

Spatial reconstruction of neutrino interactions based on a neural network in the JUNO experiment using the 3 inch PMT system

Jiangmen Underground Neutrino Observatory

JUNO

- Underground neutrino detector located in China
 - ~52 km from two nuclear plants
- Use a 20 kton Liquid Scintillator (LS)
 - Contained in an acrylic sphere of 17,7m radius
- Goals:
 - Neutrino mass ordering
 - Precise measurement of oscillation parameters
 - And other ...
- Neutrino sources:
 - Nuclear reactors
 - Atmospheric neutrinos
 - Supernovas
 - Solar neutrinos
 - Geoneutrinos

PMTs

Mass ordering and oscillation parameters

– JUNO use $\bar{\nu_e}$ coming from reactors to measure the mass ordering & oscillation parameters

- -Survival probability of electronics antineutrinos depends on:
 - Distance traveled L
 - Energy *E*
 - $_{-}$ Difference between mass eigenstate's masses Δm_{ij}^2
 - Oscillation parameters θ_{12}, θ_{13}

Expected $\bar{\nu}_{e}$ spectrum from reactors

$$P(\bar{\nu}_e \to \bar{\nu}_e; L) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \frac{\Delta m_{21}^2 L}{4E} - \sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \frac{\Delta m_{31}^2 L}{4E} + s_{12}^2 \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right]$$

Detection principle

 $-\bar{\nu_e}$ interacts with **LS** through **IBD** (Inverse Beta Decay)

$$\bar{\nu_e} + p \rightarrow e^+ + n$$

- $-e^+$ and n deposit their energy in the LS
 - → LS produces **photons**
 - → Photons are collected by photomultipliers (PMTs)
- $-e^+$: prompt signal
 - Electronic elastic recoils
 - Annihilation with e^- of the LS → 2 γ (511 keV)
 - $-\gamma$ interact with LS by compton + photoelectric
- -n: delayed signal
 - Proton and neutron recoils
 - Captured by an hydrogen $\rightarrow \gamma$ (2.2 MeV)

Photodetection system

- -Scintillation photons read by PMTs
- -2 types: Large PMTs, Small PMTs
- LPMTs: 20 inch diameter
 - Large photo-coverage
 - 17,612 used for the detector
- -SPMTs: 3 inch diameter
 - Collects 1 photon most of the time
 - 25,600 of them in the detector
- Both have their signal digitized by their respective front-end electronics
- Independent and complementary

Event reconstruction in the LS

- Two main informations needed

- Event's interaction vertex
 - Prompt & Delay spatial coincidence
 - Correction for energy reconstruction
 - Background rejection

- Event's Energy
 - Original neutrino energy

Motivations for using a Neural Network

- Measurement of θ_{12} and Δm^2_{21} possible with only SPMTs
 - → Need an event reconstruction with only SPMTs
 - Interaction vertex reconstruction already made with classical methods by Victor Lebrin but have some limitations
 - CNN could overcome those limitations and maybe outp classical methods

Neural networks

- Neural network is an AI technology based on learning
- Fed with training data
 - It learn how to get a correct result
- -Only use the prompt signal
- Inputs: nPE, Tofh, SPMT position
 - nPE: number of photons collected by a SPMT
 - Tofh: Time of hit of the first collected photon
 1 Hit = 1 Photon collected
- Outputs: x, y, z (spatial position of the event)
- Representing inputs as images
 - SPMT position become pixel position
 - Challenging because SPMTs on a sphere

Neural networks training

The neural network process the training events

It adjusts its hidden layer accordingly

-At the end of the training, it is challenged with new data

980k simulated events for training and 50k used for the results

Preliminary results

Prelin

Conclusion

- Neural networks can overcome limitations of man made models
- Future work will maybe be able to outperform classical methods
- But neural networks are black box. It's important to try to understand how they operate and it will be big part of in my works.
- -We will also need to reconstruct the energy and event selection.

Thanks for your attention

BACKUP

Do NN dream f electric sheep

Neutrinos basics

- Elementary particles
- Very small masses (< eV)
- Leptons → have a flavour
 - Electronic
 - Muonic
 - Tauic
- Interact only through weak interaction
- Oscillate between flavours
 - Flavours are mixin of the same 3 mass eigenstates
- Mass ordering still unknown

Neutrinos oscillation

- Oscillation described by the Pontecrovo-Maki-Nakagawa-Sakata (PMNS) matrix U
- U expressed with $\theta_{23}, \theta_{12}, \theta_{13}$ and a phase factor δ

$$\begin{bmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

TR Area

- Area where photons can be reflected at the acrylic/water interface

Resolution vs R^3