^\dagger (D^\mu \Phi) - \left(\mu^2 \Phi^\dagger \Phi + \lambda ig(\Phi^\dagger \Phiig)^2ig) \ ext{After spontaneous symmetry breaking} \ &\supset - ig(\lambda v^2 H^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ &ig(\lambda v^2 + \lambda v H^3 + \lambda h H^4ig) \ &ig(\lambda v^2 + \lambda v h^3 + \lambda h H^4ig) \ &ig(\lambda v^2 + \lambda v h^3 + \lambda h H^4ig) \ &ig(\lambda v^2 + \lambda$$

Motivation for double Higgs production

Interest: Higgs self coupling

$$egin{aligned} \mathcal{L}_{ ext{Higgs}} &= (D_\mu \Phi)^\dagger (D^\mu \Phi) - \left(\mu^2 \Phi^\dagger \Phi + \lambda ig(\Phi^\dagger \Phiig)^2ig) \ & ext{After spontaneous symmetry breaking} \ & igodot - \left(\lambda v^2 H^2 + \lambda v H^3 + rac{\lambda}{4} H^4ig) \ & igodot & ext{Mass term } m_H = \sqrt{2\lambda v^2} \end{aligned}$$
 Tri-linear term $\lambda_{ ext{HHH}}$ Quartic term $\lambda_{ ext{H}}$

with $vpprox 246~{
m GeV}$ and $m_Hpprox 125~{
m GeV},\,\lambda_{
m SM}pprox 0.13$

- HHH: with double Higgs production
- HHHH (almost out of reach of LHC)

Main double Higgs production modes

Dominant by ggF:

- ➤ Offshell Higgs in triangle
- Destructive interference

Main double Higgs production modes

Dominant by ggF:

Offshell Higgs in triangle

Destructive interference

SM HH cross section:

- ~ 1k times smaller than 1-H
- ~ 1σ significance

Life ends up?

Main double Higgs production modes

Dominant by ggF:

- Offshell Higgs in triangle
- Destructive interference

SM HH cross section:

- ~ 1k times smaller than 1-H
- ~ 1σ significance

Life ends up?

Probe real shape of Higgs potential:

 $egin{aligned} ext{Self-coupling modifier} \ \kappa_\lambda &= \lambda_{ ext{HHH}}/\lambda_{ ext{HHH}}^{ ext{SM}} \end{aligned}$

Non-resonant analysis: Higgs trilinear coupling

g anne

HH cross section in function of κ_{λ}

Non-resonant analysis: Higgs trilinear coupling

HH cross section in function of κ_{λ}

Some κ_{λ} leads to enhancement of HH production might be observable with Run 2 ATLAS data

Search of two on-shell Higgs boson in final state, with **non-resonant peak in m_{HH} spectrum** (off-shell intermediate Higgs)

Resonant analysis: new spin-0 heavy scalar

BSM theories predict spin-0:

- Two-Higgs-Doublet Models
- Electroweak Singlet Models

Search of new scalar X decay into two Higgs Boson, with resonant peak in m_{HH} spectrum (m_{χ} >2 m_{H})

- Different mass hypothesis tested from 251 GeV to 1 TeV
- Narrow width approximation
- CP even
- Model-independent

Final state signal: $HH \rightarrow bb\gamma\gamma$

				r i		
		bb	WW	π	ZZ	γγ
	bb	33%				
	WW	25%	4.6%			
	ττ	7.4%	2.5%	0.39%		
[ZZ	3.1%	1.2%	0.34%	0.076%	
	γγ	0.26%	0.10%	0.029%	0.013%	0.0005%

bbbb, bbττ, **bbγγ**, bbWW, ...

Good resolution Low background

High signal rate

Main background in this channel:

- Dominant: γγ+jets
- Sub-dominant: single Higgs production (ggH, ttH, VBFH, etc.)

