Analysis of MBTA Single Detector Triggers

Vincent Juste, IPHC Strasbourg

- Gravitational waves
 - \succ sources, detection
- My work
 - selection of single detector triggers
 - computation of a False Alarm Rate

Searching for gravitational waves sources

To this day all measured GW originated from compact binary systems coalescences (CBC):

- Binary Neutron Star (BNS)
- Binary Black Hole (BBH)
- Neutron Star + Black Hole (NSBH)

MBTA: low latency analysis chain looking for CBC

Other searches: continuous waves (pulsars), bursts (unexpected sources)...

figure from <u>B. P. Abbott et al. (LIGO Scientific</u> <u>Collaboration and Virgo Collaboration)</u> <u>Phys. Rev. Lett. 116, 061102</u>

GW detection: LIGO-Virgo

- Detectors based on michelson interferometer: GW modifies the distance between the mirrors (~10⁻¹⁹ m)
- Network of detector on earth:
 - \circ confident detections
 - triangulate sky position: LIGO in Hanford + Livingston (USA), Virgo in Cascina (Italy)
- Send alerts to observatories for follow-up

GW170817 sky location PDF in right ascension and declination

My work and goals

- Initially: require events to be seen in at least 2 detectors to be candidates
- Now GW well established + more sensitive detector + better pipelines
 - $\circ \quad \rightarrow \text{more confidence in events}$
- My work: use single detector triggers (events seen in only 1 detector)
 - Select good single detector triggers using several quantities
 - o compute a False Alarm Rate to quantify their significance

LIGO-Virgo duty cycle (2019-2020)

Computation of a False Alarm Rate (FAR)

Searching for known signal: matched filtering

Signal shape is known (general relativity):

- try different set of parameters : use a template "bank" (~ 728 000 templates)
- compare data to a template (waveform): matched filtering

Comparison = cross-correlation of the detector output with a template

 \rightarrow Matched Filtering Output (MFO) time series

Signal-to-Noise Ratio (SNR) = maximum of the amplitude of MFO

MBTA analysis pipeline

One of the pipeline analyzing LIGO and Virgo data MBTA stands for Multi-Band Template Analysis

Performs matched filtering on 2 frequency bands

- A Low Frequency (LF) band from 25 to 80Hz
- A High Frequency (HF) band from 80 to 2048 Hz

Combine Matched Filtering Outputs (MFO)

For an astrophysical signal: combination is coherent

Benefit: lower computational cost

Plot from <u>B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo</u> Collaboration) Phys. Rev. Lett. 119, 161101

Estimate the background: Computation of a FAR

to

- Goal : assign a False Alarm Rate (FAR) single detector triggers
 - \rightarrow estimate the background
- Method:
 - Make random coincidences between frequency bands to build a background SNR distribution
 - Use this distribution to compute the FAR as the number of background triggers expected above a given SNR

• Here: Coincidences between detectors → coincidences between frequency bands at different times

Plot from <u>B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo</u> Collaboration) Phys. Rev. Lett. 119, 161101

Single band triggers combination

- In one frequency band: save the triggers \rightarrow upper plot
- In the other frequency band: save the data (random noise) at the same time \longrightarrow lower plot
- Random coincidences done with 1 trigger and 1 random noise each time

Comparing observed and computed background

V1

- We make more coincidences per trigger than would happen in a standard analysis
 → distribution is scaled afterwards
- Results for 2000s look promising
 - \rightarrow plan to do on a larger scale

Single detector triggers selection

Single detector triggers selection: motivations

Detector output is not gaussian nor stationary \rightarrow glitch

Glitches are short and pollute a large frequency range

We want to focus on signals that we can properly identify and those that are the most interesting

The higher the masses, the shorter the signal

- BBH signals can be very short
- BNS signals are long

Longer signals are hardly mistaken for glitches

EM bright population

Longer signal = lower mass

- \rightarrow more likely to contain a neutron star
- \rightarrow higher chance of emitting electromagnetic radiations
- \rightarrow EM-bright candidates
- \rightarrow Interesting for online alerts

Expected constraints on an EM bright binary:

- At least 1 neutron star \rightarrow 1 object with 1 M \odot \leq mass \leq 2.8 M \odot
- not too massive black hole if any (so that matter/radiations can escape) → 1 object with $1 \text{ M} \odot \le \text{mass} < 25 \text{ M} \odot$

This definition follows <u>"Search for Gravitational Waves</u> Associated with Gamma-Ray Bursts..."

10

10²

mass1

13

Comparing background: EM bright vs all

Many non-EM bright events have a high SNR

Most astrophysical candidates are indistinguishable

EM bright background is cleaner

 \rightarrow Could we do even better ?

L1 O3a EM bright singles

EM bright single detector triggers selection

One quantity that proved to be effective in selecting singles for the EM bright region is the "excess rate"

excess rate = ratio of trigger rate before and after quality checks

For astrophysical signal: excess of triggers during a few seconds

For noise: excess of triggers for a longer time

 \rightarrow compute an excess rate weight

 \rightarrow apply a penalty to the SNR if the trigger came at a noisy time

EM bright singles : rejecting events with ER > 0.3

L1 O3a EM bright singles

lose only ~4-5% duty cycle

Summary

- To increase the number of detections we want to include single detector triggers in our analysis
- For an EM bright candidate population the excess rate allows for a nice selection of the single detector triggers
- Taking advantage of MBTA multi-band structure we can proceed to random coincidences to generate a background SNR distribution for single detector triggers and compute a FAR
- ➤ Final goal: use it for O4 (4th observing run of LIGO Virgo)

Additional slides

Autox² : definition

Auto χ^2 = comparison of the measured MFOs with the expected MFO (autocorrelation of the template)

Is used to reweight the SNR (a penalty is applied if the Autox² is too high)

