Computation of relic densities within freeze-out mechanism

Marco Palmiotto

Université Claude Bernard Lyon 1 Institut de Physique des deux infinis

22/10/2021

The ACDM model

The standard cosmological model relies on 4 assumptions

- GR describes gravity
- The SM describes the particle content of the universe
- The cosmological principle: i.e. the universe is homogeneous and isotropic at large scales
- ullet A parameter Λ is needed in the Einstein equation to obtain a consistent value for the expansion velocity of the universe

The ACDM model

and it has two main issues:

- Dark energy: Λ can be predicted by the vacuum state energy, but the SM strongly disagrees with the observed value
- Dark matter
 - Discrepancies on matter content of the universe
 - Discrepancies on rotational curves of the galaxies
 - Impossibility of explaining structure formation

For these reasons, it's called A Cold Dark Matter

The Friedmann equations

Using the cosmological principle and GR we can write the FLRW metric

$$ds^{2} = -dt^{2} + a(t)^{2} \left(\frac{1}{1 - kr^{2}} dr^{2} + r^{2} d\theta^{2} + r^{2} \sin(\theta)^{2} d\phi^{2} \right)$$

Plugging it into the Einstein equations (modified with Λ) we get the Friedmann equations

$$\begin{split} \frac{\ddot{a}}{a} &= -\frac{4\pi G}{3}(\rho + 3P) + \frac{\Lambda}{3} \\ H^2 &\equiv \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3} \end{split}$$

What's a relic?

- A particle X is in equilibrium with \bar{X} while $T > m_X$
- If X is stable, than only the reaction $X\bar{X} \to Y\bar{Y}$ can modify n_X
- If X remains in equilibrium, n_X becomes negligible due to Boltzmann suppression

$$n_X \sim (m/T)^{3/2} \exp(-m/T)$$

- To make *X* a DM candidate, its density today has to match the observations (and thus be nonzero)
- A particle that goes out of thermodynamic equilibrium and whose density is nonzero today is called a *relic*

The Boltzmann equation

To study the evolution of a species density we can make the following assumptions:

- Maxwell-Boltzmann distribution : very good for temperatures T < 3m
- The annihilation products are in thermal equilibrium
- After decoupling, the species under consideration remains in kinetical equilibrium
- The initial chemical potential of the species under consideration is negligible

The Boltzmann equation

Then, called f the distribution function we have

$$\frac{\mathrm{d}f}{\mathrm{d}t} = C[f] \quad \Rightarrow \quad \frac{x}{Y_{\mathrm{eq}}} \frac{\mathrm{d}Y}{\mathrm{d}x} = -\frac{\Gamma_{\mathrm{eq}}}{H} \left[\left(\frac{Y}{Y_{\mathrm{eq}}} \right)^2 - 1 \right]$$

where

- C[f] is the number of particles per phase space volume which are lost or gained per unit of time under collisions with other particles
- \bullet x = m/T
- Y = n/s is a "comoving density"
- $\Gamma_{\rm eq} = n_{\rm eq} \langle \sigma v \rangle$ is roughly the interaction rate

$$\frac{x}{Y_{\text{eq}}}\frac{dY}{dx} = -\frac{\Gamma_{\text{eq}}}{H}\left[\left(\frac{Y}{Y_{\text{eq}}}\right)^2 - 1\right]$$

Note that

- if $\Gamma_{\rm eq}/H\gg 1$ then Y is close to $Y_{\rm eq}$
- if $\Gamma_{\rm eq}/H \ll 1$ then the RHS is close to 0 and Y is constant

For some value of $x = x_F$ we will have the *freeze-out* i.e.

$$\Gamma_{\mathrm{eq}}(x_F) = H(x_F)$$

and from this point Y can be considered constant

Maybe you're tired of pointless oyster jokes, so I made something pedagogical ...