Photon and b-jets with ATLAS

One of the 4 experiments at LHC CERN

proton-proton beam in the center

From innermost to outermost:

- Inner tracker: charged particles
- · ECAL: e/γ
- HCAL: jet
- Muon chamber: muons

d-cap and HH→bbγγ:

Photons reconstructed by tracker and ECAL Jets reconstructed by tracker and HCAL (b-tagging with Insertable B-layer)

Common preselection

 Di-photons trigger: efficiency: 82.9% for SMHH; 69.5% for m_x=300 GeV HTL_g35_loose_g25_loose (2015-2016) HLT_g35_medium_g25_medium_L12EM20VH (2017-2018)

Lepton veto: reduce top background

Non-resonant: optimization for various κ_{λ}

Non-resonant: optimization for various κ_{λ}

g QQQQQQQQQQQQ

Events are divided into 4 categories by $\rm m_{\rm bbyy}$ and BDT scores

Using m_{yy} as final discriminant variable

Real data and simulation (for illustration)

Statistical model

Maximum likelihood fit performed on $m_{\gamma\gamma} \in [105, 160]$ GeV

★ Extended Likelihood with auxiliary constraints

4

$$\mathcal{L} = \prod_{c} \left(\operatorname{Pois}(n_{c} | N_{c}(\boldsymbol{\theta})) \cdot \prod_{i=1}^{n_{c}} f_{c}(m_{\gamma\gamma}^{i}, \boldsymbol{\theta}) \cdot G(\boldsymbol{\theta}) \right)$$

- Likelihood as product of all categories
- Parameter of interest: signal strength or HH cross section
- Poisson term constraining the events in each category
- Pdf on m_{vv} :
 - HH signal and 1-H bkg: Double sided crystal ball function (power+Gaus+power)
 - γγ+jets: exponential function
- Pre-fit constraint of nuisance parameters (mainly systematics, often Gaussian)

B-only fit with observed data

Non-resonant

Resonant

Agreement with b-only model No clear HH signal *little bump near 125 GeV correspond to 1-H

What we could do if observing no signal? Still have constraint on signal (\rightarrow limit)

Limit setting with CLs method

Consider a test statistic Q, e.g. likelihood ratio, constructing PDF of Q for

- Null hypothesis with different signal s: f(Q|s+b)
- Alternative hypothesis with b-only: f(Q|b)

Green area: p-value of null, i.e. p_{s+b} Yellow area: p-value of alternative p_b

$$ext{CLs} = rac{p_{s+b}}{1-p_b}$$

For each value of *s*, CLs could be computed Limit of *s* is the one giving CLs=a1-a is confidence level, e.g. 95%

Copy from statistic course of Glen Cowan 20

Non resonant results

No signal observed, asymptotic limits with CLs have been derived for μ_{SMHH} and κ_{λ}

Upper Limit (95% CL) on μ_{HH} assuming κ_{λ} =1:

obs: 4.1xSM exp: 5.5xSM

Statistical dominated, ~3% systematic effect obs<exp, due to deficits in observed data

Limit (95% CL) on κ_{λ} :

VBF HH contributes to an improvement of 5%

Resonant results

No signal observed, upper limits with CLs on cross section of each m_x:

Conclusion

Run 2 ATLAS results 139 fb⁻¹:

```
Non-resonant:Resonant:95% CL limit on \mu_{HH,\kappa\lambda=1}:95% CL limit on \kappa_{\lambda}:<br/>obs: 4.1xSM95% CL limit on \kappa_{\lambda}:<br/>obs: [-1.5, 6.7]<br/>exp: 5.5xSM95% CL limit on \sigma(gg \rightarrow X \rightarrow HH):<br/>obs: 610–47 fb<br/>exp: 360–43 fb<br/>for 251 GeV ≤ m_{\chi} ≤ 1000 GeV
```

Result compatible with other HH channels: http://cdsweb.cern.ch/record/2777013/files/ATL-PHYS-PUB-2021-031.pdf

Comparable with CMS:

https://cds.cern.ch/record/2742937/files/HIG-19-018-pas.pdf?version=1

Extrapolation to HL-LHC (3000 fb⁻¹): Expect to measure κ_{λ} with 0.5 uncertainty if equal to 1 <u>https://arxiv.org/pdf/1902.00134.pdf</u>

Data and MC

- Full Run 2 data (139 fb⁻¹): previous study with 36.1 fb⁻¹
- ggF HH signal (κ_{λ} = 1,10) at NLO with Powheg-Box v2 + Pythia 8 + κ_{λ} reweighting technique
- VBF HH signal ($\kappa_{\lambda} = 0,1,2,10$) at LO MadGraph5_aMC@NLO v2.6.0 NNPDF3.0nlo + Pythia 8
 - Herwig 7 used for parton shower uncertainty
- Spin 0 signal (251-1000 GeV) at LO with MadGraph5_aMC@NLO v2.6.1 + Herwig v7.1.3
- Background: Single Higgs (ggH, ttH, VBFH, etc.) and continuum γγ+jets :

_	Single Higgs and continuum bkg MC					
Process	Generator	PDF set	Showering	Tune		
ggF	NNLOPS [65-67] [68, 69]	PDFLHC [42]	Рутніа 8.2 [70]	AZNLO [71]		
VBF	Powheg Box v2 [39, 66, 72–78]	PDFLHC	Рутніа 8.2	AZNLO		
WH	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO		
$qq \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO		
$gg \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO		
$t\bar{t}H$	Powheg Box v2 [73–75, 78, 79]	NNPDF3.0nlo[80]	Рутніа 8.2	A14 [<mark>81</mark>]		
bbH	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.2	A14		
tHqj	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14		
tHW	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14		
$\gamma\gamma$ +jets	Sherpa v2.2.4 [56]	NNPDF3.0nnlo	Sherpa v2.2.4	_		
tīγγ	MadGraph5_aMC@NLO	NNPDF2.31o	Рутніа 8.2	_		

Summary

Run 2 ATLAS results:

Systematic uncertainties

Systematic uncertainties:

- Event rate
- Shape of m_{vv}
 - signal pdf (DSCB)
 - spurious signal for bkg

Experimental systematics

photon, jets, b-tagging ...

Theoretical systematics

- QCD, pdf+α_s
- HF (100 %) [ggH, VBF, WH]
- BRs, mtop
- Parton Showering (H7 vs Py8)
- κ_{λ} reweighting syst (O(5 %))

Impact of systematics on limits:

		Relative impact of the sys	tematic uncertainties in %
Source	Туре	Non-resonant analysis HH	Resonant analysis $m_X = 300 \text{ GeV}$
Experimental			
Photon energy scale Photon energy resolution Flavor tagging	Norm. + Shape Norm. + Shape Normalization	5.2 1.8 0.5	2.7 1.6 < 0.5
Theoretical			
Heavy flavor content Higgs boson mass PDF+ α_s	Normalization Norm. + Shape Normalization	1.5 1.8 0.7	< 0.5 < 0.5 < 0.5
Spurious signal	Normalization	5.5	5.4

$\kappa_{\lambda} - m_{ m HH} ext{ correlation:}$ Inspiration for categorization

$$m^*_{bar{b}\gamma\gamma}=m^{}_{bar{b}\gamma\gamma}-m^{}_{bar{b}}-m^{}_{\gamma\gamma}+250\,{
m GeV}$$

Use mbbyy* to improve the resolution:

Prediction of different κ_{λ} with reweighting technique

 $A(k_t, k_\lambda) = k_t^2 B + k_t k_\lambda T.$

319 The amplitude square is written as:

$$|A(k_t, k_{\lambda})|^2 = k_t^4 |B|^2 + k_t^2 k_{\lambda}^2 |T|^2 + k_t^3 k_{\lambda} (B^*T + BT^*).$$

The amplitude square can be further expressed in terms of the amplitude squares of three reference samples chosen. In this analysis, the reference samples are chosen to be $k_{\lambda} = 0, 1, 10$ samples. Since we are only interested in k_{λ}, k_t is taken as 1.

$$|A(1,0)|^2 = |B|^2, (3)$$

$$|A(1,1)|^{2} = |B|^{2} + |T|^{2} + (B^{*}T + BT^{*})$$
(4)

$$|A(1,10)|^{2} = |B|^{2} + 100|T|^{2} + 10(B^{*}T + BT^{*})$$

Using these equations, $|A(k_t, k_\lambda)|^2$ can be expressed in terms of amplitude squares of the three reference samples.

$$|A(k_t, k_{\lambda})|^2 = k_t^2 \left[\frac{90k_t^2 + 9k_{\lambda}^2 - 99k_t k_{\lambda}}{90} |A(1, 0)|^2 + \frac{100k_t k_{\lambda} - 10k_{\lambda}^2}{90} |A(1, 1)|^2 + \frac{k_{\lambda}^2 - k_t k_{\lambda}}{90} |A(1, 10)|^2 \right]$$
(6)

(1) Description from previous 36.1 fb^{-1} note.