Maybe you're tired of pointless oyster jokes, so I made something pedagogical ... It's like storing fresh oysters (according to wikihow)

- On't wash them! keeping oysters in their shells makes them easier to store and reduces the chance that they'll go bad
- Fill a bowl with ice
- Place the oysters
- Put a towel on
- Out them in the refrigerator (2 to 4 degrees)

Maybe you're tired of pointless oyster jokes, so I made something pedagogical ... It's like storing fresh oysters (according to wikihow)

- Don't wash them! keeping oysters in their shells makes them easier to store and reduces the chance that they'll go bad
- Fill a bowl with ice
- Place the oysters
- Put a towel on
- Out them in the refrigerator (2 to 4 degrees)

... and of course, eat them in two days max!

SUSY as a viable framework

 Although SUSY has not still been observed at CERN . . .

SUSY as a viable framework

- Although SUSY has not still been observed at CERN...
- ... among the possible BSM frameworks SUSY provides a natural candidate for dark matter
- Proton decay is in principle possible, so we impose the so-called R-parity
- Reactions like 1 SUSY ↔ 1 SM are forbidden
- In this way we can choose the lightest neutralino as the lightest SUSY particle

Current features of SuperIso Relic

As far as freeze-out is concerned, the current version of the software allows the followings

- Considering non-thermal production of DM
- Considering entropy injection
- Considering variable dark energy
- Some freedom in the choice of the QCD equation of state by modifying the lattice parameters
- Considering MSSM and NMSSM
- Following the evolution of the density of only the LSP

Current features of SuperIso Relic

As example, you can give your inputs in an .1ha format and execute some predefined programs, or write your own in C thanks to the manual

```
./ testmodeleff .x example .lha
Dependence of the relic density on the calculation of heff and geff
For model_eff =1 ( model A): omega =1.254 e+01
For model_eff =2 ( model B ( default )): omega =1.254 e+01
For model_eff =3 ( model B2 ): omega =1.262 e+01
For model_eff =4 ( model B3 ): omega =1.247 e+01
For model_eff =5 ( model C): omega =1.255 e+01
For model_eff =6 (Bonn model ): omega =1.231 e+01
For model_eff =0 (old model ): omega =1.229 e+01
```

What's next?

- I'm starting from trying to follow the evolution of the densities of more than one species
- This will allow to better explore the parameter space of each viable model
- A lot of work is required since a new setting to compute $\langle \sigma v \rangle$ is needed
- The current setup relies on self-generated FORMcalc code,
 - Only for pMSSM and pNMSSM
 - Does not allow the separation of different contributions to $\langle \sigma v \rangle$

Why these limitations?

In the current version:

- Many codes are required
- Several passages of inputs
- There are some Mathematica dependencies

MARTY

So, we've chosen to switch to MARTY

The state of art situation

$$MSSM.cpp \rightarrow testlib \rightarrow \sigma(SUSY \rightarrow anything)$$

- I have a model file (1h to compile + execute)
- Then I have a library with some auxiliary files
 - Sharing inputs with SuperIso
 - Handling running
 - 30m to compile with 8 cores
- Finally I can execute the final program (3m to execute the test file)

As a result only ~ 50 processes on 3400 do not work (still)

The state of art situation

What's next?

- Performances have been an important aspect of my work, but some further improvements may be possible
- Soon I'll implement the pNMSSM and I'll finish the interface among SuperIso and this code
- Next, I'll implement the code to have multiple Boltzmann equations
- If MARTY will support new features, some of the things I did could be remade in a more portable way
- Comparison with DarkSUSY and micromega

Conclusions

- We have lots of BSM theories with a DM candidate
- Having more tools to explore the parameter space of SUSY models is helpful since there are a lot of parameters that come into play
- The simpler the code, the easier it is to do modifications
- In the next versions of the code, different calculation will be made for different species
- MARTY is an useful tool since it allows to chose any lagrangian
- We hope to add more models, and the possibility of studying the freeze-in as well!