(2)

(5)

Linear combination of 3 κ_{λ} samples for generation of other values of κ_{λ}

Event-level weight applied on m_{HH} kinematics

For current Run 2 analysis, $\kappa_{\lambda} = 0$, 1, 20 are used.

Systematic uncertainty estimated with differences between generated and reweighted samples at κ_{λ} =10.

Non resonant BDT input variables

.

Table 2: Variables used in the BDT for the non-resonant analysis. The *b*-tag status identifies the highest fixed *b*-tag working point (60%, 70%, 77%) that the jet passes. All vectors in the event are rotated so that the leading photon ϕ is equal to zero.

Variable	Definition		
Photon-related kin	ematic variables		
$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of the two photons scaled by their invariant mass $m_{\gamma\gamma}$		
η and ϕ	Pseudo-rapidity and azimuthal angle of the leading and sub-leading photon		
Jet-related kinema	tic variables		
b-tag status	Highest fixed <i>b</i> -tag working point that the jet passes		
$p_{\rm T}, \eta$ and ϕ	Transverse momentum, pseudo-rapidity and azimuthal angle of the two jets with the highest <i>b</i> -tagging score		
$p_{\rm T}^{b\bar{b}}$, $\eta_{b\bar{b}}$ and $\phi_{b\bar{b}}$ Transverse momentum, pseudo-rapidity and azimuthal angle of <i>b</i> -tagged jets system			
m _{bb}	Invariant mass built with the two jets with the highest <i>b</i> -tagging score		
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event		
Single topness For the definition, see Eq. (1)			
Missing transverse	momentum-related variables		
$E_{\rm T}^{\rm miss}$ and $\phi^{\rm miss}$	nd ϕ^{miss} Missing transverse momentum and its azimuthal angle		

Resonant BDT input variables

Variable	Variable Definition			
Photon-related kinematic variables				
$p_{\rm T}^{\gamma\gamma}, y^{\gamma\gamma}$	Transverse momentum and rapidity of the di-photon system			
$\Delta \phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$ Azimuthal angular distance and ΔR between the two photons				
Jet-related kinematic variables				
$m_{b\bar{b}}, p_{\rm T}^{b\bar{b}}$ and $y_{b\bar{b}}$	Invariant mass, transverse momentum and rapidity of the <i>b</i> -tagged jets system			
$\Delta \phi_{b\bar{b}}$ and $\Delta R_{b\bar{b}}$	Azimuthal angular distance and ΔR between the two <i>b</i> -tagged jets			
N_{jets} and $N_{b-\text{jets}}$ Number of jets and number of <i>b</i> -tagged jets				
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event			
Photons and jets-related kinemat	ic variables			
m _{bbyy}	Invariant mass built with the di-photon and <i>b</i> -tagged jets system			
$\Delta y_{\gamma\gamma,b\bar{b}}, \Delta \phi_{\gamma\gamma,b\bar{b}}$ and $\Delta R_{\gamma\gamma,b\bar{b}}$	Distance in rapidity, azimuthal angle and ΔR between the di-photon and the <i>b</i> -tagged jets system			

Table 4: Variables used in the BDT for the resonant analysis. For variables depending on *b*-tagged jets, only jets b-tagged using the 77% working point are considered as described in Section 4.1.

Data vs MC: preselection

 $m^*_{bb\gamma\gamma}=m_{bb\gamma\gamma}-m_{bb}-m_{\gamma\gamma}+250\,{
m GeV}$ improve resolution with correlations

Cut flow HH

Non-resonant

Cuts	raw number of events	Yield	Efficiency
N _{xAOD}	1.56e+06	11.3696	100
N _{DxAOD}	1.56e+06	11.3696	100
All events	1.56e+06	11.3685	99.9903
No duplicates	1.56e+06	11.3685	99.9903
GRL	1.56e+06	11.3685	99.9903
Pass trigger	1.30292e+06	9.43463	82.9808
Detector DQ	1.30292e+06	9.43463	82.9808
Has PV	1.30292e+06	9.43463	82.9808
2 loose photons	962029	7.00497	61.6112
$e - \gamma$ ambiguity	961632	7.00186	61.5838
Trigger match	913938	6.65969	58.5743
tight ID	799960	5.85507	51.4974
isolation	709300	5.16719	45.4472
rel.p _T cuts	638923	4.64775	40.8786
$m_{\gamma\gamma} \in [105, 160]$	638541	4.64498	40.8542
$N_{lep} = 0$	638371	4.71206	41.4442
$N_j > 2$	635973	4.69411	41.2863
N_j central <6	540328	3.94838	34.7274
leading jet 85% WP	521719	3.81785	33.5793
subleading jet 85% WP	269007	2.01101	17.6875
$N_j btag < 3$	263071	1.96522	17.2847
2 b-jet with 77% WP	210794	1.56478	13.7628
DiHiggs invariant mass <350	23434	0.187622	1.6502
DiHiggs invariant mass >350	187360	1.37716	12.1126

Table 152: Cutflow for Non resonant $x \rightarrow hh \rightarrow yybb$

<u>Resonant</u>

Cuts	raw number of events	Yield	Efficiency
N _{xAOD}	820000	133.994	100
N _{DxAOD}	820000	133.994	100
All events	820000	133.985	99.9927
No duplicates	820000	133.985	99.9927
GRL	820000	133.985	99.9927
Pass trigger	561153	91.8438	68.543
Detecctor DQ	561153	91.8438	68.543
Has PV	561153	91.8438	68.543
2 loose photons	461295	75.6471	56.4554
$e - \gamma$ ambiguity	461105	75.6125	56.4296
Trigger match	415412	68.3971	51.0447
tight ID	354968	58.6712	43.7863
isolation	299286	49.2099	36.7254
rel.p _T cuts	270121	44.4441	33.1686
$m_{\gamma\gamma} \in [105, 160]$	269966	44.419	33.1499
$N_{lep} = 0$	269872	45.2723	33.7867
$N_i > 2$	268619	45.0653	33.6322
N_i central <6	201307	33.2857	24.8411
leading jet 85% WP	199795	33.0534	24.6677
subleading jet 85% WP	90129	14.7167	10.9831
$N_i btag < 3$	88730	14.4868	10.8115
2 b-jet with 77% WP	70698	11.289	8.42498
DiHiggs invariant mass selection	70698	11.289	8.42498
BDT selection	40764	6.52261	4.86782
$m_{\gamma\gamma} \in [120, 130]$	38981	6.24486	4.66053

Table 158: Cutflow for resonant x300 \rightarrow hh \rightarrow yybb

Background modeling and spurious signal

Non-resonant

Resonant

S+B fit on b-only MC templates:

٠	Relaxed Criteria: lack bkg MC statistics
if	$N_{sp} > 2\Delta n_{sig}^{MC \text{ stat}}$ then $\zeta_{sp} = N_{sp} - 2\Delta n_{sig}^{Stat MC}$
els	se $\zeta_{sp}=0$

Pass <u>OR</u> of: -ζ_{sp}<10 % N_{signal} expected -ζ_{sp}<20 % σ_{bkg}, (Z_{sp}<20 %)
Wald test on real blinded data
Stick to natural form : exp

Category	n_{sp}	Zspur	$p(\chi^2)[\%]$
High mass BDT tight	0.688	0.394	68.8
High mass BDT loose	0.990	0.384	30.5
Low mass BDT tight	0.594	0.378	29.8
Low mass BDT loose	1.088	0.272	26.9

Signal mass [GeV]	n _{sp}	Zspur	$p(\chi^2)[\%]$
251	0.269	0.179	97
260	0.787	0.277	1
270	1.057	0.431	-
280	0.561	0.245	0
290	0.620	0.272	-
300	0.938	0.421	0
312.5	0.538	0.223	-
325	1.075	0.470	0
337.5	0.819	0.399	-
350	0.832	0.457	7
375	0.382	0.303	a.
400	0.295	0.182	0
425	0.378	0.310	-
450	0.451	0.421	1
475	0.758	0.594	4
500	0.218	0.178	0
550	0.140	0.155	31
600	0.095	0.115	19
700	0.532	0.397	0
800	0.150	0.152	0
900	0.213	0.286	97
1000	0.269	0.304	71
	Signal mass [GeV] 251 260 270 280 290 300 312.5 325 337.5 350 375 400 425 400 425 450 475 500 550 600 700 800 900 1000	Signal mass [GeV] n_{sp} 2510.2692600.7872701.0572800.5612900.6203000.938312.50.5383251.075337.50.8193500.8323750.3824000.2954250.3784500.4514750.7585000.2185500.1406000.0957000.5328000.1509000.21310000.269	Signal mass [GeV] n_{sp} Z_{spur} 2510.2690.1792600.7870.2772701.0570.4312800.5610.2452900.6200.2723000.9380.421312.50.5380.2233251.0750.470337.50.8190.3993500.8320.4573750.3820.3034000.2950.1824250.3780.3104500.4510.4214750.7580.5945000.2180.1785500.1400.1556000.0950.1157000.5320.3978000.1500.1529000.2130.28610000.2690.304

34

Non-resonant likelihood scan

Likelihood performed simultaneously and individually with all the categories

Non-resonant S+B fit

Due to the **large deficit** in the **High mass BDT tight category** (most sensitive), a negative signal strength ($\mu \approx -2$) has been observed

Figure 45: The observed data fitted with the signal + background model, in the four non-resonant ggF categories.

Ranking of systematic: expected

Asimov dataset : syst. profiled from bkg-only fit + add μ_{HH} =1 (SM)

Dominant systematic : -spurious signal

Limit setting with CLs method

$$ext{CLs} = rac{p_{s+b}}{1-p_b}$$

Advantage of CLs: not to exclude a hypothesis when pdf of test statistics (Q) are similar between s+b and b

Test statistics used in this analysis

$$\tilde{q}_{\mu} := \begin{cases} -2\ln\frac{L(\mu,\hat{\hat{\theta}}(\mu))}{L(0,\hat{\hat{\theta}}(0))} & \hat{\mu} < 0 \ ,\\ -2\ln\frac{L(\mu,\hat{\hat{\theta}}(\mu))}{L(\hat{\mu},\hat{\theta})} & 0 \le \hat{\mu} \le \mu \ ,\\ 0 & \hat{\mu} > \mu \ . \end{cases}$$

Narrow width approximation

$$\frac{1}{(s-M^2)^2 + M^2\Gamma^2} \xrightarrow{\Gamma/M \to 0} \frac{\pi}{M\Gamma} \delta(s-M^2)$$

$$\lim_{\epsilon \to 0} \frac{\epsilon}{\epsilon^2 + x^2} = \pi \delta(x)$$

$$\frac{1}{\Gamma M^3} \frac{\Gamma/M}{(s/M^2 - 1)^2 + (\Gamma/M)^2} \rightarrow \frac{1}{\Gamma M^3} \pi \delta(s/M^2 - 1) = \frac{1}{\Gamma M} \pi \delta(s - M^2)$$

Narrow width approx. allows to write the propagator (w/ decay width) as dirac function and 1/decay_width.

Dirac function: on-shell 1/decay_width: cross section of one decay channel = production cross section * BR

Non resonant results: toys vs asymptotic

For SM HH signal strength μ , toys have been studied for the validation of asymptotic formula, for both stat-only and full model

stat-only	exp	obs
<u>Asymptotic</u>	5.3	3.8
<u>Toys 100k</u>	5.3	4.0
<u>difference</u>	0.5%	4.4%

full-model	exp	obs
<u>Asymptotic</u>	5.5	4.1
<u>Toys 50k</u>	5.9	4.2
<u>difference</u>	8.2%	3.6%

*stat-only limits derived by simply setting all NPs to 0 in the model stat-only: bias up to 4%
full model: for expected, bias increased to 8%

Conclusion: the asymptotic formula works with a bias up to 8%

Resonant search CMS 36 fb⁻¹

http://cms-results.web.cern.ch/cms-re sults/public-results/publications/HIG-1 7-008/index.html

Up fluctuation of CMS data

